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■ Abstract An overview of the phase-field method for modeling solidification is
presented, together with several example results. Using a phase-field variable and a
corresponding governing equation to describe the state (solid or liquid) in a material as
a function of position and time, the diffusion equations for heat and solute can be solved
without tracking the liquid-solid interface. The interfacial regions between liquid and
solid involve smooth but highly localized variations of the phase-field variable. The
method has been applied to a wide variety of problems including dendritic growth in
pure materials; dendritic, eutectic, and peritectic growth in alloys; and solute trapping
during rapid solidification.

INTRODUCTION

The formation of complex microstructures during solidification of metals and
alloys and the accompanying diffusion and convection processes in the liquid and
solid have fascinated researchers in materials science and related areas for literally
hundreds of years. Examples include the growth of dendrites and eutectics (1–4)
and microsegregation that occurs during growth (5–6). The principal obstacle
in predicting solidification patterns is in accurately calculating the diffusion and
convection processes in the liquid and solid for the complex shapes of the solid-
liquid interface. Over the past few years, largely because of the development in a
modeling approach called the phase-field method and ever-increasing computation
power, much progress has been made in simulating solidification on the scale of
the developing microstructure.

1The US Government has the right to retain a nonexclusive, royalty-free license in and to
any copyright covering this paper.
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Herein we give only an introduction to the phase-field modeling approach,
because this field has recently exploded and a complete review is impossible
in this short chapter. The subject now incorporates a variety of topics ranging
from solidification, strain-accommodating solid-state transformations, and surface
diffusion. The method employs a phase-field variable, e.g.,φ, which is a function of
position and time, to describe whether the material is liquid or solid. The behavior
of this variable is governed by an equation that is coupled to equations for heat
and solute transport. Interfaces between liquid and solid are described by smooth
but highly localized changes of this variable between fixed values that represent
solid and liquid, (in this review, 0 and 1, respectively).

This approach avoids the mathematically difficult problem of applying bound-
ary conditions at an interface whose location is part of the unknown solution (the
so-called Stefan problem). These boundary conditions are required so that the
individual solutions to transport equations in the bulk phases match properly at
the interface; i.e., conserve heat and solute and obey thermodynamic/kinetic con-
straints. In phase-field calculations, boundary conditions at the interface are not
required. The location of the interface is obtained from the numerical solution for
the phase-field variable at positions whereφ = 1/2. The phase-field method is also
powerful because it easily treats topology changes such as coalescence of two solid
regions that come into close proximity.

Phase-field models can be divided into various intersecting classes: those that
involve a single scalar order parameter and those that involve multiple order pa-
rameters; those derived from a thermodynamic formulation and those that derive
from geometrical arguments. There are also formulations best suited for large de-
viations from local equilibrium and others for the opposite. There are physical
problems where the order parameter can easily be associated with a measurable
quantity such as a long-range chemical or displacive order parameter in solids and
those where the order parameter is not easily measurable such as in solidification.
In some cases, the method might represent real physics and in others, the method
might be better viewed as a computational technique. Indeed, neither phase-field
models nor sharp-interface models perfectly represent physical systems. In ad-
dition, phase-field models for solidification coupled to fluid flow are also being
developed. This research should have a major impact on our understanding of flow
in the mushy zone caused by shrinkage and buoyancy-driven convection.

THE PHASE-FIELD VARIABLE

A single, scalar order parameter can be used to model solidification of a single-
phase material. However, to employ such a simple description of the liquid-solid
transition necessarily requires a number of approximations. Figure 1 [adapted
from Mikheev & Chernov (7)] shows one possible physical interpretation of a
single scalar phase-field variable. The interfacial region and its motion during
solidification are depicted by a damped wave that represents the probability of
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Figure 1 Schematic representation of a possible physical interpretation of the phase-
field variable. [Adapted from Meekhev & Chernov (7).]

finding an atom at a particular location. On the left (Figure 1), the atoms tend to
be located at discrete atomic planes corresponding to the crystal. As the liquid is
approached, the probability has the same average value but becomes less localized,
as indicated by the reduced amplitude of the wave. Finally the probability achieves
a constant value in the liquid indicating the absence of localization of atoms to
specific sites; i.e., a liquid. The amplitude of the wave might be related to the phase
field φ.

For many solid-solid transformations, a set of order parameters naturally arises
from the symmetry and orientation relationships between the phases. However,
a rigorous description of the liquid-to-solid transformation requires an infinite
number of order parameters. Starting with a representation of the atomic density
variation across an interface in reciprocal space, Harrowell & Oxtoby (8) and
Khachaturyan (9) described the approximations necessary to reduce the infinite
number of order parameters to just one scalar. One can imagine the lattice of
the crystal extending into the interfacial region. A Fourier series can be used to
represent the local atomic density at each location.

The Fourier coefficients in the series are functions of distance. These func-
tions are assumed to vary slowly (compared with the lattice spacing) through the
interfacial region. For example in the one-dimensional schematic representation
of Figure 1, a single wavelength sine wave is depicted with a slowly varying
modulation amplitude. On the scale of the lattice spacing in this example, the am-
plitudes of the Fourier coefficients are approximately constant, and the density is
spatially periodic with the period of the lattice. However, a detailed description of
the density on this scale would require a full Fourier series containing other sine
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waves with shorter wavelengths, each with slowly varying amplitudes that may
vary differently through the interface, and hence an infinite set of order parameters
(8, 9).

To reduce the full description to a single phase-field variable, two simplifying
assumptions are necessary. The first assumes that the amplitudes associated with
the interatomic spacings (shortest reciprocal lattice vectors) respond to interface
motion most slowly; i.e., their adjustment limits the rate of crystal growth. Am-
plitudes associated with shorter wavelengths, it is argued, respond more quickly.
Then the description of the liquid-to-crystal transition can be reduced to a small
number of amplitudes that simply describe the probability of the occupancy at
the lattice positions in the three-dimensional unit cell. The second simplification
comes if one assumes that the amplitudes of this limited set of Fourier components
are proportional to each other. Then a single scalar can describe the amplitudes as
they vary across the interface, as in Figure 1. Such a description is most appropriate
for metallic systems.

This second assumption eliminates the possibility of describing anisotropy in a
physical way. Interface energies are rendered isotropic. For single-variable phase-
field models, anisotropy must be introduced ad hoc through an orientation depen-
dence of the gradient energy coefficients, as shown below. Alternatively, one can
keep the multiple-order parameter picture and naturally derive anisotropy (10).

If one accepts that a single-order parameter can represent the transformation
from liquid to a specified solid phase, then multiple scalar phase-field variables can
be used to treat situations where more than two solid phases appear, e.g., eutectic
and peritectic reactions. Multiple phase-field variables can also be used to treat the
multiple orientations found in a polycrystalline material (11).

From a purely mathematical point of view the phase-field parameter can be
considered a tool that allows easier calculations of solidification patterns. Mathe-
maticians refer to this as a regularization of sharp interface problems. The sharp-
interface solution is called a weak solution in that it satisfies the solute and heat
transport field equations in an integrated form. The only mathematical requirement
to support a smooth but rapidly changing function that represents an interface is
a balance between two effects: an increase in energy associated with states inter-
mediate between liquid and solid and an energy cost associated with large values
of the gradient of the phase-field variable.

DIFFERENT PHASE-FIELD MODELS

There are two approaches to phase-field modeling: those that use a thermodyna-
mic treatment with gradient flow and those that are only concerned with repro-
ducing the traditional sharp-interface approach. In this section, we examine three
cases of the above: (a) a thermodynamic treatment with a single scalar order pa-
rameter, (b) a practical or geometrical method with a single scalar order parameter
where the equations are derived backward from the sharp-interface model, and
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(c) a treatment with multiple phase-field parameters. We describe the first case
in some detail, and briefly describe the others. The reader will note the similar-
ities of the end result of the various approaches, each of which gives a different
perspective.

Thermodynamic Treatment

This approach is found in many papers on the phase-field method (12–17) and
determines the evolution equations from a few basic concepts of irreversible ther-
modynamics.

EVOLUTION EQUATIONS By demanding that the entropy always increases locally
for a system where the internal energy and concentration are conserved, relation-
ships between the fluxes of internal energy and concentration can be obtained.
These are generalizations of Fourier’s and Fick’s laws of diffusion. A separate
relationship governingφ is required to guarantee that the entropy increases.

To treat cases containing interfaces, the entropy functionalSis defined over the
system volumeV as

S =
∫
V

[
s(e, c, φ) − ε′2

e

2
|∇e|2 − ε′2

c

2
|∇c|2 − ε′2

φ

2
|∇φ|2

]
dV, 1.

wheres, e, c, andφ are the entropy density, internal energy density, concentration
and phase field, respectively, withε′

e, ε′
c andε′

φ being the associated gradient en-
tropy coefficients. The entropy densitysmust contain a double well in the variable
φ that distinguishes the liquid and solid. The quantitySalso includes the entropy
associated with gradients (interfaces). From such an approach, equations for en-
ergy (heat) diffusion, solute diffusion and phase field evolution follow naturally.
The formulation using this entropy functional, especially with all three gradient
energy contributions (17), is quite general.

We present a simpler isothermal formulation to which we append a heat flow
equation. This gives essentially equivalent results to the entropy formulation if
ε′

e = 0. The enthalpy density is expressed as

h = h0 + CP T + Lφ, 2.

which yields an equation for thermal diffusion with a source term given by

CP
∂T

∂t
+ L

∂φ

∂t
= ∇ · (k∇T), 3.

whereh0 is a constant;T is the temperature;Cp is the heat capacity per unit volume,
which in general depends on temperature;L is the latent heat per unit volume; and
k is the thermal conductivity. From the differential equation it can be seen that the
latent heat evolution occurs whereφ is changing with time, i.e., near a moving
interface.
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An isothermal treatment forms the free energy functionalF, which must de-
crease during any process, as

F =
∫
V

[
f (φ, c, T) + ε2

C

2
|∇c|2 + ε2

φ

2
|∇φ|2

]
dV, 4.

wheref (φ, c, T) is the free energy density, and where the gradient energy coeffi-
cients have different units than the (primed) gradient entropy coefficients used in
Equation 1.

For equilibrium, the variational derivatives ofF must satisfy the equations,

δF

δφ
= ∂ f

∂φ
− ε2

φ∇2φ = 0, 5.

δF

δc
= ∂ f

∂c
− ε2

C∇2c = constant 6.

if the gradient energy coefficients are constants. The constant in Equation 6 occurs
because the total amount of solute in the volumeV is a constant; i.e., concentration
is a conserved quantity.

For time-dependent situations, the simplest equations that guarantee a decrease
in total free energy with time (an increase in entropy in the general formulation)
are given by

∂φ

∂t
= −Mφ

[
∂ f

∂φ
− ε2

φ∇2φ

]
, 7.

∂c

∂t
= ∇ ·

[
MCc(1 − c)∇

(
∂ f

∂c
− ε2

C∇2c

)]
. 8.

The parametersMφ andMC are positive mobilities related to the interface ki-
netic coefficient and solute diffusion coefficient, respectively, as described below.
Equations 7 and 8 have different forms because composition is a conserved quantity
and the phase field is not. Equation 7 is called the Allen-Cahn equation; Equation 8
is the Cahn-Hilliard equation. In this formulation, the pair are coupled through the
energy functionf (φ, c, T ). In Equation 8, we setεC = 0 for the remainder of this
review. With εC 6= 0 and a double well inf (c), Equation 8 alone can describe
spinodal decomposition.

FREE ENERGY FUNCTION The free energy density uses two functions: a double-
well function and an interpolating function. Here we chose the two functions,
g(φ) = φ2(1 − φ)2 and p(φ) = φ3(6φ2 − 15φ + 10), respectively. Note that by
design,p′(φ) = 30g(φ), ensuring that∂ f/∂φ = 0 whenφ = 0 and 1, for all
temperatures, as shown below. In this review,φ = 0 represents solid andφ = 1
represents liquid, although the opposite convention is often used. Plots of these
functions are given in Figure 2.
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Figure 2 The functions g(φ) and
p(φ).

The alloy free energy densityf (φ, c, T) can be constructed in several ways. One
method can be broken into three steps:

1. Start with the ordinary free energy of the pure components as liquid and
solid phases,f L

A (T), f S
A (T), f L

B (T) and f S
B (T). They are functions of tem-

perature only.

2. Form a function,fA(φ, T), that represents both liquid and solid for pure A
as

fA(φ, T) = (1 − p(φ)) f S
A (T) + p(φ) f L

A (T) + WAg(φ)

= f S
A + p(φ)

[
f L
A (T) − f S

A (T)
] + WAg(φ). 9.

This function combines the free energies of the liquid and solid with the
interpolating functionp(φ) and adds an energy hump,WA, between them. A
similar expression can be obtained for component B here and in all expres-
sions below for a pure substance.

3. Form the function, f (φ, c, T), that represents (for example) a regular
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solution of A and B,

f (φ, c, T) = (1 − c) fA(φ, T) + cfB(φ, T)

+ R′T [(1 − c)ln(1 − c) + c ln c]

+ c(1 − c) {ÄS [1 − p(φ)] + ÄL p(φ)}, 10.

whereÄL andÄS are the regular solution parameters of the liquid and solid
that again are combined with the interpolating functionp(φ). The gas con-
stantR′ and the regular solution parameters are described on a unit volume
basis.

A second method to formf (φ, c, T) is convenient if the free energies of the
solid phase and liquid phase,f L(c, T) andf S(c, T), are already available; e.g., from
a Calphad thermodynamic modeling of the phase diagram. The free energy density
is

f (φ, c, T) = [(1 − c) WA + cWB] g(φ) + [(1 − p(φ)] f S(c, T) + p(φ) f L (c, T).

11.

Such a construction will lead to the same form as Equation 10 if regular solution
models are used for the liquid and solid phases.

A simplification is often made for the pure elements; namely,

f A
S (T) = 0

f A
L (T) − f A

S (T) = L
(
T A

M − T
)

T A
M

. 12.

This takes the solid as the standard state and expands the difference between
liquid and solid free energies around the melting point. The pure component melt-
ing points areT A

M andT B
M , and the latent heats areLA andLB. Then the pure element

free energy (Equation 9) can be given by

fA(φ, T) = WAg(φ) + L A
T A

M − T

T A
M

p(φ). 13.

The effect of the second term is to raise or lower the minimum in the free energy
atφ = 1 (liquid) depending on the whether the temperature is above or below the
melting point with the free energy atφ = 0 (solid) being fixed at zero.

The choice for the form of the functionsg(φ) andp(φ) is arbitrary and others
are used in various publications. In the limit in which the interface thickness is
small, the choice does not matter.

SOLUTIONS FOR A PURE MATERIAL Consider the case wherec = 0; i.e., pure
component A. From Equations 7 and 13,
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∂φ

∂t
= M A

φ ε2
φ

[
∇2φ − 2WA

ε2
φ

φ(1 − φ)(1 − 2φ)

]

− 30M A
φ L A

T A
M

(
T A

M − T
)
φ2(1 − φ)2. 14.

Equilibrium solutions (∂φ/∂t = 0) are obtained ifφ is constant with values equal
to 0 or 1. These situations correspond to a single-phase solid or a single-phase
liquid, respectively. The equilibrium equation (Equation 5) permits these states to
exist at any temperature, including those for a metastable supercooled liquid or a
superheated solid.

An equilibrium solution also exists atT = T A
M for a one-dimensional (planar

interface) transition zone between liquid (φ = 1) and solid (φ = 0) whereφ varies
in thex direction normal to the interface as

φ(x) = 1

2

[
1 + tanh

(
x

2δA

)]
, 15.

whereδA is a measure of the interface thickness given by

δA = εφ√
2WA

. 16.

The value of the interface thickness is a balance between two opposing effects.
The interface tends to be sharp in order to minimize the volume of material where
φ is between 0 and 1 andf (φ, T ) is large (as described byWA). The interface tends
to be diffuse to reduce the energy associated with the gradient ofφ (as described
by εφ).

Figure 3 shows the variation ofφ and the integrand of Equation 4,f (φ, TM ) +
1/2ε

2
φ |∇φ|2, with distance across an interfacial region for the equilibrium solution

(Equation 15). The hatched region corresponds to the surface free energy and is
given by direct integration using Equation 15 as

σA = εφ

√
WA

3
√

2
. 17.

Note that it is possible to take the limit,δA → 0, while keepingσ fixed. Equations
16 and 17 can be used to calculate the values of the parametersεφ andWA to match
with selected values forσA andδA; namely,

εφ =
√

6σAδA and WA = 3
σA

δA
. 18.

For the planar solution, the Laplacian,∇2φ, is simply the second derivative ofφ

wrt. x. To examine a curved equilibrium interface (Equation 14 with∂φ/∂t = 0),
the simplest mathematics is to transform to spherical coordinates with no angular
dependence. Then the Laplacian includes an extra term, in addition to the second
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Figure 3 Variation of the phase-field parameter,φ, and the energy/unit volume,
f (φ) + 1/2ε

2
φ(∇φ)2, with distance,x, across a stationary flat liquid-solid interface at the

melting point in a pure material. The area under the curve in the latter is the excess
energy/unit area of interface, i.e., the liquid-solid interface energy.

derivative wrt.r ; i.e., (2/r )(∂φ/∂r ). With this extra term, no solution exists when
T = T A

M . However, for an interface with a specified radius,RÀ δA, a solution does
exist at a temperature belowT A

M ; that is,T = T A
M − 0/R, where0 = σ T A

M/LA.
This selection of one interface radius for each (interface) temperature is consistent
with the Gibbs-Thomson effect for a sharp-interface model.

To examine a moving, flat steady-state interface, the simplest mathematics is to
transform Equation 14 in one dimension to a coordinate frame moving at constant
velocityv. Then∂φ/∂t changes to−v(∂φ/∂x). With this change, no solution exists
if T = T A

M . However, a solution does exist for smallδA if the temperature is given
by

T = T A
M − v

µA
, 19.

where

µA = 6Mφεφ LA

T A
M

√
2WA

. 20.
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The selection of one interface velocity for each (interface) temperature is consis-
tent with the classical approach to linear interface attachment kinetics. Equation 20
can be used to determine a value ofM A

φ from a knowledge (or estimate) ofµA as

M A
φ = µAT A

M

6δALA
. 21.

In numerical solutions, the minimum mesh spacing must scale with the chosen
value ofδA so that the interface structure can be resolved. Physically for metallic
systems, the interface thickness is of the order of a few atomic dimensions. Such a
fine mesh spacing is only practical in one dimension at the current time. Thus one
would prefer to use a larger value ofδ and retain the accuracy of Equation 19. By
treatment of the temperature variation that must exist across a diffuse interface,
Karma & Rappel (18) have calculated the relation betweenµA and M A

φ that is
correct to second order inδA (if the thermal conductivity of the liquid and solid are
equal). In this approach, they determined that if the interface width is still small
compared with the macroscale of the microstructural detail of interest, then (using
our own notation)

1

M A
φ

= 6δALA

T A
M

[
1

µA
+ A

(
δALA

k

)]
, 22.

whereA≈ 5/6. AsδA→ 0, Equation 22 recovers Equation 21.
As pointed out by Karma & Rappel, if one wants to treat the case of local

interface equilibrium whereµA = ∞, then for a given value ofδA, Equation 22
gives the appropriate value ofM A

φ . This is useful because many researchers are
interested in comparing the predictions of the phase-field method with mathemati-
cal solutions of the sharp-interface formulation that assume local equilibrium (i.e.,
ignoring interface kinetics). On the other hand, some researchers are interested
in high solidification speed where interface kinetics plays a very important role.
Indeed, an example given below shows how the phase field method can recover
the phenomenon of solute trapping for alloy solidification at high velocity.

ANISOTROPY, NOISE, AND NUMERICAL CONSIDERATIONS FOR SIMULATION OF

DENDRITIC GROWTH To obtain realistic simulations of dendrites using the phase-
field equations, three other issues must be addressed: anisotropy, noise, and
computation times. The most widely used method to include anisotropy for
two-dimensional calculations is to assume thatεφ in Equation 4 depends on an
angleθ (19). Hereθ is the orientation of the normal to the interface with re-
spect to thex-axis given by tanθ = (∂φ/∂y)/(∂φ/∂x). This change requires a
recomputation of the variational derivative in Equation 5, resulting in a more
complex field equation forφ. Using this method of including anisotropy, formal
asymptotics, as the interface thickness is taken to zero, yields the same form of
the anisotropic Gibbs-Thompson equation that is employed for sharp-interface
theories (20). For numerical computations of cubic dendrites in two dimensions,
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fourfold variations ofε with θ have been utilized (19). Methods for including
anisotropy in three-dimensions have also have been developed.

Calculations performed using a coarse, finite-difference mesh will usually ex-
hibit side branching typical of real dendrites because discretization errors introduce
noise into the calculation. (A coarse, square mesh can also induce a synthetic four-
fold anisotropy). As the computational mesh is refined, however, side branches
disappear. Therefore, to study realistic structures, noise is introduced at controlled
levels to induce side branching. This is typically implemented using random fluc-
tuations of a source term added to the phase-field equation (19, 21).

Computational issues associated with solving the phase-field equations are chal-
lenging and have primarily focused on the value of the interface thickness and the
finite-difference mesh spacing. The central difficulty is having sufficient numerical
resolution of the diffuse interface and at the same time enough nodes/elements to
model the entire dendritic structure, often limiting consideration to high super-
cooling. This is an active area of research. In particular, techniques using adaptive
finite-element calculations have been useful for enabling more efficient simula-
tions (22). Hybrid methods are also being developed that solve the thermal diffusion
equation using random walkers rather than a numerical solution to the differential
equation (23).

SOLUTIONS FOR ALLOYS We recall the general form of the free energy,f (φ, c, T )
(Equation 10), for the case of an alloy. The general shape is shown in Figure 4a for
Ä ≤ 0 and at a fixed temperature between the pure component melting points. For
fixed temperature, simultaneous solution of Equations 5 and 6 in one dimension
show thatφ will vary from 1 to 0 across a stationary interface between liquid and
solid asc varies between two specific compositionscL andcS, shown by the dotted
line on the (φ, c) base of the plot. The values far from the interface are given by a
plane tangent at two points to the free-energy surface. The tangent plane has the
properties that

∂ f

∂φ
= 0 and

∂ f

∂c
= constant 23.

as required by Equations 5 and 6 wheneverφ andc have no spatial variation; i.e.,
far from the interface. This construction is the same as that obtained by classical
thermodynamic methods applied to equilibrium between bulk phases; namely, the
common tangent construction to the liquid and solid free energies at the selected
temperature. The common tangent line tof (0,c, T ) andf (1,c, T ) at fixedT is the
projection of the tangent plane to the surfacef (φ, c, T ), as shown in Figure 4b.

Dynamic solutions are described below. The phase-field mobility and the dif-
fusion mobility are given by

Mφ = (1 − c)M A
φ + cMB

φ

MC = [1 − p(φ)]DS + p(φ)DL

R′T
, 24.
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Figure 4 (a) The alloy free-energy functionf (φ, c, T ) for a temperature,T, be-
tween the pure component melting points (T B

M < T < T A
M ), showing the tangent plane

that determines the compositions of liquid and solid, far from a stationary flat inter-
face. The locus ofφ andc through the thin interfacial region is shown (dotted line).
(b) Projection of (a) along theφ axis showing the common tangent line. The free-energy
surface is only shown for 0< φ <1.
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whereDL andDS are the diffusion coefficients in the bulk liquid and solid phases.
Also, we note that the interpolating functionp(φ) need not be the same as the
interpolating function introduced in Equation 9.

Karma (24) recently developed a modified phase-field formulation of alloy
solidification that is designed to model quantitatively small solidification speeds
under the assumption of local equilibrium at the interface, thereby generalizing
Equation 22 to the alloy case. Moreover, as in the pure case, this formulation
makes it possible to model this growth regime using a computationally tractable
interface width in the phase-field model, i.e., a width that is substantially larger
than the nanometer width of the real solid-liquid interface. For the alloy phase-
field formulation discussed in the present review, the use of a large interface width
generates nonequilibrium effects that are unrealistically large at small solidification
speeds and that alter both the interface evolution and the solute profile in the solid.

Geometrical Description

Beckermann et al. (25) provide another approach for obtaining the phase-field
equations. This approach also includes fluid flow, but here we present the case with
no flow. If one considers the functionφ(x, y, z, t) with the interface represented by
a constant value ofφ, then the normal to the interfacen is given by

En = ∇φ

|∇φ| . 25.

The curvatureκ is given by

κ = ∇ · En = 1

|∇φ|
(

∇2φ − ∇φ∇|∇φ|
|∇φ|

)
. 26.

The normal velocity of the interface,v, is given by

v = − 1

|∇φ|
∂φ

∂t
. 27.

The conditions for the liquid solid interface, written in the form where solute
trapping is neglected, is

v

µA
= T A

M − T + mLcL − σ T A
M

LA
κ, 28.

wheremL is the liquidus slope. For a variation ofφ in the normal directionn across
the interface given by

φ = 1

2

[
1 + tanh

(
n

2δ

)]
29.

one can compute

|∇φ| = ∂φ

∂n
= φ(1 − φ)

δ
30.
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and

∇φ∇|∇φ|
|∇φ| = ∂2φ

∂n2
= φ(1 − φ)(1 − 2φ)

δ2
. 31.

Substituting the appropriate expressions into the interface equation yields

1

µA

∂φ

∂t
= σAT A

M

LA

[
∇2φ − φ (1 − φ)(1 − 2φ)

δ2

]
− (TM − T + mLcL )

[
φ(1 − φ)

δ

]
32.

The concentration equation is derived by writing the following conservation equa-
tion using phase-field weighted values for the average concentration:

∂c

∂t
= ∇ · [(1 − φ)DS∇cS + φDL∇cL ] . 33.

The liquid and solid concentrations can be expressed in terms of the average
concentrationc as

cL = c

φ + k(1 − φ)
and cS = kc

φ + k(1 − φ)
, 34.

wherek is the solute partition coefficient. This method is particularly attractive if
one does not wish to deal with the free energy functions to determine the phase
diagram. Here, only the values ofT A

M , mL andk are required. The method also
provides a sense of the relationship between terms in the phase-field equation and
quantities such as the interface curvature and velocity.

We note that if a different interpolation function, i.e.,p(φ) = 3φ2 − 2φ3, had
been used in Equation 13 for the derivation of Equation 14, Equation 14 would be
identical to Equation 32 for a pure material (cL = 0).

Multiple Phase-Field Methods

Using a positive value ofÄS in Equation 10, a solid miscibility gap can be formed
in the binary phase diagram. In this case Figure 4 would add an energy hump
along the concentration axis for the solid. The tangent plane would then have three
tangent points corresponding to one liquid phase and two solid phases. In this
manner and withεC 6= 0, multiphase problems such as eutectic and peritectic
(monotectic withÄL À 0) solidification problems can be examined (26). However
it is not possible to represent all binary phase diagrams with the free energy of
Equation 10. Therefore, it has become useful to use multiple phase-field variables to
represent multiphase situations (26–28). The same general approach also allows
the treatment of multiple grains (11), although it is argued that this approach
imposes certain unphysical restrictions on the physics the model can describe
(29).

The method begins by definingN variablesφ i, each of which is unity in the
correspondingith single phase region of the sample such that
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N∑
i =1

φi = 1. 35.

Using our notation and definition of pure solid as the standard states, the free
energy density is given by

f =
N∑

j,k( j <k)

{
Wjk

[
φ2

j φ
2
k − mjk

3

(
1 + φ3

j + 3φ2
j φk − 3φ j φ

2
k − φ3

k

) ]}
, 36.

whereWjk is a symmetric matrix related to the double-well barrier heights for an
interface between thejth andkth phases. The matrixmkj is an antisymmetric matrix
that describes the undercooling of each interface with respect to its equilibrium
temperature. It is a function ofT and cL. In this form the energies associated
with triple lines have been neglected. For alloys, this matrix can be derived from
a full thermodynamic treatment, as in Nestler & Wheeler (30). Tiaden et al. (28)
use a simpler method where

mi j = 3(hi − h j )
(
T − Ti

j

)
2Wi j T

j
i

, 37.

with hi the enthalpy of theith phase andTi
j given by the phase diagram boundary

between theith and the (ith + jth) phase regions; e.g.,T S
L is the liquidus andT L

S
is the solidus.

The free energy functional is written as

F =
∫
V

{
f (φ1, . . . , φN) +

N∑
j,k( j <k)

[
ε2

jk

2
|φ j ∇φk − φk∇φ j |2

]}
dV, 38.

whereεjk is the symmetric matrix of gradient energy coefficients. The dynamical
response for isotropic interface energy is given by

∂φi

∂t
=

N∑
j =1( j 6=i )

Mi j
[
ε2

i j (φ j ∇2φi − φi ∇2φ j ) − 2φi φ j Wi j (φ j − φi − 2mi j )
]
, 39.

whereMi j is the mobility of thei/j interface. Anisotropy is treated by changing
the constantsεi j into a functionεi j (φi ∇φ j − φ j ∇φi ) in Equation 38 and recom-
puting the appropriate form of Equation 39. For only two phases, Equation 39
can recover Equation 14 by lettingφ1 = φ and φ2 = 1 − φ and again using
the interpolating functionp(φ) = 3φ2 − 2φ3. Transport equations for the con-
centration can be derived from a full thermodynamic treatment (30) or by using
balance equations for an average concentration using the partition coefficients
to define a phase-field-weighted sum of liquid and solid concentrations as done
above.
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To model different grains, one must selectN grain orientations, the presence of
which is described by an individualφ i value (11). Another method (29) is being
used that avoids the problem of a finite set of orientations.

Incorporation of Convection

Flow in the liquid phase is well documented to strongly influence microstructural
evolution in solidification, and its dominant effect is to speed up the transport of heat
or mass on large scales. Different means of incorporation of this effect into phase-
field models have been developed. One is to treat the solid as a highly viscous liquid.
This has been done by simply letting the viscosity depend on the phase field in the
standard Navier-Stokes equations (31–33), or by deriving a thermodynamically
consistent set of phase-field equations (34). The thermodynamic formulation is
very general in that it includes the effects of density differences between the
phases, viscous dissipation, and the dependence of the interface temperature on
the pressure in the phases. A nonequilibrium form of the Clausius-Clapeyron
equation was derived that includes the effects of curvature, attachment kinetics,
and viscous dissipation.

Another method is to use the geometrical description (reviewed above) and
view the diffuse interface region as a rigid porous medium, where the porosity
is identified with the phase-field variable (25). In this method, the usual no-slip
condition at a sharp solid-liquid interface is enforced through a varying interfacial
force term in the diffuse interface region. The mass and momentum conservation
equations can then be written, respectively, as

∇ · (φ EV) = 0 40.

and

∂φ EV
∂t

+ φ EV · ∇ EV = −φ/ρ∇ P + ν∇2(φ EV) + EMd, 41.

where EV , P, ρ, andν are, respectively, the liquid velocity, pressure, density, and
kinematic viscosity. All properties are assumed constant, and the densities of the
solid and liquid phases are assumed equal. The last term in Equation 41 represents
the dissipative interfacial force and is modeled as

EMd = −νb(1 − φ)2 φ EV
δ2

. 42.

This term acts as a spatially distributed momentum sink in the diffuse interface
region that forces the liquid velocity to zero asφ → 0 (solid). The dimensionless
constantb = 2.757 was determined by requiring that the velocity profile of the
phase-field model coincides, away from the interface, with the profile near a sharp
interface where the tangential component ofEV vanishes atφ = 0.5. The main ad-
vantage of this approach is that accurate velocity profiles are obtained regardless
of the diffuse interface thickness. In the presence of flow, phase-field-dependent
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advection terms must also be added to the energy and species conservation equa-
tions (25). In Reference (25), the evolution equation for the phase-field variable
was assumed to be the same as without flow, thus neglecting the dependence of
the interface temperature on pressure.

EXAMPLES

Solute Trapping

Phase field models that are thermodynamically motivated have distinct advantages
for certain types of investigations. One example is the insight gained on the phe-
nomenon of solute trapping during solidification (35). One-dimensional steady-
state calculations were performed for a dilute ideal solution alloy (lens-shaped
phase diagram) with an equilibrium partition coefficientkE of 0.8 and concentra-
tion 0.0717. Because the calculations are one-dimensional, grid resolution does
not present a problem. The diffusion in the interface is described by Equation 24
with DS/DL = 10−5, but withp(φ) = φ.

In a sharp-interface model with equilibrium interface conditions, as the velocity
increases, the maximum concentration in the liquid at the interface remains at
0.09, and the length scale of the solute profiles in the liquid progressively shortens
asDL/V. For the phase-field model results (Figure 5), the solute profile at low
velocity is similar to that given by the sharp-interface model. However, as the
interface velocity increases, not only does the solute decay length diminish, but
the maximum value of the solute concentration decreases as well. This reduction of
the segregation of solute near the interfacial region indicates the presence of solute
trapping. In contrast to the solute profiles shown in Figure 5, the corresponding
φ(x) profiles are almost identical over this range of velocities.

For comparison of the phase-field numerical results with the Aziz dilute alloy-
trapping model (36), we adopt a definition that the nonequilibrium partition coef-
ficient is given byk = c∞/cmax, wherecmax is the maximum value of the concen-
tration, andc∞ is the concentration of the solid (or liquid) far from the interface.
Numerical results for various values of dimensionless velocity are shown as the
data points in Figure 6.

The dilute alloy Aziz solute-trapping model (36) for the velocity-dependent
partition coefficientk(V) is given by

k(V) = kE + V/VD

1 + V/VD
, 43.

whereVD is the characteristic trapping velocity. Comparing this equation to the
phase-field model asV→ ∞, an expression forVD is obtained (35),

VD = 3

16

[
1 + DS

DL

][
ln(1/kE)

(1 − kE)

][
DL

δ

]
. 44.
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Figure 5 The computed solute profiles for six different values of the dimensionless
interface velocity,Vδ/DL, of (from the top curve to the bottom curve) 8.58× 10−3,
8.0 × 10−2, 0.429, 0.859, 2.58, and 8.58. The solid composition is 0.0717, and the
liquid concentration for local equilibrium is 0.09 (kE = 0.8).`A = δ.

Figure 6 The squares denotes the values of the partition coefficient versus the
normalized interface velocityVδ/DL obtained from numerical computations with
DS/DL = 10−5. The solid curve shows the corresponding dependence ofk on the
interface velocity that is predicted by the Aziz model withVD given by Equation 44,
`A = δ.
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Figure 6 shows a graph of Equation 43 for a value ofVD equal to 0.21DL/δ

obtained from Equation 44 withkE = 0.8, andDS/DL = 10−5. An excellent de-
scription of the numerical results is obtained for solidification velocities ranging
over six orders of magnitude. The dependence ofVD on kE through Equation 44
was not previously predicted.

In Figure 7 we compare the experimental data forVD obtained by Aziz (37)
for both silicon and aluminum alloys to the quantity ln[kE/(kE − 1)]. The corre-
lation indicates that the model is in qualitative agreement with the experimental
results, correctly predicting an increase inVD with decreasing equilibrium partition
coefficient.

Dendritic Growth

PURE SUBSTANCES Quantitative phase-field simulations of free (equiaxed) den-
dritic growth have been carried out in three dimensions at both low undercool-
ing (assuming local equilibrium at the interface and using Equation 22) (18, 21,
23, 38) and at high undercooling with the incorporation of anisotropic interface
kinetic effects (39). In both limits, phase-field simulations have been found to
be in good quantitative agreement with the sharp-interface solvability theory of

Figure 7 Experimental values forVD (32) plotted versus the quan-
tity ln[kE/(kE − 1)]. The line is a linear fit through the origin.
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dendritic growth (40, 41) in which the anisotropy of the interfacial energy and/or
the interface kinetics (39) plays a crucial role in determining the steady-state op-
erating state of the dendrite tip. This is illustrated for the low-undercooling limit
in Figure 8 (38). In the high-undercooling limit, the phase-field simulations were
carried out for Ni using as input interfacial properties computed from atomistic
molecular dynamic simulations (42, 43). These phase-field simulations revealed
that the interface dynamics are controlled sensitively by the magnitude of the ki-
netic anisotropy (39) and that dendrites cease to exist above a critical undercooling
if this magnitude is too small.

EFFECTS OF CONVECTION Convective effects on dendritic growth have
been studied by a number of investigators using the phase-field method (25,
31–33, 44–46). Figure 9 gives an example of a two-dimensional simulation of
free dendritic growth into a supercooled melt, where the melt enters at the top

Figure 8 Three-dimensional dendritic growth simulation for a dimensionless super-
cooling of 0.05 and a 2.5% surface tension anisotropy. Snapshots of the structure are
shown at the times corresponding to the arrows, and the diffusion field extends spatially
on a much larger scale. The plot on the right side shows the evolution of the dimension-
less tip velocityvd0/D, tip radiusρ/d0, and selection parameterσ = 2Dd0/ρ

2v, where
d0 is the capillary length, andD is the diffusion coefficient. This run took 6 h on 64
processors of the CRAY T3E at NERSC and is at the limit of what is computationally
feasible.
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boundary, with a uniform inlet velocity and temperature, and leaves through the
bottom boundary (44, 45). The dendrite tip pointing toward the top boundary into
the flow grows at a much faster velocity than the three other tips. The predicted
heat transport enhancement owing to the flow at the upstream growing dendrite
tip is in quantitative agreement with a two-dimensional Ivantsov transport theory
modified to account for convection (47) if a tip radius based on a parabolic fit
is used (44). Furthermore, using this parabolic tip radius, the predicted ratio of
selection parameters without and with flow is found to be close to unity, which is
in agreement with linearized solvability theory (47) for the ranges of the parame-
ters considered (44). Dendritic side branching in the presence of a forced flow has
also been quantitatively studied (45). It has been shown that the asymmetric side
branch growth on the upstream and downstream sides of a dendrite arm, growing
at an angle with respect to the flow, can be explained by the differences in the mean
shapes of the two sides of the arm.

If extended to three dimensions, such phase-field simulations could help to
clarify the inconsistent results that experimental investigations have yielded on
the effect of flow on the operating state of a dendrite tip. An example of a
three-dimensional phase-field simulation of dendritic growth in the presence of
a forced flow is shown in Figure 10 (Y. Lu, C. Beckermann & A. Karma, un-
published research). More detailed three-dimensional results with flow have
recently been reported by Jeong et al. (46). Considerable advances in compu-
tational efficiency and resources are needed before three-dimensional simulations
with flow can be performed for parameter ranges that are representative of actual
experiments.

ALLOYS Although some phase-field simulations of coupled heat and solute trans-
port during dendritic growth of a binary alloy have recently been reported (48),
previous studies usually make some assumptions to treat the temperature without
solving the heat equation, which allows for focusing on the phase field and solute
diffusion equations. Three assumptions have been used: isothermal temperature
(as in solution growth, effectively ignoring the latent heat), frozen temperature
gradient (to simulate directional solidification), and time dependent but spatially
uniform temperature (as in a recalescing system). These studies do not use the thin
interface analysis for alloys recently developed by Karma (24).

Alloy results for isothermal growth are shown in Figure 11 (15). Such sim-
ulations were initiated with a small solid seed and a value of dimensionless
supercooling of 0.86 (supercooling divided by the freezing range) and thermo-
dynamics for a lens-shaped phase diagram. As for pure materials, simulations
of dendritic growth for alloys exhibit quite realistic growth shapes. A dendrite
tip radius is selected naturally from the solution to the differential equations.
Simulations also show many other features common to real dendritic structures;
e.g., secondary arm coarsening and microsegregation patterns. The local varia-
tion of the liquid composition as it relates to the local curvature is apparent in the
mush, agreeing with that expected from the Gibbs-Thomson effect. Non-isothermal



10 May 2002 17:10 AR AR162-07.tex AR162-07.SGM LaTeX2e(2002/01/18)P1: ILV

SOLIDIFICATION 185

Figure 10 Three-dimensional simulation of free dendritic growth with fluid flow
(Y. Lu, C. Beckermann & A. Karma, unpublished research). The melt enters at the left
boundary, with a uniform inlet velocity and temperature, and leaves through the right
boundary. The lines indicate the flow.

calculations using the frozen temperature gradient approximation can be found in
References (23, 49).

In a recalescing system, for example (50), the temperature-time behavior is
determined using a heat balance for a specified external heat extraction rate and
the release of latent heat due to the increase in the amount of solid. Such sim-
ulations were performed for an initial value of dimensionless supercooling of
0.86. After the start of dendritic growth, recalescence occurs, and complete so-
lidification is achieved at long times. Figure 12 describes the microsegregation
obtained from simulations with heat extraction rates that would correspond to
initial cooling rates of 1.7× 104 K/s and 3.4× 104 K/s. The microsegregation
curves from the simulations were obtained by integration of histograms giving the
number of pixels of the solid with concentrations in various bins. A description
of the microsegregation using the assumptions of the Scheil method is shown for
comparison.
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Figure 12 Microsegregation in alloy dendritic growth. Four microsegregation curves
are shown: Two correspond to cooling rates of 3.4× 104 and 1.7× 104 K/s. The fourth
curve shows the prediction of the Scheil model.

The concentration at zero fraction solid in Figure 12 represents the Cu concen-
tration near the core of the dendritic tips. The simulated values are significantly
higher than is predicted from the Scheil calculation. This effect is well known and
is due to the kinetics of the dendrite tip from the supercooled melt. As the fraction
solid increases, the solute profiles are quite flat compared with the Scheil predic-
tion. This effect has been found experimentally for rapidly solidified alloys (51).
One also notes that the difference between the two diffusion ratios,DS/DL = 10−4

and 10−1, follows the trend expected from various back diffusion models; i.e., that
the final solid formed is higher in concentration if the solid diffusion is slow.

Eutectic Two-Phase Cell Formation

Eutectic two-phase cells, also known as eutectic colonies, are commonly observed
during the solidification of ternary alloys when the composition is close to a bi-
nary eutectic valley. In analogy with the solidification cells formed in dilute binary
alloys, colony formation is triggered by a morphological instability of the eutectic
solidification front owing to solute diffusion in the liquid. The detailed mechanism
of this instability has been investigated using a phase-field model of the directional
solidification of a lamellar eutectic in the presence of a dilute ternary impurity
(M. Plapp & A. Karma, unpublished research). This model was used to simulate
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the formation of colonies starting from a planar lamellar front, as illustrated in
Figure 13 (52). For equal volume fractions of the two solid phases, the simulations
yielded good agreement with a recent linear stability analysis of a sharp-interface
model (53), which predicts a destabilization of the front by long-wavelength modes
that may be stationary or oscillatory. In contrast, for sufficiently off-eutectic com-
positions, the simulations revealed that the instability is initiated by localized
two-phase fingers. In addition, simulations that focused on the dynamics of fully
developed colonies showed that the large-scale envelope of the two-phase so-
lidification front does not converge to a steady state, but exhibits cell elimi-
nation and tip-splitting events up to the largest times simulated. This example
well illustrates the advantage of the phase-field approach over conventional front-
tracking methods for modeling complex solidification morphologies in the pres-
ence of multiple phases and singular events such as lamellar termination and
creation.

Coarsening and Flow

An example of phase-field simulations that have a direct bearing on modeling of
mushy zones encountered in solidifying alloys has been provided by Diepers et al.
(54). They modeled the coarsening (or ripening) of, and flow through, a solid-liquid
mixture inside an adiabatic unit cell for an Al-4 wt% Cu alloy. Representative two-
dimensional simulation results with and without flow are shown in Figure 14. The
initial microstructure can be thought of as a cut through a stationary dendrite array
inside a mushy zone.

The different curvature undercoolings of the various-sized solid particles in
the unit cell lead to concentration gradients in the melt, causing the particles to
exchange solute such that the larger particles grow at the expense of the smaller
ones. The smaller particles eventually remelt completely, while the mean radius
of the remaining particles increases with time (from left to right in Figure 14). At
later times, several closely spaced particles coalesce. The phase-field simulations
verified that in the long-time limit, in accordance with classical coarsening theories,
the interfacial area decreases with the cube root of time in the case of no flow (upper
panels in Figure 14).

In the simulation with flow (lower panels in Figure 14), a constant pressure
drop was applied across the unit cell in the top-to-bottom direction. The coarsen-
ing causes the flow velocities to increase with time. This means that the decrease
in the interfacial area because of coarsening results in an increase in the perme-
ability of the microstructure. However, it is important to realize that the coarsening
dynamics are influenced by convection. In other words, the microstructure of the
mush not only governs the flow, but the flow also influences the evolution of the
microstructure. The phase-field simulations revealed that in the long-time limit
the interfacial area decreases with the square root of time in the presence of flow,
as opposed to the cube root of time for purely diffusive transport. Diepers et al.
determined the permeability from the phase-field simulations and found that the
permeability normalized by the square of the interfacial area per unit solid volume



10 May 2002 17:10 AR AR162-07.tex AR162-07.SGM LaTeX2e(2002/01/18)P1: ILV

188 BOETTINGER ET AL.

F
ig

ur
e

14
P

ha
se

-fi
el

d
si

m
ul

at
io

n
of

co
ar

se
ni

ng
of

a
so

lid
-li

qu
id

m
ix

tu
re

of
an

A
l-4

w
t%

C
u

al
lo

y
in

si
de

a
pe

rio
di

c
un

it
ce

ll.
T

he
m

ic
ro

st
ru

ct
ur

e
ca

n
be

th
ou

gh
to

fa
s

a
tw

o-
di

m
en

si
on

al
cu

tt
hr

ou
gh

st
at

io
na

ry
de

nd
rit

e
ar

m
s

in
si

de
a

m
us

hy
zo

ne
of

a
so

lid
ify

in
g

al
lo

y.
T

he
sh

ad
in

g
in

di
ca

te
s

so
lu

te
co

nc
en

tr
at

io
n.

T
im

e
in

cr
ea

se
s

fr
om

le
ft

to
rig

ht
.

T
he

up
pe

r
pa

ne
ls

ar
e

fo
rp

ur
el

y
di

ffu
si

ve
tr

an
sp

or
t.

T
he

lo
w

er
pa

ne
ls

ar
e

fo
ra

si
m

ul
at

io
n

w
ith

m
el

tfl
ow

,w
he

re
a

co
ns

ta
nt

pr
es

su
re

dr
op

is
ap

pl
ie

d
in

th
e

to
p-

to
-b

ot
to

m
di

re
ct

io
n.

T
he

ar
ro

w
s

in
di

ca
te

th
e

liq
ui

d
ve

lo
ci

ty
.



10 May 2002 17:10 AR AR162-07.tex AR162-07.SGM LaTeX2e(2002/01/18)P1: ILV

SOLIDIFICATION 189

is constant in time. By performing simulations with different volume fractions of
solid inside the unit cell, they were able to correlate the permeability with the
microstructural parameters present.

Bridging of Dendritic Sidearms

In alloys with a lens-type phase diagram or in alloys with a small, final fraction of
eutectic, the side branches from adjacent primary trunks must join as the fraction of
solid increases. The process of side branch bridging is often delayed until the late
stages of solidification because of the requirement for rejected solute to leave the
narrow region between adjacent arms. The bridging of side branches undoubtedly
increases the tortuosity of the interconnected liquid, changing the permeability of
the mushy zone and affecting porosity predictions. This process also changes the
mechanical strength of the two-phase mixture, thus affecting the prediction of hot
tearing tendency.

To gain a qualitative insight into this process, simulation of directional growth
has been performed. Growth was initiated using seeds placed along one side of the
computational domain. Due to computational limitations at the present time, these
simulations were performed for growth into an isothermal supersaturated melt.
A constant dendritic growth speed results, but there is no temperature gradient as
would be present during directional solidification. Figure 15 shows a time sequence
of images cut from a larger simulation. The position of the side branches, marked
X and Y, are indicated in the larger simulation shown in Figure 16a. The frames
are for a fixed location as the dendritic front moves through the region.

Although the calculations are for unrealistic interface thickness values and the
system is two-dimensional, some details of the process are apparent. When two
adjacent side branches collide with near-perfect alignment of their parabolic tips,
bridging occurs quite rapidly at the tips. Solute can easily diffuse into the relatively
broad region between tips. When they are misaligned, bridging is delayed and
occurs farther behind the primary dendrite tips. Here the glancing collision of
the two adjacent branches causes the formation of a long narrow liquid channel
from which solute escape is more difficult. In three dimensions, the probability of
aligned collisions would be more infrequent, delaying bridging until larger values
of fraction solidify. We expect that much progress will be made in the near future
on the problem of dendritic side branch bridging. Examination of the effect of
interface thickness must be considered.

Dendrite Fragmentation During Reheating

Another important problem during solidification that involves a change in topology
of dendrites is fragmentation. Such a process has been observed in transparent ana-
logue systems subject to either extensive fluid flow or to a reversal of the thermal
conditions during directional growth. The yield of dendrite fragments as a func-
tion of local variation in thermal and flow fields is an important quantity. When
combined with an analysis of fragment survivability, it may lead to improved un-
derstanding of the columnar-to-equiaxed transition and to the formation of defects
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Figure 15 Sequence of simulations showing the time evolution of dendritic
growth and bridging of side arms.

in directionally solidified single crystal superalloys. To gain some insight into
this process, an isothermally grown structure was subjected to an instantaneous
increase in the temperature from 1574 to 1589 K, changing the dimensionless
supersaturation from 0.86 to 0.25 as shown in Figure 16. This rather severe ther-
mal fluctuation caused the dendrites to quickly stop growing and partially remelt.
Smaller increases in the temperature did not cause fragmentation. Nonetheless, the
microstructure simulated during remelting is qualitatively close to that observed
by Sato et al. (55).

The restriction of the present computations to two dimensions is the reason
why such a large increase in temperature is required for fragmentation. Secondary
arms are typically attached to the primary trunk by a thin-necked region. If one
compares a peanut or dumbbell shape in two and three dimensions, the curvature
near the neck region is always negative in two dimensions but can have either sign
in three dimensions, depending on the exact geometry. Thus even during isothermal
coarsening, a peanut shape in three dimensions can split in two. This is not possible
in two dimensions where the shape will always circularize. Three-dimensional
simulations are presently underway using parallel computing techniques.

A final point of discussion is found in the concentration profile in the solid near
the melting interface. Due to the increase in temperature, the concentrations of
the liquid and solid at the interface are both reduced (following the phase diagram
lines) compared with the values present during growth. This reduction of the solid
concentration at the interface is particularly evident in the narrow light region
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Figure 16 Melting of dendritic structure and formation of frag-
ments when temperature is increased from the growth temperature
of 1574 K shown in (a) to 1589 K shown at later times in (b–d).

in the solid that outlines the dendritic growth shape. Thus a sharp concentration
gradient is induced in the melting solid.

Formation of Equiaxed Dendritic Grain Structure

To form an equiaxed grain structure, solid particles nucleate, grow, and impinge.
Ideally, one should be able to describe this entire process within the same
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thermodynamic model. There have been several attempts to use phase-field mod-
eling to describe multigrain structures (11, 27), but here we focus on the model
of Kobayashi et al. (29). Specifically, the free energy is changed according to the
following rule:

F → F +
∫
V

[
sh1(φ) |∇θ | + ε2

2
h2(φ) |∇θ |2

]
dV, 45.

whereθ is the local orientation of the crystal with respect to a lab frame. The
functionsh1 andh2 are monotonically decreasing functions ofφ, which restrict
the effect of misorientation to the solid. In addition to grain impingement dur-
ing solidification, this model exhibits many features of classical models of grain
boundary motion by curvature, as well as wetting transitions, and the possibility
of microstructure evolution via grain rotation.

In Figure 17 we show several simulation snapshots that demonstrate the growth
of three dendritic grains and their subsequent impingement. The calculation used
an adaptive mesh, following the work of Tonhardt & Amberg (31). The secondary
arms coalesce within each grain, but liquid remains at the grain boundaries because
of both the build-up of solute between grains and the energy penalty of forming
the grain boundary.

CONCLUSIONS

Compared with sharp-interface models of solidification, the phase-field method
employs an extra field variable to describe whether a specific location is liquid or
solid. The burden of this extra variable and its associated equation is offset by the
avoidance of the mathematically difficult free-boundary problem for complicated
interface shapes and the ability to handle topology changes. Realistic simulations
of dendritic growth and other solidification microstructures can then be obtained
using relatively simple numerical methods, although computing requirements can
become excessive.

The examples of phase-field simulations of solidification presented here are no
more than a snapshot of the many research activities currently underway in this
field. The thermodynamic basis of phase-field models allows one to gain insight
into the phenomenon of solute trapping during solidification. Simulations of den-
dritic growth of a pure substance have been used to verify microscopic solvability
theory, both with and without flow in the melt. The solute pattern that forms in the
solid during dendritic solidification has been computed for growth in a system at
fixed temperature and in a system subject to recalescence through release of latent
heat. These simulations were performed for relatively high initial supercoolings
and/or cooling rates. Results presented for solidification of a eutectic alloy with
a dilute ternary impurity illustrate the utility of the phase-field method for simu-
lating multiphase and multicomponent systems. The phase-field method has also
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been used to investigate some of the complex phenomena occurring inside mushy
zones of solidifying alloys. The interplay between coarsening and flow has been
simulated for a binary Al-Cu alloy, providing some insight into the evolution of the
permeability of mushy zones. The bridging of dendritic side branches has been sim-
ulated and shown to be dependent on the geometry of the collision. Dendrite frag-
mentation during reheating of a previously solidified dendritic structure is shown,
as well as the concentration profile present in a melting alloy dendrite. Finally,
phase-field simulations of equiaxed dendritic growth illustrate the progress that
has been made in predicting the multigrain structures typically found in castings.

Phase-field methods can have application to a broad class of materials problems.
A recent non-exhaustive search of the literature revealed applications as diverse as
voiding due to electromigration (56) and particle pushing at a liquid-solid interface
(57).
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Figure 9 Two-dimensional simulation of free dendritic growth with fluid flow. The
melt enters at the top boundary, with a uniform inlet velocity and temperature, and
leaves through the bottom boundary. Thecolors indicate temperature and thelight
linesare the streamlines.
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Figure 11 Morphologies and microsegregation patterns for isothermal alloy dendrite
growth with a dimensionless supersaturation (undercooling) of 0.86. Theleft and right
panelsare forDS/DL = 10−5 and 101, respectively. Thetop picturesshow the tip region
and thebottom picturesshow a region deep in the mushy zone where liquid remains.



17 Jun 2002 8:4 AR AR162-07-COLOR.tex AR162-07-COLOR.SGM LaTeX2e(2002/01/18)P1: GDL

Figure 13 Snapshot of the late stage of two-phase cell formation subsequent to the
morphological instability of a slightly perturbed eutectic interface in the presence of a
dilute ternary impurity (M. Plapp & A. Karma, unpublished research).
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Figure 17 A phase-field simulation of alloy grain impingement (I. Loginova, Y. Wen
& J.A. Warren, unpublished research). Three seeds were introduced into an undercooled
melt under the same conditions as those of Figure 11. In the final picture, the secondary
arms have coalesced within each grain, but liquid remains at the grain boundaries
because of the build-up of solute between grains and the energy penalty of forming the
grain boundary.


