
 1

Modeling of Reoxidation Inclusion Formation 
During Filling of Steel Castings 

 
 
 

 
Kent D. Carlson and Christoph Beckermann 

 
 
 

 

Department of Mechanical and Industrial Engineering 

The University of Iowa, Iowa City, IA 52242 
 

 
 
 
 

Abstract 

A reoxidation inclusion model is being developed that simulates the entire life cycle of 
inclusions during the filling of steel castings.  There are two ways that inclusions can be 
introduced into the casting: inclusions can be released at the inlet to model tiny deoxidation or 
other larger inclusions entering the mold cavity from the ladle, and they can also be born on the 
metal free surface, where contact with oxygen from the atmosphere creates them.  These models 
can be used separately or together.  Inclusion motion is calculated by solving an equation of 
motion for each inclusion at each time step.  The growth of reoxidation inclusions is modeled 
both by oxide growth due to oxygen pickup at the free surface as well as by inclusion 
agglomeration (combination) when inclusions come close enough together to merge.  All of 
these pieces of the inclusion model have been implemented in commercial casting simulation 
software, and an application is provided to qualitatively compare the simulation results to 
experimental results.  A parametric study is also performed, to examine the effect of various 
values specified in the model.  Once completed, the present simulation model will provide a tool 
for foundries to determine the final location and characteristics of reoxidation inclusions in steel 
castings. 
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1. Introduction 

The removal of oxide inclusions from castings and the subsequent repair of those castings are 
expensive and time consuming procedures.  Svoboda et al.[1] estimated that twenty percent of the 
cost of producing castings is due to the removal of inclusions and the repair of the resulting 
defect areas with weld metal.  Inclusions that remain in the casting adversely affect machining 
and mechanical performance, and may cause the casting to be rejected for failing to meet the 
radiographic standard requirements specified by the customer regarding allowable inclusion 
severity.  Reoxidation inclusions, which form when deoxidized steel comes into contact with 
oxygen during mold filling, make up a substantial portion of the inclusions found in steel 
castings.  Griffin and Bates[2] estimated that 83% of the macro-inclusions found in low-alloy 
steel castings are reoxidation inclusions, as are 48% of those found in high-alloy steel castings.  
The primary source of oxygen in reoxidation inclusion formation is air, which contacts the metal 
stream during pouring and the metal free surface in the mold cavity during filling (see Figure 1). 

At present, trial-and-error and experience are the only tools that foundry engineers have at 
their disposal to solve inclusion problems in steel castings.  If a casting has inclusion problems, 
the foundry engineer may change the pouring practice or gating design for the casting in hopes 
that this will eliminate or reduce the severity of the problem.  Changing the pouring or gating 
will change melt flow patterns during filling.  This may reduce the amount of reoxidation 
inclusions created, or it may merely change the final location of macro-inclusions; if the 
inclusions are swept into a riser rather than collecting on the cope surface of the casting, the 
inclusion problem is solved even if the volume of reoxidation inclusions created does not 
change.  In order to avoid inclusion problems or to reduce their severity, foundries often employ 
special gating techniques to reduce the contact area and time between the melt and the 
atmosphere during mold filling or to trap inclusions inside the runners.  However, while a poor 
gating system can create inclusion problems in castings, a good gating system will not 
necessarily prevent inclusion problems.  Thus, several iterations on the rigging of a casting may 
be necessary to resolve inclusion issues. 

In an attempt to provide foundry engineers with a tool for eliminating or minimizing 
inclusion problems, a model is being developed that simulates the formation, growth, and motion 
of reoxidation inclusions during the pouring of steel castings.  This model, which is being 
developed within the commercial casting simulation software MAGMASOFT[3], will allow 
foundries to predict the final location, size, number and other characteristics of reoxidation 
inclusions in a casting.  This information can be used to help determine whether or not a given 
mold design will lead to inclusion problems, without having to expend the time, effort and 
money to produce the casting to determine this information. 

The various components of the inclusion model that are currently implemented in 
MAGMASOFT are described in Section 2.  A preliminary application of this model to perform a 
parametric study and to compare simulation results with experimental results is presented in 
Section 3.  Ongoing work is then summarized in Section 4.  It is stressed that the work on 
inclusion modeling is well underway, but is not yet complete.  This paper is intended to serve as 
a status report, showing some very promising preliminary results. 
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2. Modeling Inclusion Formation, Growth, Agglomeration, and Motion 

This section describes the different aspects of inclusion modeling currently implemented in 
MAGMASOFT.  These aspects include inclusion formation, growth, agglomeration and motion.  
Presently, inclusions can be modeled either as spheres or as thin disks (i.e., pancake-shaped 
inclusions), as shown in Figure 2.  Spheres are characterized by a diameter d, while disks are 
characterized by a disk diameter ddisk and thickness t. 

Formation 

The present model provides two mechanisms that can be used to create reoxidation 
inclusions: release and birth (nucleation).  These mechanisms can be used separately or together.   

 
Release: The release mechanism allows the user to release inclusions at the inlet to the mold.  

This option can be used to model tiny deoxidation or other larger inclusions that enter from the 
ladle into the casting cavity with the melt during pouring.  This way, the effects of the 
cleanliness of the melt from the ladle can be examined. The user chooses the initial size of the 
inclusions that are released by specifying d0 (cm) for spheres or ddisk,0 and t0 (both in cm) for 
disks.  The user also specifies a “release” spacing, rell  (cm), and the model releases inclusions 
spaced rell  apart over the inlet area.  Each inclusion is assigned an initial velocity equal to that of 
the liquid metal at the release location.  The model then determines the inclusion release 
frequency, relf  (s-1), from 

 relinrel lvf r
=  (1) 

where invr  (cm/s) is the average inlet velocity, and releases inclusions at time intervals of relf1  
seconds.  This provides a continuous release of inclusions with an inclusion number density, reln  
(cm-3), of 

 3−= relrel ln  (2) 

If the approximate inclusion number density in the melt coming from the ladle is known, this can 
be used as reln  to determine rell  from Equation (2); i.e., 3/1−= relrel nl . 

Birth: The birth mechanism creates tiny new inclusions on the free surface of the melt during 
filling.  The phenomenon of nucleation of oxide inclusions on a low-carbon aluminum-killed 
(LCAK) liquid steel free surface has been photographed by Wang et al.[4]  This series of 
photographs is reproduced in Figure 3.  It can be seen that the free surface is initially free of 
inclusions (Figures 3a and 3b).  The inclusions nucleate at approximately the time of the 
photograph in Figure 3c.  The initial inclusion spacing appears to be around 10 microns.  The 
later photographs show continued growth and agglomeration of the inclusions, as discussed in 
more detail below. 

 
In the present birth model, the initial size of the inclusions that nucleate on the free surface is 

assumed to be negligibly small.  In practice, a small but finite value for the initial diameter is 
used, such that the initial inclusion volume is still negligibly small.  The user specifies a 
“nucleation” spacing, 0l  (cm), which indicates the desired initial spacing between inclusions that 
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nucleate on the free surface.  This value would typically be different from the release spacing, 
rell .  The nucleation spacing can be related to the number of nuclei per unit free surface area, 0n ′′  

(cm-2), by the equation 

 2
00
−=′′ ln  (3) 

In order to compute the area of the free surface that is available for nucleation of new 
inclusions, the following approximations are made. The total area of the free surface in a 
computational cell, cellFSA ,  (cm2), is first approximated using the equation 

 ( ) ( ) 3
2

, 2.114 dzdydxfVOFVOFA srcellFS ×××−=  (4) 

where VOF is the volume of fluid [VOF = (volume of fluid in cell)/(total cell volume), 0 ≤ VOF 
≤ 1]; srf  is a surface roughness factor that accounts for the fact that fluid flow simulations 
cannot capture the actual roughness of the metal surface (see, for example, the picture on the left 
side of Figure 1); and dx, dy and dz (all in cm) are the flow cell dimensions.  The term 

)1(4 VOFVOF −  in Equation (4) determines the size of the free surface based on how much 
liquid metal the flow cell contains.  This term has a maximum value of one when the cell is half 
full (i.e., VOF = 0.5), and a minimum value of zero when the cell is either completely empty or 
completely full (i.e., VOF = 0 or VOF = 1).  The term ( ) 3

2
2.1 dzdydx ××  in Equation (4) 

approximates the area of the free surface, assuming the cell is half full.  To understand this, 
consider the schematics shown in Figure 4.  Figure 4a shows a general free surface, while 
Figures 4b and 4c show free surfaces for a uniform grid cell (i.e., dzdydx == ).  If the grid is 

uniform, the term ( ) 3
2

2.1 dzdydx ××  simplifies to 22.1 dx , which is the area shown in Figure 4b 
multiplied by 1.2.  The factor 1.2 is used because the actual orientation of the free surface within 
a cell is unknown.  The minimum possible area for a half-full cell is the surface shown in Figure 
4b, which has an area of 20.1 dx .  The maximum area, shown in Figure 4c, is 241.1 dx .  The 
factor 1.2 is used because it is the average of the minimum and maximum values.  While the 
above method for computing the area of the free surface within in a computational cell may 
appear to be crude, more exact calculations cannot be justified in view of the fact that typical 
filling simulations are far from being able to resolve all details of the highly turbulent free 
surface that can exist during filling of a steel casting. 

Once the total free surface area in a cell is computed, the number density of the inclusions 
already existing on that free surface area, existn ′′  (cm-2), can be found from 

 cellFSexistexist ANn ,=′′  (5) 

where existN  is the number of inclusions that already exist in the flow cell that contains a free 
surface.  Here, it is assumed that all inclusions within a free surface cell are on the free surface. 
From this value, the spacing of the existing inclusions, existl  (cm), can be approximated as 

 ( ) 21−′′= existexist nl  (6) 
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If the spacing between existing inclusions exceeds the user-specified nucleation spacing, 0l , then 
inclusion birth may occur, provided there is available free surface area.  The free surface area 
available for inclusion birth, birthA  (cm2), is calculated from 

 existcellFSbirth AAA −= ,  (7) 

where existA  (cm2) is the sum of the cross-sectional areas of all existing inclusions in this cell 

 2

1 4 j

n

j
exist dA ∑

=

=
π  (8) 

where jd  is the diameter of inclusion j (d for spherical inclusions and ddisk for disk-shaped 
inclusions), and n is the total number of existing inclusions in this cell. 

If birthA  calculated from Equation (7) is greater than zero, birth will occur.  The number of 
inclusions that will be created, birthN , is determined from 

 birthbirthbirth AlAnN 2
00
−=′′=  (9) 

This value is then rounded up to the nearest integer, and birthN  inclusions are added to the cell 
that contains a free surface, spaced a distance of 0l  apart. 

In practice, 0l  should be chosen smaller than the smallest grid dimension (dx, dy, or dz), in 
order to ensure that there is at least one inclusion in each cell that contains a free surface.  On the 
other hand, specifying a nucleation spacing that is comparable to the one observed in 
experiments (see Figure 3), i.e., about 10 microns, would result in a total number of inclusions 
that is too large for present-day computing resources.  Hence, a compromise must be found that 
provides final results that are reasonably independent of the number of inclusions generated by 
the above birth model and that can be obtained within present computational capabilities.  This 
issue is examined in detail in Section 3.  

Growth 

When reoxidation inclusions are on the melt free surface, they will absorb oxygen from the 
atmosphere and grow as a result.  This phenomenon is governed by the equation 

 
( )

βρ
ρ

inclFSincl
inclincl A

t
V

,=
∂

∂
 (10) 

In this equation, β  is an effective, overall mass transfer coefficient (cm/s); inclρ  and inclV  are the 
inclusion density (kg/cm3) and volume (cm3), respectively; and inclFSA ,  is the area (cm2) of the 
melt free surface that is contributing oxide to the growing inclusion.  The model currently 
assumes that the mass transfer coefficient β  is a constant; however, one of the next model 
enhancements will be to model this coefficient as a variable that accounts for variations in the 
oxidation rate due to changes in the flow conditions.  The present version of the model also 
assumes that the inclusion density is a constant. 
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In the present growth model, the total oxidation rate is proportional to the entire free surface 
area at any instant of time.  However, the amount of oxide formed during a given time step must 
be apportioned to the individual inclusions.  This can be done in a cell-by-cell manner, since 
each free surface cell has at least one inclusion.  The present apportioning procedure is based on 
the idea that larger inclusions “attract” oxide from a larger portion of the free surface than 
smaller inclusions do.  Hence, in order to determine the area inclFSA ,  in Equation (10) it is 
assumed that the total flow cell free surface area [ cellFSA , , defined in Equation (4)] is divided 
among the inclusions within that flow cell, proportional to each inclusion’s surface area.  This 
can expressed as, 

 cellFSn

j
jincl

incl
inclFS A

SA

SA
A ,

1
,

,

∑
=

=  (11) 

where n represents the number of inclusions in the flow cell.  The surface area of spherical 
inclusions is 

 2dSAsphere π=  (12) 

while the surface area of disk-shaped inclusions is 

 tddSA diskdiskdisk ππ
+= 2

2
 (13) 

However, note that for thin disks such as the one shown in Figure 2b, the surface area on the disk 
faces (i.e., the top and bottom surfaces) is much larger than the area created by the thickness 
[given by the term tddiskπ  on the right side of Equation (13)].  Because the first term on the right 
side of Equation (13) is much larger than the second, the second term can be neglected.  If this is 
done, then substituting either Equation (12) or (13) into Equation (11) results in 

 cellFSn

j
jincl

incl
inclFS A

d

d
A ,

1

2
,

2

,

∑
=

=  (14) 

where incld  is d for spherical inclusions, and ddisk for disk-shaped inclusions. 

With the above information, the volume of each inclusion after growth, inclV , can be 
calculated from Equation (10).  This new volume is then used to compute the new inclusion size.  
For spheres, the diameter after growth is given by the equation relating the volume of a sphere to 
its diameter 

 ( ) 316 πinclVd =  (15) 

For disks, the volume is related to the diameter and thickness by 

 tdV diskincl
2

4
π

=  (16) 
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Note that growth can cause an increase in both the diameter and the thickness.  An assumption 
must be made in order to determine both of these quantities from the volume after growth.  The 
assumption used in the model is that the thickness and diameter both grow by the same 
ratio, growr .  In other words, the disk diameter and thickness after growth can be written as 

 olddiskgrowdisk drd ,=  (17) 

and 

 oldgrowtrt =  (18) 

where olddiskd ,  and oldt  are the values before growth.  Substituting Equations (17) and (18) into 
Equation (16) results in 

 oldolddiskgrowincl tdrV 2
,

3

4
π

=  (19) 

Equation (19) can be solved for growr , and then the disk diameter and thickness after growth can 
be calculated from Equations (17) and (18). 

Agglomeration 

Aside from growth, inclusions can also increase in size during filling by colliding with and 
sticking to each other, to form a single larger inclusion.  This is known as agglomeration.  While 
this can happen anywhere in the melt due to random collisions, it is more likely to occur on the 
liquid metal free surface.  This is because solid inclusions on the liquid free surface cause small 
indentations in the free surface.  These indentations extend beyond the inclusions themselves, 
and essentially create an effect not unlike gravity over very small distances (on the order of ten 
to a few hundred microns).  To understand this, imagine placing two bowling balls on a 
trampoline.  If the balls get close enough, the indentations they each make in the trampoline will 
interact, and the balls will roll together and touch.  This can be seen in Figure 5, which shows 
photographs of inclusions agglomerating on the free surface of low-carbon aluminum-killed 
(LCAK) liquid steel.  These photos, presented by Shibata et al.[5], are clear evidence of the 
attractive forces between inclusions that were essentially motionless relative to each other in the 
first frame of Figure 5.  The photographs obtained by Wang et al.[4] and reproduced in Figure 3 
also show the phenomena of growth and agglomeration on a LCAK steel free surface.  The 
inclusions that nucleated on the liquid steel surface (Figure 3d) grow until their spacing becomes 
small enough that they agglomerate (Figures 3e and 3f). 

The present agglomeration model is shown schematically in Figure 6, for both spheres and 
disks.  If two inclusions are within some critical distance L1 of each other, they are assumed to 
agglomerate immediately.  The assumption of instantaneous agglomeration neglects the inertia 
and drag forces on the particles during agglomeration; it is needed because of the difficulty to 
resolve the motion of the inclusions over the small distances involved in the agglomeration 
process.  To determine if two inclusions agglomerate, it is necessary to determine the critical 
distance L1 shown in Figure 6.  This was done using the experimental data of Shibata et al.[5], 
shown in Figure 7.  They measured accelerations and separation distances of inclusions such as 
those shown in Figure 5 to determine the attractive forces and critical distances (“acting length” 
in Figure 7) between inclusions.  The data shown in Figure 7 indicates that the critical distance 
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depends primarily on the radius of the larger of the two inclusions.  This can be understood by 
returning to the bowling ball analogy.  Assuming that the bowling balls have the same density, a 
larger bowling ball would create a larger indentation in the trampoline.  The size of the smaller 
bowling ball becomes less important, because it will be attracted to the larger bowling ball as 
soon as it encounters the larger indentation caused by the larger ball.  To determine the 
relationship between the radius of the larger inclusion and the critical distance, a line was drawn 
through the center of the data shown in the upper part of Figure 7.  The equation of this line is 
approximately given by 

 2084.0)cm( max1 dL =  (20) 

where maxd  (cm) is the diameter of the larger of the two inclusions.  For simplicity, the same 
relation is used for disks, replacing maxd  with max,diskd .  It is important that the diameter used in 
Equation (20) is in centimeters, because the constant in front of the square root has units of 
(cm)1/2.  Note that the critical distance given in Equation (20) is only valid if both inclusions 
involved are on the metal free surface.  If one or both are immersed in the metal, the attractive 
surface force is absent, and a critical distance of L1 = 0 is used.  Finally, note that more than two 
inclusions can be involved in an agglomeration.  It is possible for several inclusions to be located 
on the free surface close enough to a given inclusion to satisfy the agglomeration criterion, in 
which case all inclusions within this distance are combined. 

When inclusions agglomerate, it is necessary to determine the properties of the newly formed 
inclusion.  This is done by first summing the masses and volumes of the inclusions involved, to 
determine the mass and volume of the agglomerated group, aggm  (kg) and aggV  (cm3), 
respectively.  The density of the newly agglomerated inclusion, aggρ  (kg/cm3), is then found 
from 

 aggaggagg Vm=ρ  (21) 

Since the densities of the inclusions are currently assumed to be equal and constant, the above 
equation simply gives inclagg ρρ = .  For spheres, the diameter of the new inclusion, aggd  (cm), is 
determined from 

 ( ) 316 πaggagg Vd =  (22) 

For disks, both the diameter and the thickness of the new inclusion must be determined from the 
agglomerated volume.  To do this, the model assumes that the new inclusion thickness, aggt  
(cm), is equal to the maximum thickness value of all inclusions involved in the agglomeration, 
i.e., ( )ttagg MAX= .  The new agglomerated disk diameter, aggdiskd ,  (cm), is then found from 

 
agg

agg
aggdisk t

V
d

π
4

, =  (23) 

The location of the new inclusion, aggxr  (cm), is given by the center of mass of the inclusions that 
were involved in the agglomeration, which can be written as 
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 ∑∑
==

=
n

j
j

n

j
jjagg mxmx

11

rr  (24) 

where jxr  and jm  are the position vector and mass of inclusion j, respectively, and n is the 
number of inclusions that agglomerated.  Finally, the velocity of the new inclusion, aggvr  (cm/s), 
is determined by conservation of linear momentum for the group of inclusions involved.  This is 
expressed as 

 ∑∑
==

=
n

j
j

n

j
jjagg mvmv

11

rr  (25) 

where jvr  is the velocity vector of inclusion j. 

Motion 

In order to determine the final location of inclusions, it is necessary to track their movement 
from the time they form until filling is complete.  In the present model, this is done by solving 
the following equation of motion for each inclusion, at each time step: 

 buoyancydrag
incl

incl FF
dt
vd

m +=
r

 (26) 

where inclm  and inclvr  are the mass (kg) and velocity (cm/s) of the inclusion, respectively; and 

dragF  and buoyancyF  are the drag and buoyancy forces (kg-cm/s2) acting on the inclusion.  Since 
agglomeration of inclusions is assumed to be instantaneous (see the previous sub-section), no 
attraction forces between inclusions are included in the above equation. Other forces (virtual 
mass, lift, drag due to the presence of other inclusions, etc.) are also neglected.  In addition, 
Equation (26) assumes that the inclusion mass is constant during motion.  If the inclusions are 
assumed to be spherical, Equation (26) can be expressed as 

 ( )( ) ( )gvv
ddt

vd
linclincll

incl

lincl
incl

rrr
r

ρρ
µ

ρ −++−= 687.0
2 Re15.01

18
 (27) 

where inclρ  and incld  are the density (kg/cm3) and diameter (cm) of the inclusion, respectively; 

lρ  and lµ  are the density (kg/cm3) and dynamic viscosity (kg/cm-s) of the liquid, respectively; 
gr  is the gravity vector (cm/s2); t is the time (not the disk thickness); and Re is the Reynolds 
number, which is a dimensionless number defined in terms of the difference between the velocity 
of the inclusion ( inclvr ) and the velocity of the surrounding liquid metal ( lvr ) as 

 
l

incllincll dvv
µ
ρrr

−
=Re  (28) 

The first term on the right side of Equation (27) is the drag force, and the second term is the 
buoyancy force.  The drag force is written in terms of a dimensionless drag coefficient, DC , 
given by 
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 ( )687.0Re15.01
Re
24

+=DC  (29) 

This drag coefficient correlation is valid for 1000Re ≤ . 

During each time step of the filling simulation, Equation (27) is solved for each inclusion to 
determine its velocity.  This information is then used to update the location of each inclusion 
according to inclincl vdtxd rr

= , where inclxr  is the position vector of an inclusion.  If an inclusion 
comes into contact with a mold wall, it is assumed to stick to the wall. 

Note that the inclusion momentum equation given in Equation (27) is employed even when 
disk-shaped inclusions are used.  To account for the size and shape of each disk in the 
momentum equation, a volume equivalent diameter is used in Equation (27).  This is the 
diameter that the disk would have, based on its volume, if it were spherical.  The volume 
equivalent diameter, eqd  (cm), is determined from 

 3 2

2
3 tdd diskeq =  (30) 

After the equation of motion has been solved for each inclusion, the volume equivalent diameter 
is converted back into a disk diameter with the equation 

 
t

d
d eq

disk

3

3
2

=  (31) 

3. Application of the Model 

As mentioned earlier, the model described in the previous section has been implemented in 
the casting simulation software MAGMASOFT.  This section describes the results of a 
parametric study that was performed with this software to evaluate the current state of the model. 

The geometry used in this study is the plate geometry shown in the upper left of Figure 8.  
The plate is 1 in. thick by 10 in. wide by 12 in. long, with a 4 in. diameter by 4 in. high end riser.  
This particular geometry was selected because it was used for a separate experimental study of 
inclusion formation, so there is experimental data with which to compare simulation results.  
Filling of this geometry is simulated for 1022 steel in a furan sand mold.  The pouring 
temperature is 1581˚C (2878˚F), which gives a superheat of 80˚C (144˚F).  The pouring time is 7 
seconds. 

The present investigation focuses on the birth model, so this model is used in all cases 
presented in this work.  The release model is not employed in any of the simulations discussed 
here.  The inclusion density is taken to be constant and equal to 0.003 kg/cm3; this is 
approximately the density of the alumina inclusions that are prevalent in reoxidation.  The 
inclusion size at birth is specified as d = 4 microns for spherical inclusions, and ddisk = 4 microns, 
t = 2 microns for disk-shaped inclusions.  This size is small enough that it results in an 
essentially negligible initial inclusion volume at birth.  The mass transfer coefficient for these 
simulations is specified as β = 0.0002 cm/s; this value simply provides a reasonable growth rate 
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for the purpose of the present simulations.  As mentioned before, an improved oxidation rate 
model will be included in the near future. 

Other simulation parameters that must be specified include the grid size (or number of metal 
cells); the nucleation spacing, 0l ; the surface roughness factor, srf ; and whether to use spherical 
or disk-shaped inclusions.  These parameters were varied to create the present parametric study.  
The values of these parameters for the five cases considered are listed in Table 1. 

The simulated inclusions at 10% increments during filling are shown for Case 1 in Figure 8.  
As the plate becomes nearly filled, a group of relatively large inclusions are seen to form and 
stick to the middle of the plate cope surface.  This is caused by a swirling behavior of the liquid 
metal in this region when the plate is nearly filled.  The swirling of the liquid metal brings many 
inclusions into the same area, where they agglomerate on the free surface to form the large 
inclusions seen on the plate cope surface in Figure 8.  However, Figure 8 also shows that smaller 
inclusions (around 100 microns in diameter) are evenly distributed throughout the casting.  A top 
view of the inclusions at the end of filling is shown in Figure 9a.  This simulation result can be 
compared to the two experimental plates shown in Figure 9b.  These plates were cast with the 
rigging shown in Figure 8, and then ⅛ in. of material was machined from their cope surfaces.  
The circles drawn on the plates in Figure 9b are inclusion counts, where 1-in. diameter circles are 
drawn around all visible inclusions on the machined cope surfaces.  Note that the locations of the 
inclusions seen in the experimental plates in Figure 9b are in good agreement with the locations 
of the largest inclusions shown in Figure 9a.  The final inclusion plots produced for Cases 2 – 5 
look qualitatively very similar to those of Case 1 in Figures 8 and 9; therefore, they are not 
shown here.  It is interesting to note, however, that even as the model parameters are varied, the 
simulated final locations of the largest inclusions match the experimental results. 

Table 1 summarizes the results of the parametric study mentioned above.  Furthermore, the 
final size and volume distributions of the inclusions for each case are presented in Figures 10 – 
14.  Figures 10a – 14a show the distribution of the number of inclusions for each case.  Final 
inclusion diameter is plotted on the x-axis of these figures.  The inclusions were grouped by their 
diameters into one-micron diameter increments and counted.  This count (i.e., the number of 
inclusions in each one-micron interval) was then divided by the total number of inclusions at the 
end of the simulation and plotted on the y-axis, as the number fraction of inclusions per micron 
of diameter.  Hence, the area under each of the curves in Figures 10a – 14a is equal to unity. 
These figures show the distribution of inclusions, based on their diameter.  For example, Figure 
10a shows that the majority of inclusions produced in this simulation have a final diameter of 
around 100 microns, with very few inclusions larger than 500 microns (0.5 mm).  Figures 10b – 
14b show the distribution of the final inclusion volume as a function of inclusion diameter.  
These figures also plot the final inclusion diameter on the x-axis, but now the total volume of the 
inclusions within each micron increment of diameter are computed and divided by the total 
volume of all inclusions.  This is plotted on the y-axis, as the total final volume fraction per 
micron of diameter.  The area under each of the curves in Figures 10b – 14b is also equal to 
unity.  These figures relate the distribution of the total inclusion volume to the inclusion 
diameter.  For example, Figure 10b shows that the majority of the final inclusion volume consists 
of inclusions 500 microns or smaller, with a peak around 200 microns.  The presence of 
relatively few large inclusions can be clearly observed in Figures 10b – 14b.     
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As shown in Table 1, Case 1 used a grid with about 26,000 metal cells (i.e., cells that will 
contain metal at the end of filling), a nucleation spacing of 0.5 cm, a surface roughness factor of 
1, and spherical inclusions.  This simulation resulted in a final total inclusion volume of 0.276 
cm3, consisting of about 147,000 inclusions, with a maximum inclusion diameter of 0.269 cm 
(2.69 mm).  A total of about 213,000 inclusions were generated, implying that about 66,000 
inclusions combined together through agglomeration.  Case 2 used all the same parameters as 
Case 1, except that the nucleation spacing was reduced from 0.5 cm to 0.25 cm.  Table 1 shows 
that in Case 2 the smaller nucleation spacing resulted in a final count of about 284,000 
inclusions, which is nearly twice as many inclusions as in Case 1.  As in Case 1, Case 2 resulted 
in a final total inclusion volume of 0.276 cm3.  This shows that the total volume of oxide 
generated is not affected by the number of inclusions simulated. The average inclusion diameter 
is different for the two cases (Table 1), since the same total inclusion volume is produced with a 
different number of inclusions.  However, Table 1 shows that, despite the vastly different 
number of inclusions generated in Cases 1 and 2, the final diameter of the largest inclusion is 
approximately the same.  Comparing Figures 10a and 11a, it is seen that the normalized size 
distribution of the final inclusions is also very similar in both cases.  The peaks in both figures 
are of the same magnitude and occur at diameters slightly under 100 microns.  This indicates that 
the predicted final size distribution of the inclusions is not affected by the number of the 
inclusions simulated, if the size distribution is normalized by the total final number of inclusions.  
This result is important for trying to minimize the number of inclusions in a simulation in order 
to reduce computational times.  The volume distributions for Cases 1 and 2 are also quite similar 
(Figures 10b and 11b).  In particular, the presence of a few inclusions of a large volume is 
predicted in approximately the same manner in both cases.  This implies that the prediction of 
the large inclusions is not strongly affected by the total number of inclusions simulated.  Since 
the large inclusions are of primary concern to steel foundries, this finding again can be used to 
minimize the number of inclusions in a simulation.  Although the curves are of a similar shape, 
note that the magnitude of the peak just below 200 microns is about 0.0038/micron in Figure 
10b, while it is about 0.0048/micron in Figure 11b.  This indicates that more of the oxide volume 
is distributed among the smaller inclusions in Case 2 than in Case 1, which can be attributed to 
the much larger total number of inclusions in Case 2 than in Case 1. 

Case 3 provides a check for grid independence: this case uses the same parameters as Case 2, 
except that it uses a grid that has about half the number of metal cells used in Case 2 (about 
13,000).  The total inclusion volume resulting for Case 3 is 0.279 cm3, a value very close to the 
first two cases.  Case 3 results in about 219,000 inclusions, which is a somewhat smaller number 
than in Case 2.  However, both the maximum and average inclusion diameters in Case 3 are 
similar to Case 2.  Comparing Figures 11a and 12a, it is seen that the normalized distribution of 
inclusions over the range of diameters is very similar.  The peak value in Case 3 occurs at about 
the same diameter as in Case 2, although the fraction of inclusions at the peak is about 10% 
smaller.  Comparing Figures 11b and 12b, the trends are also very similar.  Again, the peak 
volume fraction in Figure 12b is somewhat lower than in Figure 11b.  This indicates that more of 
the volume in Case 3 comes from somewhat larger inclusions, which can be seen by comparing 
these figures in the range of about 700 to 1300 microns (0.7 – 1.3 mm).  The similarity of the 
results from Cases 2 and 3 gives some confidence in the grid independence of the present 
inclusion formation model.  It should be noted that the similarity between the results from Cases 
2 and 3 also implies a degree of time step independence, because the time step was larger in Case 
3 than in Case 2.  The time step in MAGMASOFT is variable and automatically determined 
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based on many factors, one of which is grid size.  Coarser grids lead MAGMASOFT to use 
larger time steps. 

Case 4 is the same as Case 1, except that the inclusions are modeled as disks rather than 
spheres.  This case produces a final inclusion volume of 0.276 cm3, which is the same as in Case 
1.  The final number of inclusions in Case 4 (135,000) is also similar to Case 1.  As expected, the 
maximum diameter is very different: the maximum disk diameter in Case 4 is nearly 1 cm, while 
the largest sphere diameter in Case 1 is only 0.27 cm.  Rather than growing uniformly in all 
directions, the disk diameter increases much more than the thickness.  This can be seen by noting 
that the initial ratio of tddisk  is 2, while the final maximum ratio is 39.  Since the growth model 
increases both the diameter and thickness by the same ratio, this indicates that the largest 
inclusion underwent many agglomerations, since in agglomeration the thickness is taken as the 
maximum value of the inclusions involved.  Indeed, the largest inclusion in this simulation 
actually contains about 1,760 agglomerated inclusions.  Comparing Figures 10 and 13, notice 
again that they are qualitatively very similar, except the x-axis scale is different due to the larger 
range of disk diameters.  If one would scale the horizontal axes in Figures 10 and 13 by the 
largest inclusion diameters, the distributions would more directly coincide. 

Finally, Case 5 is the same as Case 1, except a surface roughness factor, srf , of 10 (rather 
than 1) is used.  In practice, a larger surface roughness factor corresponds to more turbulent 
filling process.  The final inclusion volume for this case is 2.76 cm3, which is exactly ten times 
the value from Case 1.  This is not surprising; looking at Equations (4) and (10), one sees that the 
growth rate of the inclusions is directly proportional to srf .  This increased growth rate increases 
both the maximum and average inclusion diameters. The diameter of the largest inclusion is 
about 7.8 mm in Case 5, as opposed to 2.7 mm in Case 1.  The final number of inclusions 
increases from 146,522 in Case 1 to 196,058 in Case 5 (Table 1).  This difference is due to a 
combination of two effects: the larger free surface area in Case 5 results in many more inclusions 
being generated (563,710 in Case 5 versus 212,604 in Case 1), even though the nucleation 
spacing is the same in both cases; on the other hand, the much larger size of the inclusions causes 
many more agglomerations in Case 5 compared to Case 1. Comparing Figures 10a and 14a, the 
peak inclusion fraction decreases almost in half, but the visible distribution in Figure 14a extends 
for almost 1000 microns, rather than for almost 500 microns as in Figure 10a (note the difference 
in the x-axis scales).  Comparing Figures 10b and 14b, the volume distribution in Case 5 is 
spread over a much wider range of diameters, and there are more large inclusions.  One would 
not expect the distributions in Cases 1 and 5 to be similar, since the two cases correspond to 
much different physical situations. 

An interesting overall observation from this study is that simulations with the same growth 
rate (Cases 1 – 4) all produce about the same total volume of inclusions.  Furthermore, the size 
and volume distributions in Cases 1 – 3 are similar when normalized with the total final number 
of inclusions.  As mentioned when discussing Figures 8 and 9a, the inclusion simulation results 
at the end of filling for all five cases looked qualitatively very similar (i.e., the largest inclusions 
ended up in roughly the same location).  It is encouraging to see similar results from the model 
as relatively arbitrary parameters such as nucleation spacing and grid size are varied.  Of course, 
the final inclusion sizes depend strongly on whether the inclusions are modeled as spheres or as 
disks, the roughness of the free surface during filling, and the oxidation rate. 
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4. Ongoing Work 

While the present inclusion model is showing promising results, there are still enhancements 
to be made.  The primary area of enhancement is to implement an improved oxidation rate 
model, such that the mass transfer coefficient, β, is a function of the local flow conditions.  A 
similar improvement will be made with respect to the surface roughness factor.  Additional 
simulations will be performed to test the inclusion release model, in order to examine the effect 
of the cleanliness of the melt entering the mold from the ladle.  Most importantly, more 
comparisons with casting trials are needed.  In particular, differences in the prediction of 
reoxidation inclusions due to changes in the pouring practice or the gating system and mold 
design need to be compared with measurements performed on actual steel castings. 
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Table 1. Parameters and results for inclusion simulations. 

  
  
  

Case 

inclusion 
spacing 

l0 (cm) at 
birth 

number 
of 

metal 
cells 

surface 
roughness 

factor 
fsr 

  
  

sphere 
/disk 

number 
of 

inclusions
generated 

final 
number 

of 
inclusions

total 
inclusion
volume 
(cm3) 

  
  

dmax 
(cm) 

  
  

davg 
(cm) 

  
  

tmax 
(cm) 

1 0.5 26,053 1 S 212,604 146,522 0.276 0.269 0.0115 -- 
2 0.25 26,053 1 S 405,824 283,571 0.276 0.227 0.0091 -- 
3 0.25 13,263 1 S 302,876 219,285 0.279 0.210 0.0095 -- 
4 0.5 26,053 1 D 213,532 134,662 0.276 0.922 -- 0.0237 
5 0.5 26,053 10 S 563,710 196,058 2.76 0.782 0.0157 -- 
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Figure 1. Opportunities for oxygen absorption during mold filling. Adapted from SFSA 

research report.[2] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Possible inclusion geometries: (a) sphere; and (b) thin disk. 
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Figure 3. Time-elapsed photographs of nucleation, growth and agglomeration of inclusions on 

a liquid steel free surface.  Adapted from Wang et al.[4] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Schematics showing the free surface area for a cell that is half-full of liquid metal: 

(a) general surface; (b) minimum surface area; and (c) maximum surface area. 

dx 

dx 

dx 

A = dx2 

dx 

dx 
dx 

A = 1.41dx2 

dx 

dy 

dz 
A 

(a) (b) (c) 



 18

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Time-elapsed photographs of inclusions agglomerating on the surface of liquid steel.  

Adapted from Shibata et al.[5] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Schematics showing the critical distance, 1L , for the agglomeration of (a) spheres; 

and (b) disks. 
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Figure 7. Experimental agglomeration data, showing relations between inclusion radii and the 

attraction force and acting length (critical distance L1).  R1 is the radius of the smaller 
inclusion, and R2 is the radius of the larger inclusion.  Adapted from Shibata et al.[5] 
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Figure 8. Simulated inclusions at various times during filling for Case 1.  Inclusions shown at 3x magnification. 
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(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Comparison between simulation and experimental results: (a) Top view of final 

simulated inclusion locations.  Inclusions shown at 3x magnification; (b) photo 
showing inclusion locations on the cope surface of two experimental plates. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Distribution of (a) number of inclusions based on diameter; and (b) inclusion volume 

based on diameter for Case 1. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Distribution of (a) number of inclusions based on diameter; and (b) inclusion volume 

based on diameter for Case 2. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Distribution of (a) number of inclusions based on diameter; and (b) inclusion volume 

based on diameter for Case 3. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Distribution of (a) number of inclusions based on diameter; and (b) inclusion volume 

based on diameter for Case 4. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Distribution of (a) number of inclusions based on diameter; and (b) inclusion volume 

based on diameter for Case 5. 
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