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Abstract 
 
As designers look to lighter-weight, thinner-walled steel castings, knowledge of the 

location, amount, characteristics and effects of porosity on properties is more critical than ever.  
In the work presented here, a method for incorporating the effect of porosity on steel stiffness 
(elastic modulus) is presented, and simulations using the method are compared with 
experimental measurements.  Here x-ray tomography is used to determine the specimen porosity 
distribution.  The porosity distribution is imported into finite element simulations where the 
elastic modulus and Poisson ratio are dependent on the porosity field.  A relationship between 
elastic modulus and porosity is determined through comparison between finite element 
simulations and measurements.  It is found that steel exhibits a critical porosity level, when 
porosity exceeds this level the material essentially looses all stiffness or load carrying capability.  
The elastic modulus decreases non-linearly with porosity.  An equation relating elastic modulus 
and porosity is found to give good agreement between measured and predicted elastic modulus 
for 8630 steel specimens with porosity.  It is  
  
 
 
 
where E is the resulting modulus of the material having porosity volume fraction φ, and E0 is the 
elastic modulus of the sound material.  A review of literature on the properties of porous 
materials supports this finding.  Results of this study and the literature reviewed reveal that the 
static properties of porous materials depend not only on the amount of porosity, but on how it is 
distributed and other characteristics such as pore shape and size.  By modeling the effect of the 
porosity distribution in the FEA simulations, the material behavior is accurately predicted within 
≤10% agreement compared with measurements, and inhomogeneities due to porosity can be 
considered in part design.   
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1. Introduction 
 

Many materials contain porosity, either in their natural forms (e.g. wood, bone, coral and 
rock) or as a result of their production (e.g. concrete, ceramics, composites, and metals).  As a 
result, understanding the effects of porosity on the mechanical properties has long been 
recognized as important.  It will be shown, through literature reviewed and based on the results 
of the present study, that the static properties (stiffness and strength), of porous materials depend 
not only on the amount of porosity, but on how it is distributed and other characteristics such as 
pore shape and size.   

 
Porous materials such as ceramics, foams (metal or polymeric) and sintered metals are 

being applied in lightweight applications.  For these materials the porosity may be designed into 
the material.  The porosity is characterized by volumetric amount, size and shape of pores, 
cellular structure, and is typically homogeneous and uniformly distributed.  Designing 
components from such materials appears to be relatively straight-forward once the material 
properties are established, and if local variations in the stress-strain field due to the pores can be 
ignored.  For these porous materials, apparent (or effective) properties are sufficient for 
engineering design [1, 2], and there exist numerous theoretical and empirical methods to predict 
their properties. 

 
In the case of cast metals, and steel castings in particular, every effort should be made to 

produce a sound, porosity-free casting.  Still porosity may occur in a part which cannot be 
eliminated without unreasonable cost, making the part “casting unfriendly”.   If porosity forms in 
a casting, it will probably be localized and not uniformly distributed relative to the entire part, 
and the casting material properties are non-homogenous.  For such cases, there are local effects 
of the porosity.  When the actual stress-strain field is compared to the design/porosity-free field, 
stress-strain redistribution takes place in the part due to the pores, and uniform properties should 
not be assumed.  Local plastic deformations may occur due to the pores, where the original 
porosity-free design may have shown only elastic-range displacement.  Hopefully the porosity 
will be detectable by NDE, but microporosity may form that is undetectable.  While 
microporosity may not result in much localized stress concentrations and stress redistribution, it 
can greatly affect fatigue resistance [3-6].  Casting process models can predict the likelihood of 
microporosity forming and can guide inspection criteria or allow the designer to simulate the 
possible effects of porosity on part performance.  Macro-porosity in metals (often defined as 
porosity visible without magnification, typically > 100 µm) can cause gross section loss reducing 
the effective elastic modulus or stiffness [6].  Porosity in cast metal results in stress 
concentrations near pores, which can lead to localized plastic deformation and the development 
of microcracks which lead to failure. 

 
It is not typical that inhomogeneities due to porosity are considered in part design, but the 

authors of this study and others [7-8] are developing methods that can consider porosity’s effect 
on part performance.  As designers look to lighter-weight, thinner-walled steel castings, 
knowledge of the location, amount of porosity, and effect of porosity on strength and fatigue 
behavior is more critical than ever before.  In the work presented here, a method for 
incorporating the effect of porosity on steel stiffness (elastic modulus) is presented, and 
simulations using the method are compared with experimental measurements.  A review of 
literature shows that the effect of porosity on strength properties may be predicted as well. 
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2. Review of Past Work 
 
It has been recommended [9] that the physical relationships between porosity and 

properties such as stiffness and strength fall into three categories of behavior based on porosity 
level: 1) less than 10%, 2) 10% to 70%, and 3) materials with greater than 70%.  Bear in mind, 
the ranges in the previous statement are approximate.  Principally, the reasoning behind this 
division is that the materials at the two extremes 1) and 3) behave quite differently and are 
described using very different physical models.  In addition to the amount of porosity, properties 
of porous materials also depend upon aspects of the porosity that can be hard to characterize and 
generalize [10-13]; such as pore geometry, size, shape, geometry of interconnections of solid, 
and arrangement of pores, just to name a few.  Some of these hard to quantify aspects can be 
described as the porosity distribution or how the porosity is distributed.  The review below is 
thorough, since it is not expected that steel foundry engineers or designers of steel castings are 
much aware of the literature reviewed.  This review is organized by first examining work in the 
least porous category, then the most, and then the large middle range, which overlaps the 
extremes and is the area where the present work falls. 

 
2.1 Effect of Low Levels of Porosity on Stiffness and Strength 

 
Stiffness, or modulus of elasticity, of materials in the lowest range porosity range can be 

described by a linear dependence on porosity, derived with the assumption that voids do not 
interact [14].  An interesting comparison between experimental data up to 4% porosity for a cast 
Mg alloy, and theoretical models is given in Figure 1 [15].  The data appears linear in this range.  
Three theoretical relationships are compared with the data: 

 
(1) 

 
(2) 

 
       (3) 

 
where E is the resulting modulus of the material having porosity volume fraction φ, and E0 is the 
elastic modulus of the sound material.  Equation (1) is from the so-called “rule of mixtures”, 
used in composite materials relating the elastic moduli and volume fractions of the two-phases in 
the material.  It results when one of the two phases is a pore of zero elastic modulus [15].  
Equation (2) is for material with spherical holes, first used by Coble and Kingery to describe the 
elastic modulus of porous alumina [16].  Equation (3) is derived by Maiti et al. [17] for closed-
cell porous materials; note that the power “3” is replaced by “2” for an open-cell material.  The 
data in Figure 1 appears to be within the bounds of these models, and the three models span a 
range of porosity structures.     

 
Strength behavior in the lowest range of porosity, approximately less than 10%, appears 

adequately described by considering isolated pores (or voids) [18], or a uniform distribution of 
pores [19], and the single state variable needed in these models (other than model constants or 
parameters) is the volume fraction of porosity (or relative density).  These are so-called 
“micromechanics” models.  Probably the best known example of such a model describing the 
plastic behavior of “mildly voided” [20] materials is the porous metal plasticity model available 
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in the finite element analysis software ABAQUS [20].  Details of the model are beyond the 
scope of this paper; so only a summary will be given here.  The model assumes that given an 
initial porosity, the voids in the porosity field will grow and coalesce as damage occurs to the 
material at higher stresses and strains.  The model predicts the inelastic flow of the material.  In 
Figure 2 a schematic representation of uni-axial stress-strain (F-g) behavior of plastic metal 
deformation following the porous metal plasticity theory is given as adapted from [20].  The 
porosity is φ, Fy0 is the porosity-free yield stress, and Fy is the yield stress dependent on φ which 
is compared to perfectly sound φ = 0 material.  The yield stress and behavior of the plastic curve 
is determined by φ and three model constants, typically determined from theory or fitting the 
model to experimental data.  It is also possible to define a failure void fraction, where complete 
loss of stress bearing ability occurs in the material.  This way failure of the part modeled can 
occur as the voids grow and coalesce at higher strains.  There is much research taking place with 
such micromechanical models including looking at non-spherical, and higher initial void 
fractions up to about 20% [21].  

 
In a recent T&O paper, Griffin [22] reported on measurements of reduction of strength 

properties for 8630 and 1025 steel with porosity, with ductility reduction being the most 
significant effect at low porosities.  Experimental data for strength properties of aluminum alloys 
with low porosity exhibit a linear dependence that appears to be on the same order of influence 
as microstructural effects on the properties, as shown in Figure 3 [23].  The abscissa axes in 
Figures 3 A) and B) are the global average volumetric porosity for the entire specimen, and the 
volumetric average in the fracture region, respectively.  Porosity was determined by relative 
density measurements.  Note the porosity in the fracture region is higher than the total specimen 
porosity; the failures occur in the weaker parts of the material.  Alloy microstructure differences 
are seen by comparing the hollow and filled symbols.  Alloy 1 was cooled more slowly resulting 
in a larger average dendrite cell size, and had a lower Fe and Si content making it more ductile 
than Alloy 2 due to lower Si and β-Al5FeSi in the microstructure.  The interplay between 
microstructural and porosity effects is apparent.  At the low level of porosity the two compete.  
Alloy 1 shows much less of an effect of porosity on yield strength, but it exhibits a lower yield 
strength due to microstructural differences.  The importance of selecting a representative method 
and basis for porosity evaluation is also clear, since the porosity values from Figure 3 A) to B) 
are quite different with A) being a volume average and B) a local porosity in the vicinity of 
failure, respectively.  
 
2.2 Effect of High Levels of Porosity: Cellular and Foam Materials 

 
Man-made materials in the > 70% porosity range are typically cellular or foam materials.  

As described primarily by Gibson and Ashby [2,17,24], physical models of these materials are 
developed using strut-like edges of solid material in the case of open-cell materials (for example, 
occurring naturally in sponges), and membrane-like walls in the case of closed-cell materials (for 
example a honeycomb).  After constructing a model cellular structure such as those in Figure 4 
[24], one can derive the stiffness and strength properties of the structure assuming wall 
properties of the sound material.  Assuming dimensions of the edges and walls of the structure, 
one can relate these dimensions to the volume fraction of porosity.   In terms of stiffness, the 
equation for elastic modulus dependent on porosity fraction for open-cell foam [24] is  

 
          (4) ( ) 210E)E( φ−=φ
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For a closed-cell foam material, it is shown [24] that the porosity fractions in the cell walls and 
edges need to be defined individually. Using gedge to define the volume fraction of solid material 
in the edges of the structure, so that the volume fraction of solid in the walls is 1 - gedge, the 
elastic modulus of the closed-cell structure is  [24] 
 

   (5) 
 

In terms of strength, the yield strength of an open-cell foam (valid for porosity volume fraction φ 
> 0.37) is given by 

 
    (6) 

 
where Fy0 of the material without porosity and Fy(φ) is the yield strength at porosity volume 
fraction φ [24].  The yield strength of a closed-cell foam from [24] is  

 
    (7) 

 
Also, Gibson and Ashby [24] report that the Poisson ratio for both open- and closed-cell foams is 
1/3 and not dependent on porosity amount.   
 

The physical nature of these highly porous cellular materials is different from what is 
observed in porosity in steel castings.  An ordered homogeneous and isotropic distribution of 
porosity, such as found in foams, is not found in steel castings.  However, it is important to 
review some of these relations because they are often referenced in the literature, serve as 
limiting cases and will be referred to in some results from the literature to follow. 
 
2.3 Effect of Intermediate Levels of Porosity on Static Stiffness and 
Strength 
 

This porosity classification basically includes porosity levels that are large enough so that 
they violate the assumptions in the lowest grouping (i.e. the pores do interact), and cannot be 
adequately described as the regular structures found in cellular materials.  In many materials that 
are not classifiable in the previously discussed groups, it has been experimentally observed, and 
demonstrated through theoretical and computational modeling, that there is a critical porosity 
fraction. At porosity levels above this critical value there is no longer interconnected solid 
throughout the volume of material.  At this point the material looses all load carrying capability, 
and the elastic modulus is zero.   

 
Rice [25,26] has determined property-porosity relationships for geometric stackings of 

solid spheres with interstitial pores, or alternatively spherical pores with solid interstitial spaces.  
His fundamental assumption is that the ratio of the effective porous material properties to the 
sound/solid material property is directly proportional to the ratio of the minimum solid contact 
area to total cross-section area in a porous structure.  He argues that cellular materials can be 
shown to be special cases of such stackings.  In Figure 5 two stacking arrangements are shown, a 
cubic array Figure 5 A) and an orthorhombic array Figure 5 B).  The areas of contact (assuming 
a packing of uniform-sized solid spheres) for the porosity level of the packing is indicated by the 
hatched areas.   Note that if the packing is porosity-free, the two cases result in grain shapes of a 
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cube and hexagon in Figures 5 A) and B), respectively.  For a given porosity level and packing 
of uniform-sized spheres, he develops the concept of a minimum solid area (MSA) fraction of 
contact for the porous structure that can be used to predict the material properties related to stress 
(elastic moduli and strength) or flux (thermal or electrical conductivity).  In Figure 6, Rice shows 
[13] there exists a critical porosity fraction φ0 beyond which the minimum solid area fraction of 
contact in the packing asymptotically approaches 0.  For the packings shown in Figure 6, φ0 
varies between 0.26 and 1.0.  Note that the packings of solid spheres, that might be used to 
approximate sintered metals, have much lower φ0 than packings for spherical pores, which would 
be similar to a cellular material.  If the curves are redrawn by normalizing the porosity fraction 
with the critical porosity fraction (φ/φ0 as indicated by the red legend and red hatched region in 
the plot), Rice demonstrates that all the packing curves fall into the red hatched region in Figure 
6.  This emphasizes the importance of φ0 as a parameter, and provides a physical basis for the 
functional dependence of material properties, for example elastic modulus, on porosity of the 
form 

 
    (8) 

 
 
where n is a power exponent that has been found to vary between 0.5 and 4 [13].  Using elastic 
modulus as our property of interest, consider the plot in Figure 7 from [13].  Bert [10] first 
suggested that the elastic modulus depended on porosity according to Equation (8) based on 
empirical observation of experimental data.  He also hypothesized that the exponent n was 
dependent on φ0 as well, having the form 

 
    (9) 

 
where Kt is a stress concentration factor related to type and characteristics of the porosity.  Rice 
presents the plot shown in Figure 8 that supports the hypothesis that n is correlated with φ0; n 
increasing with increasing φ0.  The data in Figure 8 comprises experimental results for metals, 
ceramics, and the computer generated porous structures analyzed in [27]. 
 

These computer generated structures, the star data points in Figure 8, were investigated 
by Roberts and Garboczi [27].  They developed computer generated random porous structures 
having porosity fractions of 0.1, 0.2, 0.3, 0.4 and 0.5 made up of three fundamental geometries; 
overlapping solid spheres, overlapping spherical pores and overlapping ellipsoidal pores.  
Example volumes of the structures analyzed are given in Figure 9.  In generating the structure, 
the geometric bodies were randomly sized and positioned to achieve the desired porosity 
fraction.  In the case of the ellipsoids, they were randomly oriented.    In their study, Roberts and 
Garboczi [27] define the solid elastic modulus E0 and the Poisson ratio νs for the solid in the 
structure.  The solid structure is then meshed and analyzed using finite element analysis.  Poisson 
ratios of the solid νs were varied from -0.1 to 0.4 to determine the dependency of the resulting 
Poisson ratio ν for the porous structure as a function of porosity, and to determine whether there 
was any variation in the E versus φ curves with solid Poisson ratio.   The elastic modulus versus 
porosity plot for their results is given in Figure 10 [27], where their results were fitted to 
Equation (8) giving the n and φ0 for each structure.  Note that results for solid Poisson ratios νs 
from -0.1 to 0.4 are plotted in Figure 10 at each φ value and are seen to be nearly identical.  The 
E versus φ curves were not influenced by the solid Poisson ratio.  Assuming the solid Poisson 

n
1E)E(

0
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
φ
φ

−=φ

0tKn φ=



 7

ratio νs, Roberts and Garboczi [27] determined relationships between Poisson ratio ν and 
porosity φ for the structures.  The results for the overlapping solid sphere structure are shown in 
Figure 11, and they approach an asymptotic limit with increasing porosity.  They fitted the 
results for the three structures to a linear relationship of Poisson ratio versus porosity 

 
    (10) 

 
where there are three parameters; the Poisson ratio for the solid νs, the asymptotic limiting value 
of Poisson ratio ν¶, and the porosity value corresponding to the asymptotic limit φ¶.  The results 
in Figure 11 are typical of the results for the other structures.  The asymptotic parameters for use 
in Equation (10) are: 1) for the overlapping solid spheres ν¶ = 0.14 and φ¶ = 0.472, 2) for the 
overlapping spherical pores ν¶ = 0.221 and φ¶ = 0.840, and 3) for the overlapping ellipsoidal 
pores ν¶ = 0.166 and φ¶ = 0.604.  Similar asymptotic results for  ν versus φ are obtained using 
the generalized method of cells [11] and continuum mechanics [28]. 
 

The generalized method of cells (GMC) has been used to predict the elastic properties of 
aluminum oxide (Al2O3) and the inelastic non-linear response of the intermetallic nickel 
compound IC-50 [11].  The method models a unit cell as a representative volume of a periodic 
structure, and discretizes and solves the micromechanical equations for a visco-plastic material.  
This method provides an excellent tool for examining directly the effect of pore geometry on 
elastic modulus and strength.  Herakovich and Baxter consider the four idealized pore shapes 
shown in Figure 12; cylinder, cube, sphere, and cross shaped pores.  The results for elastic 
modulus of Al2O3 in Figure 13 are compared with the experimental data from [16].  The 
cylindrical pore shows almost a perfect linear rule of mixtures Equation (1) behavior, and the 
cross shows the most degradation in E.  The spherical pore has the second most reduction in E, 
and the third most reduced is the cube.  The experimental data [16] shows good agreement with 
the spherical pore and the cross-shaped pore.  The porosity level is increased while maintaining 
each pore shape until the “b” dimension (shown in Figure 12) in each unit cell approaches 0; at 
this point the pores would touch the neighboring periodic cell’s pore and a critical pore fraction 
is reached.  Additional results are not possible beyond this pore fraction.  The critical pore 
fraction for the spherical pore is for example 0.5236; which is the ratio of volumes of a sphere of 
radius R to a cube of radius 2R.  This study clearly shows that pore geometry can be as important 
as pore volume fraction to E.  As shown in Figure 13, at the same porosity volume fraction the 
elastic modulus of the porous material can vary by up to two times for different pore shapes.  
The effect of pore geometry and porosity level on non-linear (elastic-plastic) tensile response is 
given by in Figures 14 and 15 for the intermetallic nickel compound IC-50 (11.3 wt% Al, 0.6 
wt% Zr, 0.02 wt% B, balance Ni) [11].  In Figure 14, the effect of pore shape on the tensile 
curves of material with a porosity fraction of 0.2 is shown.  As expected from the results of E, 
the cross has the most reduced load resistance capability, followed by the sphere, then cube, and 
then the cylinder.  The differences in E are apparent from the slopes of the elastic portion of 
Figure 14 taken from [11], and note that the yield strengths are also affected and reduced by pore 
shape alone.  Figure 15 is provided from [11] to demonstrate the effect of porosity fraction for a 
given pore shape; the spherical pore.  Porosity level is clearly affecting both stiffness and 
strength in Figure 15. 

 
Compared to ceramics, there is less experimental data in the literature for stiffness and 

strength behavior of metals with well-characterized porosity.  Most of the literature in porous 
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metals examines sintered materials [9, 29].  Since sintered materials are relatively homogeneous, 
they can be well-characterized; by a representative porosity fraction determined from relative 
density measurement, and microscopy can be used to determine pore size distributions, etc.   

 
Zhang and Wang [9] give an experimental study of the elastic-plastic properties of porous 

sintered copper made from 5 and 45 µm copper powder.  The two powder sizes result in two 
solid structures with differing microvoid regions between the sintered powder grains.  The 
macro-porosity levels (5.9% to 55.5%) were produced by mixing varying amounts of 600 µm 
polymethylmethacrylate (PMMA) polymeric powder into the copper powder prior to sintering. 
These particles vaporized during sintering resulting in about 200-500 µm pores.  Representative 
stress-strain curves for porous sintered 5 µm copper powder with 5.9% to 55.5% porosity in 
compression are shown in Figure 16 from [9].  Note the reduced elastic modulus from the slopes 
of the initial part of the curves in Figure 16, and the yielding behavior, as functions of porosity.  
As shown in Figure 17 A) adapted from [9], the relative elastic modulus (E/E0) for their data 
versus porosity is compared with the Gibson-Ashby model for closed-cell materials given in 
Equation (5) (with gedge = 0.8), and porous titanium data [28].  Note that their data has a very 
dramatic drop-off in E/E0, E/E0 is less than 0.1 even at about 5% porosity.  This dramatic drop 
may be due to microporosity in their “sound” material due to the spaces between the copper 
powder grains, since their E0 was based on sound copper.  A more fair comparison would have 
been to use their 5.9% porosity specimen data for the “sound” comparison since it had no 600 
µm PMMA powder added.  Nevertheless, the elastic modulus does not appear to be effected by 
the different sized powder grains.  Since elastic modulus is not believed to be influenced by grain 
size in porosity-free metals, this is not surprising.  From Figure 17 A) the critical porosity 
fraction for porous copper appears to be around 30%, where E/E0 is very small.  For the porous 
titanium, the smallest porosity level is about 35%, and for that value E/E0 is 0.1; more data in the 
low porosity range would be desirable.  The closed-cell material relation, Equation (5), does not 
show the dramatic drop in relative elastic modulus seen in the experimental data, and the Zhang 
and Wang [9] believe this is due to the metal having microporosity.  Figure 17 B) shows the 
0.2% compressive yield strength for the two sizes of copper powder versus porosity and 
comparison with Equation (7) for closed-cell foam.  Two important observations are that the 
yield strength is linearly reduced with porosity percentage, and that the yield strength is 
dependent on the powder size from the two distinct distributions of microporosity between the 
metal grains.  The smaller grains (5 µm powder) have finer microporosity and higher yield 
strength.   
 
2.4 Past Work and Background for the Present Study 
 
 At the 2004 SFSA T&O Conference the present authors described a method of 
quantitative analysis of radiographs to determine porosity in the cross-sections of fatigue test 
specimens [6].  We subsequently developed that technique into a method of performing x-ray 
tomography, or three-dimensional reconstruction of porosity in the specimens.  Examples of 
porosity distributions generated by the technique are shown for two specimens in Figure 18.  In 
Figure 18 actual cut surfaces of specimens are compared to the porosity distributions on the same 
surfaces from the tomography results.  It should be apparent that the porosity in these 8630 steel 
specimens, like the porosity detectable by radiography in most steel castings, is not homogenous 
or uniform throughout an entire section.  This poses a dilemma in generating material property 
data that is representative of a given porosity level such as that discussed in sections 2.1 to 2.3 of 
this paper.   
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Consider that when the measured elastic modulus from the test data [6] is plotted versus 
the volumetric average porosity in the test section determined from the tomography as shown in 
Figure 19, the elastic modulus varies by over a factor of 2, from 162 to 77 GPa (or a relative E/E0 
from 0.78 to 0.37 based on E0 = 207 GPa), and the variation in average porosity is about 15% to 
25%.  There appears to be no dependency on average porosity.  Any average porosity is likely to 
have any value of elastic modulus, because the modulus depends on how the porosity is 
distributed, per the discussion of Figure 10.  In [6] we did show a good correlation between the 
maximum section porosity along the gage section length and the elastic modulus as shown in 
Figure 20.  The maximum section porosity should be related to the minimum section area, and 
this seems to be in agreement with the minimum solid area concepts proposed by Rice [25,26].  
Unfortunately, the correlation shown by the data in Figure 20 could not be used as an E versus φ 
relation.  It emphasizes that the porosity distribution is as important as the amount of porosity, 
and the maximum section porosity is more closely related to how the porosity is distributed in 
this case.   

 
The fundamental goal of the present work is to determine an E versus φ  relationship that 

could be applied to any distribution of porosity giving agreement between measured and 
predicted elastic modulus.  The test specimens from [6] were used for this study with x-ray 
tomography used to determine the specimen porosity distribution.  This porosity distribution was 
imported into finite element simulations where the material properties were dependent on the 
porosity. 
 
3. Analytical Procedure 
 
 Using radiographs of the test specimens, the porosity φ distributions in the specimens are 
determined based on computed tomography.  The porosity distribution is then mapped to the 
nodes of a finite element stress-strain analysis (FEA) mesh.  Figures 21 and 22 are provided to 
show for one specimen the output of a porosity distribution from tomography, and the 
distribution resulting from mapping the tomography results onto the finite element mesh, 
respectively.  Here the tomography results are determined on a 3-D grid determined by the 1200 
dpi resolution from the digital radiographs.  The FEA mesh is approximately 20 to 50 times 
coarser.  Therefore one issue needing exploration is how the 3-D interpolation of the tomography 
φ field onto the FEA mesh field influences results; and a second important issue is how the 
coarseness of the FEA mesh influences results.   
 

Once the interpolation is performed, the material properties in the FEA stress analysis are 
made dependent on the porosity field.  An elastic modulus versus porosity relationship was used 
to model the effect of porosity on stiffness; based on the literature survey Equation (8) was used.  
Determining the relationship of E versus φ which provides the best agreement between predicted 
and measured strain over all test specimens was the primary goal.  Achieving this goal involved 
iteratively running FEA simulations using ABAQUS [20] on all specimens for their test 
conditions, and changing the E versus φ data until the best relationship is determined for all 
specimens.  Predicted strain was determined from the FEA simulations using the relative 
displacements at the locations surface of the specimen FEA model where the extensometer was 
placed in testing.  This location was 6 mm above and 6 mm below the center of the specimen 
gage section.  In the case of Poisson ratio, this was not measured, so we cannot determine the 
best relation to use.  In this study it was made variable according to Equation (10) using the 
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overlapping solid sphere result from [12] with ν¶ = 0.14, φ¶ = 0.472 and νs = 0.3. There is 
evidence that Poisson ratio does not have a large effect of the effective elastic modulus as 
discussed regarding Figure 10 [12].  Because there was not significant plasticity detected during 
testing of the specimens, and plastic behavior such as yield strength was not measured as a 
function of porosity, plastic effects were ignored in the FEA simulations used to develop the best 
E versus φ relationship.   It is recommended that plasticity and strength behavior be investigated 
in future work. 

  
4. Results and Discussion 
 
4.1 Interpolation of Specimen Porosity Field  
 

Two methods of performing the interpolation of the tomography porosity distribution 
results to the finite element mesh were tested as shown in Figure 23.  One method used a 3-D 
quadratic interpolation scheme to map the porosity in the tomography data to the FEA mesh, 
which is shown in Figure 23 A).  The second method took the average of a cubic volume of 
tomography porosity data centered at a node with the side dimension of the cube determined by 
the node spacing.  The averaged cubic volume method shown in Figure 23 B) resulted in a more 
diffuse representation of the porosity.  The differences between the two shown in Figure 23 are 
subtle.  The FEA simulation results for the two porosity interpolation methods were compared on 
several meshes to look at the effects of grid coarseness, and determine the best combination of 
interpolation and grid to use in the simulation runs to follow.  Examples of three of the FEA 
meshes used in the grid study (node spacings of 1, 0.5 and 0.3 mm) are shown in Figure 24.  The 
specimen test/gage section diameter was 5 mm. 

 
Grid studies using porosity distributions from two specimens were compared.  The 

specimens were chosen because they were tested at the same stress level (96 MPa or 13.9 ksi) yet 
had different levels of porosity, as seen in Figures 25 A) and B).  The ram end (or grip) 
displacement was selected as the variable to monitor for the grid studies.  From Figure 25 C), the 
ram end displacement of the more porous specimen, E5, is about 33% larger than the less porous 
specimen C2.  Specimen C2 does not appear to show much of an effect of either grid spacing or 
interpolation method.  Specimen E5 ram end displacement shows that the average volumetric 
interpolation monotonically converges with finer grids, while the quadratic interpolation 
displacements do not.  The displacement for 1 mm spacing is farther away from the finer mesh 
values, and the 2 mm mesh is closer to the finer meshes.  This result points out a drawback in the 
quadratic interpolation scheme; on coarser meshes it is more influenced by values near the node 
than desirable, and results can oscillate.  However, it was decided to use the quadratic 
interpolation scheme on a fine enough mesh, to capture as much of the details of the porosity as 
possible.  Either interpolation method would have worked well on the 0.5 mm mesh selected for 
the simulations used to determine the best E versus φ relationship. 
 
4.2 Effect of Porosity on Elastic Modulus 
 

Specimen E5 was chosen as a starting point for the ABAQUS FEA simulations to 
develop the E versus φ relationship that would give the best agreement with the measurements.  
This specimen had the most severe porosity and degraded E.  Comparison between measured and 
predicted strain would be used to determine the best relation.  The non-uniform porosity for 
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specimen E5 is shown in Figure 26 A).  If the elastic modulus is made a function of porosity 
using Equation (8), the predicted stress-strain fields have variations throughout the porous region 
in the specimen gage section caused by the non-uniform stiffness.  The stress and strain fields for 
a simulation using n = 2.5 and φ0 = 0.5 in Equation (8) are shown in Figure 26 B) and 26 C), 
respectively.  The nominal sound gage section stress for this test was 96 MPa. 

 
The strain measurements were made using an extensometer centered in the gage section 

with knife edges positioned to measure displacements at ≤6 mm about the gage section center.  
To compare with these measurements, axial displacements at ≤6 mm about the center of the gage 
section on the surface of the ABAQUS FEA mesh were used to determine the predicted strain.  
As can be seen in Figure 27 for specimen E5, the strain variations at the surface of the specimen 
are predicted to vary from 200 to 600 microstrain.  Unfortunately, the testing did not measure 
these variations in strain at the surface, and the circumferential orientation of the gage was not 
recorded.  It is assumed that the strain measured was an average strain.  To compare with the 
measured strain, the predicted strain is determined from the simulated displacements at all node 
circumferential positions, 12 mm apart, centered on the gage section.  A strain is determined 
from these values by averaging, and a 95% confidence interval is determined to provide an 
indication of uncertainty for this average.   

 
Results of strain predictions using Equation (8) with φ0 = 1.0 and variable n for Specimen 

E5 are compared with the measured strain in Figure 28. Here the range of n (1 to 5) was selected 
to cover the range of values from the literature presented in Figure 8.  Note that as n increases, E 
is reduced progressively. Also, the average predicted strain increases along with the variation in 
strain reflected by the confidence interval.  When n = 1 (the linear relation), the strain is under 
predicted by about 50% and only as n is increased to 5 (a very high value, outside the range of 
data in the literature, Figure 8) does it approach the measured strain.  Here the critical porosity is 
not considered, φ0 = 1.0.  For φ0 = 1.0, all specimens simulated showed a greatly under-predicted 
strain.  This is a strong indication that steel with porosity exhibits a critical porosity fraction φ0 
much less than 1.0. 

 
Taking guidance from the results in Figure 10 [12], the effect of critical porosity fraction 

N0 was investigated with a baseline exponent of n = 2.25 using the elastic modulus versus 
porosity relation Equation (8).  Five specimens were chosen because they encompassed the full 
range of porosity levels and nominal test stresses.  The results are shown in Figure 29 with 
critical porosity fractions N0 = 1.0, 0.75, and 0.5 used to generate variable stiffness properties in 
the FEA simulations.  For each specimen, the predicted strain increases progressively as N0 
decreases; this is indicated in Figure 29 for specimen E5 at the far right in the plot.  The applied 
nominal stress level is also indicated for each specimen in Figure 29.  Note that specimen C8 was 
tested at the highest stress level, 126 MPa, but is only in the middle strain range of the specimens 
shown here.  The predicted strain of specimen C8 is also not influenced much by the different 
critical porosity fractions N0 because it is one of the more sound specimens tested.  Specimen D4 
is also relatively sound and its predicted strain is uninfluenced by changing N0.  The results in 
Figure 29 indicate that; 1) N0 has a non-linear effect on the strain prediction and 2) that N0 = 0.5 
provides the best agreement for the range of specimens analyzed in Figure 29.  The non-linear 
behavior of the specimens in response to changing N0 is driven by the porosity distribution in the 
specimens. 
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The best fit for the parameters n and N0 in the elastic modulus versus porosity relation 
(Equation (8)) was achieved by minimizing the error between the predicted and measured strain 
for all specimens available.  This was accomplished by a painstaking trial and error procedure:  
1) generating the elastic modulus versus porosity data according to the Eq. (8) for a given n and 
N0, 2) importing that data in a format usable by ABAQUS, 3) running ABAQUS simulations for 
the applied nominal stress conditions for specimens with a porosity field and porosity dependent 
E and ν, and 4) comparing the measured and predicted strain and determining how to change n 
and N0 to get better agreement.  Good agreement between the measured and predicted strain was 
obtained using Equation (8) with n = 2.5, and critical porosity fraction N0 = 0.5.  This is shown in 
Figure 30.  Comparison of the n and N0 from this work with those in Figure 8 is good.  Our n 
value is on the upper end of the data for our N0.  However, given that the porosity distributions in 
our specimens is very inhomogeneous relative to the materials tested in Figure 8, the results of 
this study agree well with the stiffness behavior of other porous materials. 

 
Examining the variation in elastic modulus reinforces the importance of porosity 

distribution on material behavior.  For example consider Figure 31, two specimens (D5 and H7) 
have nearly identical average porosity levels in the gage section (porosity fractions of 0.146 and 
0.144) and the testing gave very different elastic moduli (87 and 142 GPa, respectively).  
Examining the predicted and measured strain, there is not a great difference between the strains, 
and one specimen was tested at a nominal stress level of 53 and the other at 96 MPa.  The 
porosity in specimen D5 appears to be severe in one slice along the axis as shown in Figure 31, 
and this feature of distribution of porosity greatly affects the resulting behavior.  The results of 
the predicted strain were converted to a predicted elastic modulus by using the test’s nominal 
stress so that  

 
    (11) 

 
 
where Fnominal is the applied test stress based on the specimen cross sectional area and gpredicted is 
the predicted strain.  The predicted and measure elastic moduli are plotted in Figure 32, and the 
agreement still appears good.  Uncertainty intervals are not plotted in Figure 32, because they 
tend to obscure the data.  By modeling the effect of the porosity distribution in the FEA 
simulations, the material behavior is accurately predicted since with the uncertainty interval all 
data are within the bands of ≤10% agreement.  The effect of differences in the distribution of 
porosity in specimens like those shown in Figure 31 can be predicted by the method presented 
here. 

 
Conclusions and Recommendations 
 

It has been demonstrated that steel exhibits a critical porosity level that is substantially 
less than a porosity fraction of 1.0.  When porosity exceeds this level the material essentially 
looses all stiffness or load carrying capability.  It has also been shown that the elastic modulus 
decreases non-linearly.  The equation found to give good agreement between measured and 
predicted elastic modulus is  
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A thorough review of the literature on the properties of porous materials supports this finding.  
The stiffness behavior of steel with porosity can be accurately modeled by incorporating the 
elastic modulus as a function of porosity into finite element simulations, which should result in 
accurate stress-strain fields for the elastic range.  The result is a major advance from past work in 
the area because it considers a non-uniform distribution of porosity such as that found in steel 
castings, and demonstrates that in homogeneities due to porosity can be considered in part 
design.   
 
 It is recommended that future work consider investigating the elastic-plastic behavior of 
steel with porosity.  Since the current work analyzed data in the elastic range, from fatigue tests, 
it is proposed that the same approach of coupling accurate tomography data to determine 
porosity distributions, and use porosity dependent material property data in FEA simulations to 
investigate and develop predictive models.  Additional specimens must be produced and testing 
performed.  If possible, the variation of strain predicted on the surface of specimens with 
porosity should be verified during testing.  Finally, since some theoretical models of materials 
with porosity can be extended to a “hard” second phase (such as an inclusion), it is 
recommended that the approach described in this paper be applied to steel with inclusions. 
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Figure 2 Schematic representation of uni-axial stress-strain (F-g) behavior of plastic metal 
deformation following the porous metal plasticity theory as adapted from [20].  Porosity is N, Fy0 is 
the porosity-free yield stress, and Fy is the yield stress dependent on  N. 

N = 0          

Tension, N > 0   

Compression, N > 0   

F   

Fy = f(N)   

Fy0 = f(N=0)   

N = 0           

g 

-Fy = f(N)  

-Fy0 = f(N=0)  

Figure 1 Elastic modulus versus porosity for the Mg-Al-Zn alloy AZ91 [15], measured 
sand and high pressure die cast specimen data are compared with Eqs. 1, 2 and 3. 
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B)

A)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3  Ultimate tensile and yield strength, and elongation for two 380 aluminum alloys whose 
chemistry is given above the figures [23].  A) above, versus volumetric porosity of entire 
specimen, B) below, versus porosity data from the proximity of the fracture.  
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Figure 4  Examples of cubic models of porous cellular structures in compression from 
[17].  A) an open cellular structure, and B) a closed cellular structure. 

A) B) 

Figure 5 Examples of idealized stackings of uniformed-size solid spheres (or, alternatively, pores) in A) a 
cubic array, and B) an orthorhombic array from [25].  The area of solid contact is shown as hatched area, 
and the resulting porosity-free grain that would form in each stacking is shown upper right of each image; a 
cube and hexagon. 

Porosity-free grain 
shape is a cube Porosity-free grain 

shape is a hexagon 

Areas of solid 
contact 

Areas of solid 
contact 

A) B) 
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Figure 6  Results from [13] for minimum solid area fraction (MSA) of contact for packings of solid 
spheres, and spherical and cylindrical pores.  Critical pore fraction φ0 occurs when MSA drops 
asymptotically.  All packing curves collapse into red hatched area of plot when normalized with their 
respective φ0 value shown in the second axis label in red text.  
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Figure 7  Relative elastic modulus E/E0 versus 1-φ/φ0 for six porous material shown to 
follow functional form of Equation (8) according to the MSA model from [13]. 

Critical Porosity Fraction φ0 

Figure 8  Exponent n from Equation (8) versus critical porosity fraction φ0 for ceramic, 
metal and computer generated materials shows a correlation of increasing n with  φ0 [13].

Computer Models [27] 
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Figure 9  Representative volumes of porous structures studied by Roberts and Garboczi, 
taken from [27].  Volumes are computer generated random structures made up of A) 
overlapping solid spheres, B) overlapping spherical pores and C) overlapping ellipsoidal 
pores.  

A)  B)  C) 
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Figure 10  Relative elastic modulus versus porosity for the computer generated porous 
structures shown in Figure 9 from [27].  Parameters n and φ0 from Equation (8) given 
for each structure.  Results for solid Poisson ratios νs from -0.1 to 0.4 are plotted at each 
φ value and are nearly identical; there is no solid Poisson ratio dependence. 

Overlapping solid spheres (n = 2.23,  
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Elliptical pores (n = 2.25, φ0 = 0.798) 
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Figure 11  Poisson ratio ν versus porosity fraction φ for porous structure with 
overlapping solid spheres using solid Poisson ratio νs from 0.1 to 0.4 [27].  Linear curve 
fit using Equation (10) with the asymptotic limiting value of Poisson ratio ν¶ = 0.14 and 
the porosity value corresponding to the asymptotic limit φ¶ = 0.472. 
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Figure 12  Idealized pore shapes (three dimensional unit cells) analyzed by Herakovich and 
Baxter [28] to examine the influence of pore geometry and amount on elastic modulus and 
non-linear tensile response using the generalized method of cells:  A) Cylindrical Pore, B) 
Cubic Pore, C) Spherical Pore, and D) Cross-shaped Pore. 

A)  Cylindrical Pore B)  Cubic Pore 

C)  Spherical Pore D)  Cross-shaped Pore 
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Figure 14  Non-linear tensile response as a function of pore geometry for porosity fraction φ = 
0.2 using the generalized method of cells for the four idealized pore shapes [28]. 

Figure 13  Elastic modulus as a function of porosity fraction φ for Al2O3 using the generalized 
method of cells [28] and experimental data from [16]. 
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Figure 15  Non-linear tensile response of spherical pore geometry as a function of porosity 
fraction φ using the generalized method of cells [28]. 

Figure 16  Stress-strain curves for sintered 5 µm copper powder in compression, from 5.9% to 
55.5% porosity.  Porosity of each curve is indicated at ultimate stress points [9]. 

Porosity (%) 
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Figure 17  A)  Relative elastic modulus versus porosity percentage for sintered copper and 
titanium experimental data  compared with model equation (5).  B)   0.2% compressive yield 
strength versus porosity percentage for sintered copper; experimental data is compared with 
model Equation (7).  Both adapted from [9]. 
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• Slices of 3-D porosity from tomography compared 
with cut specimens at the same position 

Internal Porosity Distribution 
Reconstruction from 3-D 

Tomography 

Section of Specimen H2 Section of Specimen E1 
Figure 18  Examples of x-ray tomography results for two fatigue test specimens. 
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Figure 19  Measured elastic modulus versus average porosity in gage length of test specimens. 

Notes: 
1) E varies by more than a factor of 
two, even though average porosity 
is between 15% and 25% for all 
specimens  
 
2) E depends on distribution of 
porosity within gage section!
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Figure 20  Measured elastic modulus versus maximum section porosity from [6]. 

 

Figure 21  Porosity distribution at longitudinal slices of test specimen H8 from tomography. 
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Figure 22  Porosity distribution at longitudinal slices of test specimen H8 from mapping 
tomography results onto the finite element mesh.  Internal structure of mesh shown on 0.5 
solid fraction iso-surface to reflect grid coarseness. 

Finite element mesh shown as white 
grid on 0.5 porosity iso-surface 

Figure 23  Slices of the same porosity distribution mapped to FEA mesh by two methods A) a 
3-D quadratic interpolation method and B) a cubic volume around the FEA mesh node. 

A) B) 
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Mesh Node Spacing = 1 mm 0.5 mm 0.3 mm

Figure 24  Three example FEA meshes of node spacing 1, 0.5 and 0.3 mm used to study effect 
of grid coarseness and porosity interpolation method on simulation results. 

Figure 25  Grid study results for porosity distributions of specimens A) E5 and B) C2 
showing FEA simulation results for ram end (or grip end) displacement versus FEA mesh 
node spacing for the two interpolation methods. 
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Figure 26  ABAQUS simulation data for Specimen E5.  A) Porosity fraction, B) Axial Stress, 
and C) Axial Strain.  Nominal gage section stress is 96 MPa based on a porosity free gage 
section. 
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Axial Strain 

Center Cross-Section of Specimen E5  
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Axial Strain 

Variation in strain on surface of 
Specimen E5 at two rotational 
positions 

High 

Low 

Figure 27  Variation in axial strain on the surface of specimen E5 for two rotated views.  In 
gage section axial strain on surface is shown to vary from 200 to 600 microstrain. 

   

Measured Strain 

Figure 28  Effect of n on results of strain predictions, using Equation (8) with φ0 = 1.0 and 
variable n for Specimen E5 compared with the measured strain.   
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Figure 29  Effect of critical porosity fraction N0 on predicted versus measured strain for five 
specimens, using elastic modulus versus porosity relation Equation (8) with n = 2.25, and 
critical porosity fraction N0 = 1.0, 0.75, and 0.5. 
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Specimen D5: 
 
Average Porosity = 0.146 
Measured Elastic Modulus = 87 GPa 

Specimen H7: 
 
Average Porosity = 0.144 
Measured Elastic Modulus = 142 GPa 

Figure 31  Porosity distributions in slices along gage section in two specimens having the 
same average porosity and measured E differing by about 40%. 
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Figure 30  Predicted strain from ABAQUS FEA simulations versus measured strain with 
simulations using E as function of porosity from Equation (8) with n = 2.5, and critical 
porosity fraction N0 = 0.5.  Line of perfect correspondence and ≤10% band also plotted. 
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Figure 32  Predicted versus measured elastic modulus with two specimens shown in Figure 31 
indicated.  Line of perfect correspondence and ≤10% band also plotted. 
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