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The effect of a ceniered, square, heat-conducting body en natural convection in a vertical
square enclosure was examined numerically. The analysis reveals that the fluid flow and
heat transfer processes are governed by the Rayleigh and Prandtl numbers, the dimen-
sionless body size, and the ratio of the thermal conductivity of the body to that of the fluid,
For Pr = 0.71 and relatively wide ranges of the other parameters, results are reported in
terms of streamlines, isotherms, and the overall heat transfer across the enclosure as
described by the Nusself number. Heat transfer across the enclosure, in comparison fo
that in the absence of a body, may be enhanced (reduced) by a body with a thermal
conductivity rafio less (greater) than unity. Furthermore, the heat transfer may attain a
minimum as the body size is increased. These and other findings are justified through a
careful examination of the local heat and fluid flow pheromena.

INTRODUCTION

Natural convection heat transfer in vertical rectangular enclosures has received
considerable attention due to its importance in many engineering systems [1, 2]. In some
instances, an obstruction may be located somewhere within the enclosure, thereby alter-
ing the natural convection flow and heat transfer. Considerable research has been per-
formed with obstructions in the form of partitions or partial baffles [1]. However, other
than the study reported by Emery [3] for a thin baffle centered vertically .in the enclo-
sure, there is little information about the natural convection processes when a solid heat
conducting body is placed within the enclosure and is completely surrounded by the
fluid.

In applications involving building energy components, such as walls or windows
or an electronic enclosure, the body may reduce the flow, thereby reducing the heat
transfer across the enclosure. On the other hand, heat transfer may be enhanced if the
solid body has a refatively high thermal conductivity. In a metal casting process, a solid
may be placed in the mold to form a hole in the casting. As David and Lauriat [4] noted,
for a centered body with its dimensions very close to those of the enclosure, a thermal
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isobaric specific heat
g pravitational acceleration
Ji convection coefficient

NOMENCLATURE

W size of body
a  thermal diffusivity {= k/pc)
A coefficient of thermal expansion

ko thermal conductivity of fluid dimensionicss hody size = WAL
k, thermal conductivity of body dimensionless y coordinate (= y/»L}
k*  thermal conductivity ratio {= k&) #  dimensionless temperature [ = (T ~ T/
I spacing between hot and cold walls (T — TJi
Nu Nusselt pumber (= hLA} g dynamic viscosity
P pressure vy kinematic viscosity (= p/p}
P dimensionless pressure (= PLMpo™y £ dimensionless x coordinate (= x/)
Pr  Prandt number {= rla) o density
Ra Rayleigh number {= g8 ATEY voed ¥ stream function
T temperature
u _velocity in x direction
it dimensioniess velocity in x direction Subscripts

{= ulla)

velocity in y direction ¢ cold surface
v dimensionless velocity in y direction h  hot surface

(= ulie) s sohd

convection loop is obtained. On a smaller scale, understanding natural convection in an
enclosure with a body may provide needed effective heat transfer data for porous media
studies [5].

The purpose of this investigation is to examine the effect of a centered, square,
heat-conducting body on natural convection heat transfer in a vertical square enclosure.
A similar system was recently studied by David and Lauriat [4}. Their study focused
primarily on the analogy of the present system with wall channeling effects in natural
convection in enclosures packed with spheres. In addition, only a few detailed flow and
heat transfer results were presented for the system of interest in the current study.

The system considered here is shown schematically in Fig. T and consists of a
square enclosure with sides of length L. The left and right side walls are isothermal at
respective temperatures of T, and 7, whereas the bottom and top walls are adiabatic.
The body is centered at L/2, has sides of length W, and is solid with thermal conductivity
k,. The flow within the enclosure is laminar, gravitational acceleration acts paratlel to the
isothermal walls, and radiation effects are taken to be negligible. Except for the density
in the buoyancy term, the fluid properties are assumed to be constant, and the Bous-
sinesq approximation applies. Steady-state conditions prevail. Results of interest include
the effect of the size and thermal conductivity of the solid body on the flow and fempera-
ture distributions within the enclosure and the heat transfer across the enclosure.

ANALYSIS

The steady-state conservation equations for the fluid in dimensionless form are as
follows:
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The velocity scale used in the above dimensionless equations was chosen somewhat
arbitrarily, as the ones recommended for natural convection in a vertical enclosure {2}
may not apply to the present case with a centered solid body. Preliminary investigations
revezled that the choice of the velocity scale had no effect on the accuracy of the
nurmerically calcuiated results.

For the solid body, the energy equation is
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Fig. I Schematic of enclosure with centered solid body.
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where £* 1s the ratio of the thermal conductivity of the body to that of the fluid (assumed
constant).

The flow boundary conditions are zero velocity at ali solid surfaces. The thermal
boundary conditions and the conditions at the fluid/body interface are

AtE = f o= 1
At = 1t g =0
Atn = Oandatnp = 1.
M
dn
At$=1w§andaté~—~l+§:
2 2 (6
0, =0 o g
3t EY:
Atf,vmi;fandatn=1;§-
=0 - g0
dy dn

where { = W/L,
The average Nusselt number is based on the enclosure width and thermal conduc-
tivity of the fluid and, for the hot wall, is expressed by

a0

Nu, =‘—SBBE

dy | %

£m0

This expression without the minus sign and evaluated at £ = 1 applies to the cold wall.
By conservation of energy across the enclosure, the average Nusselt numbers at the hot
and cold walls must be equal, that is, Nu, = Nu,.

Equations (1)~(6) reveal that there are four dimensionless parameters (Ra, Pr, k*,
{) that govern natural convection heat transfer in a square enclosure containing a cen-
tered square body.

NUMERICAL PROCEDURE

Numerical solutions of the governing equations were obtained using the control-
volume formulation and the SIMPLER algorithm detailed in {6]. In a manner similar to
that in [4] and [7], one set of conservation equations is solved over the entire domain. By
setting the Prandtl number to infinity in the region occupied by the solid body, the
velocities approach zero in this region. At the same locations, the dimensionless diffu-
sion coefficient in the energy equation is changed from unity to &*. By combining the
energy equations in this manner, the matching conditions at the fluid/body interface
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Table T Nusselt Number Comparisons for [ = 0 und Pr = 0.71

Present Benchmark [8]
Ra [¥max Nu ¥ ma Nu
1w 1177 1118 - Ik
iy 5.062 2254 7.243
10° 9.671 4.561 4.612 4.519
i0® 17.044 8.923 16.750 8,800

stated by Eq. (6) are satisfied automatically. The algorithm ensures continuity of the
fluxes across alj control surfaces and, thus, the fluid/body interface.

The harmenic mean formulation adopted for the interface diffusion coefficients
between two contro} volumes vields physically realistic results for abrupt changes in
these coefficients (that is, Pr and &*) without requiring an excessively fine grid in the
neighborhood of the fluid/body interface. Consequently, the distribution of the control
volumes was only slightly skewed along all solid surfaces in order to accurately resolve
large velocity and temperature gradients. Convergence of the numerical solution was
checked by performing overall mass and energy balances. Most of the calculations were
performed on a PRIME 9955 computer and typically required central processor times of
6000 s. :

Numerical experiments were performed to establish the number of control vol-
umes required to produce accurate results within a reasonable computational effort.
First, comparisons were performed for the limiting case of no body (i.e., { = 0) and
Pr = 0.71 using 38 control volumes in both the £ and 4 directions. As shown in Table 1,
the maximum values of the stream function in the center of the enclosure and the average
Nusselt numbers agree to within 1.5% with the benchmark values [8] for Rayleigh
numbers up to 10°. Second, a grid study was performed for a medium body size (i.e.,
¢ = 0.5) and Pr = 0.71. Table 2 shows the results for various thermal conductivity
ratios and Ra = 0 and 10°, In these calculations, the number of control volumes in each
direction was varied from 6 to 22 in the body and 8 to 24 in each passageway between
the body and the enclosure walls, For all thermal conductivity ratios and Rayleigh
numbers tested, the agreement between the coarse and fine grid results is excellent,
which is typical of the discretization method used here. From the above two compari-
soms, it was decided to utilize the 38 x 38 contro} volume grid with 10 x 10 control
volumes in the body for all calculations reported in the remainder of this article. Addi-

Table 2 Nusselt Numbers for { = 0.5, Pr = (.71, and Different Grids

Grid size
Ra = 0 Ra = 16°
k* 8-6-8 14-10-14 24-22-24 8-6-8 14-10-i4 24-22-24
6.2 0.7051 0.7063 0.7069 4.6340 4.6239 4.6257
1.0 1.6000 1.0000 1.0000 4.5185 4,5061 4.5061

5.0 1.4068 1.4125 1.4138 4.3416 4.3249 4.3221
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Table 3 Dimensioniess Parameters for the
Streamiline and Isotherm Plots

Case Ra ¢ k* Nu
I 1o 0.5 0.2 4,624
2 10 0.5 50 4.324
3 108 0.9 0.2 2.402
4 10% 0.9 5.0 3.868

tional comparisons with the results of David and Lauriat [4] revealed agreement to
within the accuracy with which their graphically presented Nusselt number data could be
read.

RESULTS AND DISCUSSION

1t is first instructive to examine the ranges of the governing dimensionless parame-
ters Ra, Pr, ¢, and k* considered in the present studies. To retain laminar flow, the
Rayleigh number is kept less than or equal to 10°. The Prandt] number was assigned a
value of 0.71. The present results may also apply to somewhat higher Prandtl numbers,
as David and Lauriat [4} found that Pr has a very weak influence on the flow and heat
transfer for Pr ranging from 1 to 100, The dimensionless size of the body { was varied
from O to 1, where the limit of zero corresponds to pure natural convection, whereas
unity represents pure conduction in the body with a resultant Nusselt number equal to
k*. Emphasis is placed on results for a thermal conductivity ratio &* equal to 0.2 and
5.0. Physically, the latter value of k* represents, for example, a solid body of wood in a
gas with properties similar to those of air.

Streamiines and lsotherms

Streamlines and isotherms for the four cases identified in Table 3 are displayed in
Figs. 2-5. These contour plots are presented in an attempt to demonstrate typical flow
and heat transfer characteristics and to assist in explaining the findings for the overall
Nusselt numbers (see the next section). In all cases, the streamlines show a large cell
rotating clockwise about the body.

Figures 2 and 3 show the streamlines and isotherms for cases | and 2, where the
body size is equal to 0.5. The only difference between these two cases is the value of k*.
The streamlines (Figs. 2a and 3a) are quite similar to each other. In fact, a comparison
with streamlines for the case without a body (not shown here)} reveals that the body has
relatively little influence on the flow. This can be attributed to the fact that in pure
natural convection at this Rayleigh number, the central core of the fluid region is rela-
tively stagnant. This stagnant region’ approximately coincides with the bodies of cases 1
and 2. As a result, the Nusselt numbers for cases 1 and 2 (see Table 3) do not differ
significantly from the corresponding pure natural convection value (see also Fig. 6).

In both cases, the isotherms {Figs. 2b and 3b) in the body are almost horizontal,
indicating that heat is conducted vertically through the body, from the higher tempera-
ture flnid in the upper passage to the lower temperature fluid in the lower passage. The
spacing of the isotherms in the body shows, as expected, that this effect is particularly
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Fig. 2 Equally.spaced {a) streamlines and (b) isotherms for case 1.

important for a high thermal conductivity body. Thus, for k* = 5 (Fig. 3b), the hot fluid
flowing in the upper passage transfers a significant portion of its sensible heat through
the body to the cold fluid flowing in the lower passage instead of carrying it all the way
to the cold wall of the enclosure. In turn, the cold fluid flowing in the lower passage is
significantly heated by the body instead of by the hot wall of the enclosure. This *'short-
circuiting”” by the high thermal conductivity body effectively reduces the overall natural
convection heat transfer between the hot and cold walls of the enclosure. _
The opposite is true for k* = 0.2 (Fig. 2b). Here, the relatively low thermal
conductivity body acts as an insulator between the hot and cold fluid streams in the upper

=

{a) {b}

Fig. 3 Equally spaced (a} streamiines and (b) isotherms for case 2.
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i
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Fig. 4 Equaily spaced (q) streamlines and () isotherms for case 3.

and lower passages. The fluid flowing between the adiabatic wall and the body experi-
ences virtually no temperature change (see Fig. 2b). Thus, for &% = 0.2, the horizon-
taily flowing fluid advects heat more effectively between the vertical walls of the enclo-
sure instead of }osing it to or gaining it from the body as for &% = 5,

The different heat transfer properties of the bodies also have an effect, albeit
small, on the fiow. For k¥ = 0.2 (Fig. 2a), the streamlines near the lower left and upper
right corners of the body are more separated from the vertical body walls than for k* «
5 (Fig. 3a), indicating that the fluid has a higher momentum when making the 90° turn,
This is due to the above-mentioned fact that the horizontally flowing fluid experiences a
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Fig. 5 Equally spaced {a} streamlines and (b isotherms for case 4.
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Fig. 6 Effect of Rayleigh number and thermal conductivity ratio on Nusselt
NUMHET,

smaller temperature change for &* = 0.2 than for £* = 5, resulting in larger tempera-
ture differences between the fluid leaving the horizontal passages and the vertical walls
and, hence, larger buoyancy forces. As a consequence of this separation from the body
for k¥ = 0.2, the flow is forced into more narrow regions between the body and the
vertical enclosure walls, resulting in locally higher velocities and heat transfer rates at
the heated and cooled walls. '

The above discussion clearly shows that the combined effects of the body on the
heat transfer and fluid flow are that the overall Nusselt number for k* = 0.2 is higher
than for k* = 5 (see Table 3). In other words, a relatively low thermal conductivity body
enhances the heat transfer across the enclosure, whereas a high thermal conductivity
body reduces it. This result is somewhat unexpected and is only true up to a certain body
size. The Nusselt number results for other body sizes, as well as comparisons with pure
natural convection and conduction values, are discussed in the next section.

Streamlines and isotherms for cases 3 and 4 with { = 0.9 are displayed in Figs. 4
and 5, respectively. Due to the large size of the body, the natural convection flow is
much weaker than in cases 1 and 2 (see Figs. 4a and 5a). The streamlines for cases 3
(k* = 0.2) and 4 (k* = 5) appear to be almost identical. The different thermal conduc-
tivities of the bodies in cases 3 and 4 have, however, a significant influence on the
isotherms in both the fluid and the body {see Figs. 4b and 5b).

For k* = 0.2 (Fig. 4b), the isotherms in the fluid are highly concentrated in the
lower left and upper right corners of the enclosure. The cold fluid arriving at the hot
wall is heated within a short distance from the lower left corner. Then, it flows almost
isothermally through the left and upper passages untii it is cooled again within a short
distance of the upper right corner. The cold fluid then flows almost isothermally through
the right and lower passages until it reaches the lower left corner.

These peculiar heat transfer patterns can be explained as follows. As in case 1
(k% = 0.2), the relatively low thermal conductivity body acts as an insulator between the
hot and cold fluid in the upper and lower (as well as left and right) passages. However,
there is significant heat transfer through the body from the fluid in the left {upper)
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passage to the fluid in lower {right) passage, particularly near the fower left and upper
right corners. This is due to the fact that the thermal resistance (i.¢., conduction path)
across a corner is much less than that across the entire body. Because of this conduction
across the lower left and upper right corners of the body, the cold (hot) fluid in the lower
. (upper) passage is already significantly heated (cooled) while it is approaching the hot
(cold) enclosure wall. The resulting temperature increase (decrease) can clearly be seen
in Fig. 45, In the section of the vertical passages where the fluid flows sothermally, the
heat loss (gain) of the fluid to (from) the body is balanced exactly by the heat gain (loss})
from (to) the vertical wall. Although the overall heat transfer across the enclosure may
be expected to be highly dominated by heat conduction through the large body, the fluid
significantly augments the heat transfer by advecting heat from the lower left to the
upper right corners of the enclosure. Consequently, the Nusselt number is far greater
than the pure conduction vatue of 0.2 (see Table 3),

For k* = 5 (case 4), the isotherms (Fig. 5b) indicate that heat transfer is almost
one-dimensional across the enclosure. Due to the relatively high thermal conductivity of
the body, the fluid at each position in the horizontal passages has almost the same
temperature as the body bounding it. Because of the advecting nature of the horizontally
flowing fluid, the isotherms in the body are slightly tilted from the vertical. On the other
hand, the relatively low thermal conductivity fluid in the vertical passages acts as a
thermal barrier for the heat transfer across the enclosure. This can clearly be seen from
the differemt spacings of the isotherms in the body and the vertically flowing fluid.
Overall, it can be seen that the fluid advects virtually no heat across the enclosure, and
heat transfer is dominated by conduction through the vertical fluid passages and the
body. Due to the large thermal resistance of the fluid in the vertical passages, the Nusselt
numnber is significantly below the pure conduction value of 5 (see Table 3).

Nusselt Numbers

Nusselt numbers as a function of the dimensionless size of the body are shown in
Fig. 6 for Pr = 0.71. Results are presented for Ra = 10°, 10%, 10°, and 10° and k* =
0.2 and 5.0. As expected, the Nusselt numbers for k* = 0.2 and 5 coliapse into a single
value as the body size approaches zero, corresponding to pure natural convection in a
vertical square enclosure. Similarly, as the body size approaches unity, the Nusselt num-
bers for all Rayleigh numbers collapse into a single value of k*, corresponding to pure
conduction through the body.

As discussed earlier, the body has relatively little influence on the natural convec-
tion flow, as long as it is not much larger than the almost stagnant central core present
during natural convection in a vertical square enclosure without a body. Because the size
of this stagnant core increases with the Rayleigh number, the value of { at which the
body begins to significantly suppress the natural convection flow increases with Ra. As a
result, the Nusselt number for Ra = 10° stays fairly close to the pure natural convection
value up to only about { = 0.2, whereas for Ra = 10° the body has only a small effect
on Nu up to aimost { = 0.7 {see Fig. 6).

The above is true for both thermal conductivity ratios, although smail differences
can be observed. For &* = (.2 and all Rayleigh numbers, the Nusselt number first
increases slightly above the pure natural convection value, reaches a maximum, and then
decreases monotonically to the pure conduction value of k*. This maximum in Nu
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corresponds to a body size smaller than the size at which the body significamly sup-
presses the natural convection flow. The maximum can be directly attributed to the
insulating nature of the body between the hot and cold fluid streams, as discussed in
detail in connection with case 1. This finding imphes that natural convection heat trans-
fer for a vertical enclosure can be enhanced by inserting a relatively low thermal condue-
tivity (and not too large) body in the center. It should be noted that for Ra = 10°, this
effect s not observable due to the low intensity of the natural convection flow.

For k* = 5, no such maximum is present. With increasing {, the Nusselt number
decreases continually from the pure natural convection value until it reaches 2 minimum.
Below the value of [ at which the body begins to significantly suppress the natural
convection flow, the decrease can be directly attributed to the short-circuiting of the heat
transfer by the relatively high thermal conductivity body, as discussed in detail in con-
nection with case 2. Above that value of {, the decrease is steeper and is predeminantly
due to the suppression of the natural convection flow that is present regardless of the
value of k*. The minimum in Nu corresponds to a value of { at which the natural
convection flow is relatively unimportant, but the vertical fluid passages still represent a
major thermal resistance. Case 4, for Ra = 10%, discussed in the previous section
corresponds closely to that minimum. Beyend the minimum, the Nusselt number in-
creases with { until if reaches the pure conduction value of k* = 5, because the thick-
ness and, thus, the thermal resistance of the vertical fluid passages decreases. As ex-
pected, for smaller Rayleigh numbers, the minimum in Nu shifts to lower values of ¢
and, at Ra = 10°, a minimum is not observable. It is interesting to note that the Nusselt
numbers for k* = 5 are consistently below the ones for k* = 0.2 up to a value of { at
which the body has already significantly suppressed the natural convection flow (see
Fig. 6). This finding is generalized for other values of &* in the following discussion of
Fig. 7.

The effect of &* on the Nusselt number is shown in Fig. 7. The values of Ra

A T |Pr=0.71 |
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Fig. 7 Effect of thermal conductivity ratio on Nusselt number.
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(= 10, Pr (= 0.71), and { (= 0.5) in Fig. 7 were chosen to illustrate the effect of &*
for a body that does not significantly suppress the natural convection flow. To demon-
strate the corresponding variation of Nu with &* that can be expected in the absence of
natural convection flow, a curve for Ra = 0 is also included in Fig. 7. As expected, for

= (), the Nusselt number increases monotonically with an increasing thermal conduc-
tivity ratio. The opposite, however, is true in the presence of natural convection {i.e., for
Ra = 10°). Here, the Nusseit number continually decreases with increasing 4%, In the
limits of k* — 0 and oo, the Nusselt number asymptotically approaches values that are
about 2.5% higher and 8.6% lower, respectively, than the corresponding Nusselt number
for no body (see Table 1), whereas most of the change takes place between thermal
conductivity ratios of 0.1 and 10. Again, the increase of Nu above the pure convection
value can be explained by the fact that for small &*, the body provides an insulation
between the horizontally flowing hot and cold fluid streams. On the other hand, the
decrease below the pure natural convection value for large k* is mainly due to the short-
circuiting of the two fluid streams by conduction verticaily through the body. Another
reason for a lower Nusselt nomber is, of course, the suppression of the flow by the body
that is present regardless of the value of &*. The latter effect is primarily responsible for
the asymmetry of the Nu vs. k* curve about the pufe natural convection value (see Table
1). Figure 7 shows that the Nusselt number (for { = 0.3) is equal to the pure natural
convection value (i.e., for { = 0) for a thermal conductivity ratio of approximately
0.45.

" CONCLUSIONS

A numerical study has been performed of natural convection in a vertical square
enclosure containing a centered sguare heat conducting body. From an examination of
the heat and fluid flow phenomena revealed by the numerical experiments, the following
major conclusions can be drawn:

1. The Nusselt number is not significantly different from the one for pure convec-
tion without a body at the same Rayleigh and Prandtl numbers, up to a body
size that approximately coincides with the relatively stagnant fluid core present
in a vertical enclosure without a body.

2. For larger body sizes, the variation of Nusselt number with body size is signifi-
cantly influenced by the ratio of the thermal conductivity of the body to that of
the fluid. For relatively large ratios, the Nusselt number displays a minimum at
a body size at which the natural convection flow is “‘successfully”’ suppressed,
but the vertical fluid passages still represent a major thermal resistance. On the
other hand, for relatively low ratios, the flow in the relatively small fluid
passages does play an important role and the Nusselt numbers are always above
the value of the thermal conductivity ratio.

3. For smaller body sizes, the present study conclusively shows that the presence
of a relatively low thermal conductivity body can enhance the heat transfer rate
across the enclosure to values that are above the ones for pure natural convec-
tion without the body at the same Rayleigh and Prandti numbers. For the same
body size, a relatively high thermal conductivity body reduces the total heat
transfer rate.
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In summary, the resuits of the present study are in some respects unexpected and
can have important implications in many applications. For example, considerable care
needs to be taken in trying to utilize a higher thermal conductivity body to enhance the
heat transfer across the enclosure, as proposed by David and Lauriat [4]. In fact, the
present results may serve as a motivation to develop novel technigues for minimizing the
total heat transfer rate, which is important in many building energy components. From a
more fundamental point of view, it is interesting to note that the heat transter across the
enctosure (or the “effective thermal conductivity’’) does not need to be bounded by the
limiting values for { = 0 and 1, and may follow opposite trends, as would be expected
for pure heat conduction (Ra = 0). Although this fundamental study revealed some of
the basic heat transfer mechanisms, natural convection i enclosures containing a heat
conducting body needs considerably more research attention. In particular, three-
dimensional effects may be important in many practical systems, for example, if the
body does not extend over the entire depth of the enclosure.
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