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Abstract 

In recent years, the development of computational models to predict casting 

distortions has led to improvements in efficiency and accuracy over traditional pattern 

design that relies on shrink rules. Unfortunately, the determination of pattern dimensions 

using simulation remains a trial-and-error process that requires several design iterations. In 

this study, the finite element inverse elastoplastic analysis is utilized to calculate the pattern 

geometry in a single iteration for a plastically deformed (i.e., distorted) body. A simple bar 

is analyzed first to show proof of concept. Then, a simplified casting system is simulated 

to demonstrate the feasibility of the inverse method for production castings. For each case, 

an inverse simulation is performed first to calculate the pattern shape. This configuration 

is then used as the input geometry for a forward simulation, which is shown to successfully 

recover the original as-cast shape used for the inverse analysis. Through this sequence, the 

inverse deformation method is shown to be a viable technique for the determination of 

pattern allowances in production castings.  
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1. Introduction 

Casting distortions are unintended deformations that occur during metalcasting. 

Their presence, which creates dimensional inaccuracies in the as-cast part, is attributed to 

mechanical stresses, thermal stresses, or some combination of both. Mechanical stresses 

arise from contact interactions between the casting and mold (e.g., a sand core restrains 

thermal contractions in the casting), whereas thermal stresses are the result of uneven 

cooling in the casting and lead to spatially varying thermal strain rates. For both cases, 

permanent (i.e., plastic) deformations occur when stress levels exceed the yield strength of 

the casting material. As a result, feature dimensions may not adhere to customer 

specifications. For this reason, pattern design is inherently an iterative process for which 

the patternmaker alters the pattern through a trial-and-error process until the desired 

dimensions are achieved. For each iteration, a casting is produced and then evaluated 

through a dimensional analysis. Such a design strategy is not only expensive (due to the 

high energy costs associated with casting) but also time-consuming. Furthermore, the 

efficiency of the process heavily relies on the patternmaker’s expertise, which can vary 

considerably. 

In recent years, the remarkable increase in computer speeds has coincided with 

advancements in computational codes suitable for predicting stresses and distortions during 

casting. Such progress has paved the way for a paradigm shift from physically to digitally-

based design within industry. Today’s casting simulations can be performed with good 

accuracy and in a fraction of the time needed to produce and analyze a physical casting. As 

a result, considerable time and cost savings are realized. Moving forward, additional 

improvements in accuracy and efficiency can be expected to further increase the role 

computer simulation for pattern design.  

Despite the benefits, digitally-based pattern design is similar to its physical 

counterpart in that both are iterative procedures. This is due to the fact that the kinematics 



of finite element codes are typically implemented in a forward framework. In other words, 

the finite element simulations start from a reference configuration (i.e., pattern shape) and, 

based on the loading history, calculate the deformed configuration (i.e., as-cast shape). 

Hence, pattern design, whether physically or digitally-based, remains a trial-and-error 

approach whose efficiency is predicated on the expertise of the patternmaker/design 

engineer. 

Pattern design belongs to a class of engineering applications in which the unknown 

reference geometry must be determined. To this end, Yamada [1] and Govindjee et al. [2] 

pioneered an inverse method that directly solves the equilibrium boundary condition for an 

elastic material. These seminal studies spurred the development of inverse finite element 

implementations that were capable of determining the reference configuration firstly for 

elastic deformations and later for elastoplastic deformations. A comprehensive review of 

the formulation for elastic deformation is given by Lu and Li [3]. Unfortunately, a caveat 

for the elastoplastic problem is that the deformations are history dependent and thus, the 

inverse deformation problem is generally ill-posed. A unique solution is only achieved 

when the loading history or the plastic strain in the deformed state is known, as 

demonstrated by Germain et al. [4]. The authors also proposed a recursive procedure 

wherein the deformation and plastic variables were determined separately through nested 

iterations of inverse and forward analyses [5]. Lu and Li [6] further demonstrated that an 

inverse boundary value problem gives reasonably accurate results for both displacement 

and plastic variables, provided the deformations are moderately large and the loading 

history is nearly monotonic. In general, casting processes can be expected to fall under 

these conditions, as 1) loading is predominantly driven by (nearly) monotonic cooling and 

2) the associated thermal strains induce dimensional changes typically on the order of a 

few percent. An exception occurs during solid state phase transformations, when 

transformation-induced volumetric expansion may lead to unloading. However, the inverse 

solution will be applicable as long as minimal plastic deformations occur during the 



transformation. 

In this study, the direct approach of inverse analysis developed by Lu and Li [6] is 

utilized for plastically deformed (i.e., distorted) material bodies in order to determine 

pattern dimensions for a steel casting. A simple rectangular bar is analyzed first to 

demonstrate the feasibility of the technique. Then, elastoplastic deformations are calculated 

for a realistic casting geometry consisting of a steel plate outfitted with risers and a gating 

system. The desired as-cast shapes are shown Figure 1 and serve as inputs for the inverse 

analysis. The mold is excluded from the stress analyses in order to prevent numerical 

difficulties encountered with contact interactions between the casting and mold. 

Consequently, deformations in this study are induced exclusively by thermal stresses. For 

 Figure 1. Geometries for the bar (a) and plate (b) castings. Dimensions in mm.  

(b) Plate Casting 

(a) Bar Casting 

300 

10 

25 

25 

chill 

100 

25 

25 600 

100 

100 

100 

100 

25

750 



the simulations, a sequential thermal-mechanical analysis is performed in which the 

transient temperature fields are calculated first using casting simulation software and then 

used as inputs for the forward and inverse stress analyses. Loop tests are conducted for the 

analyses, in which the inverse problem is solved first to determine the pattern shape, which 

is subsequently used as the input geometry for the forward analysis. The inverse technique 

is evaluated by the forward problem’s ability to recover the original geometry used for the 

inverse analysis. Finally, the accuracy of the inverse elastoplastic solution is evaluated 

through an error analysis. 

2.  Background and previous work on casting distortions 

This work builds upon previous studies that have been performed over the past 

decade in the Solidification Laboratory at the University of Iowa. This section not only 

summarizes these studies but also provides the underlying motivation that demonstrates 

their necessity. 

Computer simulation software used for the purpose of predicting casting distortions 

is widely available for today’s casting engineer. In particular, the finite element method 

(FEM) is the preferred method used by commercial software companies (e.g., 

MAGMASOFT® [7]) to calculate stresses and distortions during casting. When used in this 

manner, an FEM simulation is commonly referred to as a stress analysis. FEM is a well-

established and powerful technique that can be used to simulate casting processes in a 

fraction of the time and cost needed to produce and analyze a physical casting. Today’s 

FEM software packages are also user-friendly and can be learned with minimal effort.  

Despite these benefits, care must be taken in order to ensure the accuracy of the 

FEM simulations. For example, the constitutive (i.e., stress-strain) relations used in the 

computational model must consider all relevant physical phenomena that contribute to 

distortions. Failure to do so results in simplified models with limited predictive capabilities. 

Also, the simulations must utilize realistic material properties and constitutive model 



parameters, which necessitates an extensive calibration procedure. This procedure 

typically involves performing experiments, in which measurements are taken during 

casting (i.e., in situ measurements). By doing so, the data inherently captures the effects of 

the harsh environment encountered during casting, which may not be possible in a 

laboratory setting. For this reason, model calibration using in situ measurements is 

preferable, as it will likely lead to better simulation accuracy than similar calibration with 

laboratory (i.e., ex situ) measurements. Once the experimental data has been collected, the 

experiments are simulated and the predictive capability of the simulation is evaluated based 

on its ability to recreate the experimental observations. Any disagreements between the 

simulation and experimental results are subsequently minimized through careful alterations 

to the computational model.    

The large temperature range encountered during casting is also notable, as it 

influences the evolution of distortions in two ways. First, material properties vary with 

temperature. For example, the yield strength (σyield) of a low alloy casting is much greater 

at room temperature (σyield  ≈ 300 MPa) than it is at the solidus temperature (σyield < 5MPa). 

Thus, the magnitude of calculated distortions strongly depends on the temperature. Second, 

the accumulation of thermal strains during solidification and cooling is the driving factor 

that leads to mechanical and thermal stresses. Without thermal strains, castings would be 

distortion-free. For these reasons, the temperature histories of the casting and mold must 

be known prior to the FEM simulations. These can be determined by performing a heat 

transfer analysis, which calculates the temperatures at all times and locations during 

casting. The calculated transient temperature fields are then inputted into the stress 

analysis, which subsequently calculates stresses and distortions. This strategy, which is 

commonly referred to as a sequentially coupled thermal-mechanical stress analysis, was 

used for the studies described below. For each study, thermocouples were inserted in both 

the casting and mold in order to continuously record temperatures during the casting 

experiments. These measurements served as validation for the heat transfer simulations to 



ensure that realistic temperature fields were used for the stress analysis.   

The ultimate objective for this body of work was to calibrate a computational model 

that can accurately predict distortions during sand casting of ASTM A216 grade WCB 

steel. This was accomplished through separate studies that focused on the steel [8] and sand 

mold [9,10]. For the initial study, Galles and Beckermann [8] cast a steel bar in a sand mold 

to calibrate constitutive parameters for an elasto-visco-plastic model. A schematic of the 

experimental setup is shown in Figure 2. Using a restraint frame outfitted with a turnbuckle, 

an axial force was applied to the bar beginning near the end of solidification and continuing 

throughout cooling in order to induce distortions. The axial force and displacement were 

continuously measured with load bolts and LVDTs (Linear Variable Differential 

Transformers), respectively. In total, five experiments were performed. For each 

experiment, the applied axial force was varied with time and magnitude to create different 

loading histories, which in turn produced different amounts of distortions. The initial FEM 

simulations, for which constitutive model parameters were estimated using well-known 

data from the literature [11], generally under-predicted the distortions. Through an  

 
Figure 2. Schematic of the experimental setup for the strained bar experiments. Dimensions 
in mm.  



adjustment to a single constitutive parameter (i.e., strain rate sensitivity exponent, m), the 

simulations successfully predicted the evolution of the observed deformations. An example 

of this adjustment procedure can be seen in Figure 3. For this experiment, the turnbuckle 

was engaged at approximately 200 s, which produced an axial force that increased the axial 

length from 200 s to 250 s (see the “measurement” curve in Figure 3(a)). Using model 

parameters estimated from [11], the initial simulation far under-predicted this deformation. 

After an adjustment to the strain rate sensitivity exponent, however, the simulation 

accurately predicted the observed evolution of the bar’s axial length. The initial (i.e., 

estimated) and adjusted strain rate sensitivity exponents are shown in Figure 3(b). A final 

comparison between measured and predicted axial length changes for all experiments, as 

well as their corresponding adjusted strain rate sensitivity exponents, are shown in Figures 

4(a) and 4(b), respectively. Using these adjusted strain rate sensitivity curves as a guide, a 

final representative curve was constructed.  

 

Figure 3. Example of a comparison between measured and predicted changes in axial length 
(a). Variations in the simulation results are due to the different strain rate sensitivity exponents 
shown in (b). 
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Next, the mechanical behavior of the mold was investigated. Galles and 

Beckermann [9] utilized a core to cast a hollow steel cylinder in a sand mold. The casting 

geometry and experimental schematic are depicted in Figure 5. Separate experiments were 

 

Figure 4. Comparison between measured and simulated axial length changes for all 
experiments (a) when using the adjusted strain rate sensitivity exponents in (b). 

  

(a) Axial length change (b) Strain rate sensitivity exponent 

Figure 5. Casting geometry (a) and experimental schematic (b) for the cylinder experiments. 
All dimensions are in mm. 
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conducted using silica and zircon core sands and each was repeated four times. 

Immediately after pouring, the core rapidly heated and expanded, causing an increase of 

the cylinder’s inner diameter. The evolution of this expansion was measured at the 

cylinder’s mid-height and is shown on complete and 600 s time scales in Figures 6(a) and 

6(b), respectively. During the experiments that used bonded silica sand for the cores (see 

the family of red curves in Figure 6), the inner diameter increased by approximately 2 mm, 

which was roughly double the observed increase for the experiments that used zircon sand 

(blue curves). This discrepancy was attributed to large differences between the thermal 

expansion coefficients for the two sands. It was found that during the experiments, the 

cylinder’s inner diameter only increased during solidification, after which the casting 

contained the sufficient strength to prevent any further core expansion. This behavior is 

illustrated by Figure 6(b), as the maximum change in inner diameter occurs prior to 

complete solidification. Any subsequent changes in the inner diameter were due to thermal  

 

Figure 6. Comparison between measured and simulated axial length changes for all 
experiments (a) when using the adjusted strain rate sensitivity exponents in (b). 

  

(b) 600 s time scale Complete time scale 



strains only; no distortions were measured after solidification. The initial FEM simulations 

revealed that thermal expansion of the core alone was insufficient to predict the observed 

core expansion. This prompted the authors to consider sand dilation, which is the 

volumetric expansion of the sand aggregate when subjected to shear stresses. Essentially, 

the voids between individual sand grains grow larger during dilation, which increases the 

total volume. This behavior is illustrated in Figure 7. After dilation was incorporated into 

the simulation model, the observed inner diameter expansion was accurately predicted, as 

shown by the black curves in Figure 6. In addition, the measured pattern allowances for 

the cylinder’s inner diameter were also accurately predicted (see Figure 8). Notably, the 

largest inner diameter expansion (i.e., smallest pattern allowances) occurred at the mid-

height of the cylinder. This resulted in a barrel-shaped profile along the inner diameter’s 

height, which can be explained by local solidification times. The ends of the cylinder 

solidified relatively fast, which reduced the duration of core expansion (recall that the core 

only expanded during solidification). 

 
Figure 7. Dense sand dilates (i.e., volumetrically expands) when subjected to a shear force, 
Fshear, due to void growth between grains. 

(a) Initial state of dense sand (b) Dilated state 



 

Despite its findings, Reference [9] calibrated a constitutive model for bonded sand 

only at early times, i.e., before complete solidification. Indeed, mold restraint after 

solidification can also generate considerable distortions throughout the casting. In order to 

calibrate the sand model after solidification, Galles and Beckermann [10] cast a U-shaped 

bracket using the geometry and experimental setup shown in Figure 9. Note that the “outer  

 

Figure 8. Final comparison between measured and predicted pattern allowances for the silica 
and zircon core experiments. 

Figure 9. Casting geometry (a) and experimental schematic (b) for the bracket experiments. 
All dimensions are in mm. 

(a) Casting geometry (b) Experimental schematic 



 

length” dimension in Figure 9(b) was used to characterize distortions for this study. During 

the experiments, thermal contractions in the bracket were restrained by the inner mold. As 

a result, the bracket legs distorted outward. A simulation of this behavior is shown in Figure 

10, which also reveals separation of the outer mold. Shortly after solidification, stresses in 

the outer portion of the mold led to fracture at its mid-plane. Unless a fracture plane was 

incorporated into the simulation model, the outer mold restrained the pushout of the bracket 

legs, resulting in the under-prediction of distortions. In general, the measured distortions 

varied between the experiments, as shown in Figure 11. In particular, the change in outer 
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Figure 10. Predicted von Mises stresses in the bracket. Distortions are magnified 5x. 

Figure 11. Comparison between the measured and predicted (black curves) changes in outer 
length after adjustments to the packing density (ρb) and tensile strength (σmax) of the mold. 

(a) Complete time scale (b) 1000 s time scale 



length at 1000 s ranged from 0.8 to 1.75 mm (see Figure 11(b)). In order to predict these 

differences, the packing density (ρb) and tensile strength (σmax) of the mold were adjusted 

for each experiment. The sensitivity of predicted distortions on packing density (which 

ranged from 1670 – 1710 kg/m3) is remarkable. Such a result demonstrates the importance 

of consistent mold packing. By matching the simulated and measured evolution of the outer 

length for each experiment, the pattern allowances at the feature locations in Figure 12(a) 

were also predicted accurately (see Figure 12(b)), regardless of the wide range of 

measurements (-2% < PA < 6%).Through the findings of [9] and [10], a constitutive model 

for bonded sand was calibrated. 

Once models for the steel and sand were calibrated, Galles and Beckermann [12] 

demonstrated the predictive capability of the model through a case study. A dimensional 

analysis for a production steel casting was provided from an industry partner, for which 

pattern allowances were measured at the ten feature locations shown in Figure 13.  

 

 

Figure 12. Comparison between the measured and predicted pattern allowances. 
  

(a) Feature locations (b) Pattern Allowances 



 

 

This analysis revealed a range distortions, some of which were both greater than and less 

than the free shrink pattern allowance (2.1%). Nonetheless, the FEM simulation predicted 

these distortions with good accuracy, as illustrated by the bar graph in Figure 14. The 

distorted shape calculated by the simulation is shown in Figure 15, which overlays the 

transparent pattern shape to aid in visualization.  

The aforementioned studies revealed several important findings. By incorporating 

these findings into the computational model, it was demonstrated that the FEM simulations  

Figure 13. Casting geometry and feature lengths for production steel casting. 



 

 

can accurately calculate distortions for castings of arbitrary size and shape. It is envisioned 

that studies such as these will incite confidence for computer simulation and ultimately 

spur the transition from physically to digitally-based pattern design. 

3. Inverse elastoplastic problem and properties 

The inverse elastoplastic problem presented in this section calculates the pattern 

geometry from the known as-cast shape. The model reviewed here is the general quasi-

static formulation presented by Lu and Li [6] with the following simplifications. Due to 

Figure 14. Comparison between the measured and predicted pattern allowances for the 
features shown in Figure 13. 

Figure 15. The distorted shape at room temperature was calculated by the FEM 
simulation and is overlaid on the pattern shape. Distortions are magnified 5x. 



the relatively small casting sizes, body forces will have a negligible impact on distortions 

and therefore, are not considered. Also, the exclusion of the mold from the mechanical 

problem precludes the need to include surface tractions in the formulation.  These 

simplifications reduce the boundary value problem to  

u

jij

Ω

Ω





on    

in   0,

ΦΦ


 (1) 

where σij is the Cauchy stress and Φ  is a prescribed displacement on boundary ∂Ωu . Eq. 1 

determines an inverse motion 3: RΒΩ Φ for the sought reference configuration, Β , 

when starting from the given current configuration, Ω. Stated another way, the inverse 

deformation Φ (x, t) describes the correspondence between the current coordinate x and its 

reference coordinate X. Such a relation is the kinematic inverse of the usual forward 

deformation φ (X, t) of a material point that progresses from the reference coordinate to the 

current coordinate. Similarly, the inverse deformation gradient f = ∂x Φ (x, t) is the kinematic 

inverse of the forward deformation gradient F = ∂X φ (X, t). Additional details, including the 

finite element implementation, can be found elsewhere [6]. 

During the inverse solution procedure, the material response obeys a Hencky 

constitutive relation, which is very close to a linear elastic response at small strains, 

provided the stress levels do not exceed the yield strength of the casting. For the elastic 

properties, a constant value of 0.3 was specified for Poisson’s ratio and a temperature-

dependent Young’s modulus, shown in Figure 16(a), was taken from Koric and Thomas 

[13]. For the case of yielding, the following elasto-plastic constitutive relation is invoked:  

 np  10  (2) 

where σ is the von Mises stress, σ0 is the initial yield stress, εp is the equivalent plastic 

strain, and n is the hardening exponent. Eq. 2 is a simplified form of the elasto-visco-plastic 

constitutive relation used by Galles and Beckermann [8] to calculate stresses and 



 

Figure 16. Inputs for the stress analysis included Young’s Modulus (a), the linear thermal 
expansion for steel (b), and the initial yield stress and hardening exponent (c).  
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distortions during steel casting. The simplification involves using a representative constant 

strain rate to replace the rate dependent term in the original elasto-visco-plastic relation. 

The remaining temperature-dependent model parameters (σ0 and n) in Eq. 2 were 

determined using a Levenberg-Marquardt non-linear least squares algorithm and are shown 

in Figure 16(b). A sufficient number of data points for this algorithm were generated at 

various temperatures from the calibrated model of Galles and Beckermann [8] using a 

representative strain rate of 1×10-5 s-1. Since the constitutive parameters were based on a 

previously calibrated casting model, the simulations in this study can be expected to give 

reasonable predictions. Thermal strains were calculated using the temperature-dependent 

linear thermal expansion coefficient shown in Figure 16(c). This curve was calibrated from 

the thermal contraction data of an unrestrained steel bar [8].  

4. Numerical examples 

4.1 Introduction 

Casting processes occur over large temperature ranges, which induce thermal 

strains that may lead to considerable stresses and associated distortions. As previously 

stated, the present study only considers thermal stresses that are created by uneven cooling 

in the casting and not mechanical stresses caused by contact interactions between the 

casting and mold. For simple casting geometries without internal features (e.g., holes), 

minimal mechanically-induced distortions can be expected after solidification, as the 

casting quickly gains the necessary strength to prevent any distortions created by mold-

metal interactions [9]. This rationale motivated the designs of the bar and plate casting 

geometries shown in Figure 1(a) and 1(b), respectively. Dimensions in the figures are 

shown in mm. For the bar, preliminary heat transfer simulations revealed nearly constant 

cooling. Therefore, a chill was added to the bottom of the bar in order to generate 

directional cooling and induce ample thermal stresses. Such a strategy was not needed for 

the plate casting system, whose inclusion of simplified risers and a gating system produced 



the varying section thicknesses necessary to naturally create uneven cooling. 

The numerical examples presented in this section were conducted utilizing a 

sequential thermal-mechanical coupling. Heat transfer simulations were performed first to 

calculate the transient temperature fields, which were then used as inputs for the forward 

and inverse stress analyses. A loop test served to evaluate the inverse method. For this test, 

the inverse analysis was performed first to determine the pattern shape, which was 

subsequently used as the input geometry for the forward analysis. Validation of the inverse 

technique is based on the loop test’s ability to recover the initial geometry used for the 

inverse analysis.  

4.2 Heat transfer simulations 

Spatial temperature gradients (i.e., uneven cooling) within the castings are essential 

for this study because they drive the thermal loading that generates distortions. Without 

them, deformations caused only by stress-free thermal contractions, in which case all 

dimensions will adhere to the patternmaker’s shrink rules. Temperature fields were 

calculated using the casting simulation software MAGMASOFT® [7]. In order to generate 

realistic casting temperatures, the bonded sand mold was included in the simulation model. 

Simulation inputs included thermophysical properties for the mold and casting, solid 

volume fraction during solidification, and latent heat of solidification. In addition, the 

interfacial heat transfer coefficient must be specified. This parameter accounts for the air 

gap formation between the casting and mold and thus, allows for decoupling of the thermal-

mechanical problem. All inputs, excluding the latent heat of solidification, are temperature-

dependent. The calibration procedure for the current heat transfer model, as well as the 

aforementioned inputs, can be found in Galles and Beckermann [14]. Due short pour times, 

mold filling had a negligible impact on the calculated casting temperatures and therefore, 

was not included in the simulations.  

Temperature fields at various times are shown at the mid-plane of the bar and plate 



castings in Figure 17. For the bar casting (see Figure 17(a)), the calculated temperatures 

are nearly isothermal at t = 10 s. At t = 41 s and t = 60 s, however, chill-induced spatial 

temperature gradients that are mostly parallel to the horizontal plane can be seen. It will be 

shown in the following section that these gradients generated a bending moment in the bar.  

After only t = 1 min 32 s, however, the gradients are much less prominent, as temperatures 

tend towards an isothermal state. Finally, at t = 4 min 6 s, temperature variations can no 

longer be seen in the bar. Consequently, minimal bending of the bar caused by thermal 

stresses can be expected after this time. 

Due to its larger size, the cooling times in the plate casting are significantly longer 

than those in the bar, as shown in Figure 17(b). Regardless, spatial temperature gradients 

can again be seen throughout the casting, most notably at t = 5 min and t = 21 min. After 

these times, the plate temperature fields are nearly isothermal. Contrary to the bar casting, 

however, variations in section thickness throughout the plate geometry naturally induced 

spatial temperature gradients. In particular, the risers are chunky and formed hotspots that 

cooled slowly. Conversely, the gating cross section is small in comparison to the other 

components of the casting system and therefore cooled relatively fast. This observation is 

notable, because the cooling patterns in the plate casting will closely resemble those that 

can be expected in a production casting. Thus, Figure 17(b) illustrates how essential 

components of a casting system (e.g., gating and risers) inherently generate uneven cooling 

that can lead to distortions.  

The calculated temperature fields were written at a sufficient number of time steps 

to ensure a smooth temperature profile at all material points. The results were then copied 

onto the finite element mesh used for the stress analysis. 



 

4.3 Stress simulations 

3D Stress simulations were performed using the general purpose finite element 

code FEAP. In order to prevent rigid body translations and rotations, minimal boundary 

conditions were specified at the mid-length of both castings, which assured symmetric 

Figure 17. Predicted temperatures at the casting mid-plane are shown at various times for 
the bar (a) and plate (b) castings.  
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deformations about the casting mid-plane. Due to its larger size, advantage was taken of 

the plate symmetry and only ¼ of the geometry was modeled. First order brick elements 

were used for the simulations.     

Loop tests were conducted to evaluate the inverse solution. These tests involved 

performing an inverse stress analysis first in order to determine the pattern geometry, which 

was then used as the input geometry for the forward stress analysis. If successful, the 

forward analysis will recover the initial geometry used for the inverse analysis within a 

reasonable level of accuracy. Both analyses commence from an initial state without stresses 

or plastic deformations and are prescribed the same loading (i.e., thermal) history.  

In order to quantify differences between the forward and inverse analyses, the 

following metrics were adopted. A configuration error,  conferr , evaluated differences 

between calculated inverse and forward displacements and was computed by normalizing 

differences in the current position x by the forward displacement u: 

   100% 
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    (3) 

In Eq. 3, xInverse refers to the input geometry for the inverse simulation, whereas xForward 

relates to the calculated coordinates of the forward simulation. In addition, a scaled error 

norm,  err , was computed for the equivalent plastic strain and von Mises stress using the 

following relation: 
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In Eq. 4,    represents the quantity of interest (i.e., equivalent plastic strain or von Mises 

stress) calculated from the forward analysis and    is the difference between the forward 

and inverse solutions.  

In addition to the computed errors, the final vertical profile of the casting’s top edge 



is plotted to help the reader visualize the deformations. Also, the temporal evolution of 

vertical displacement for a single point located at the upper left corner of each casting is 

plotted. 

3.3.1 Bar casting 

The loop test for the bar casting commenced with an inverse analysis, which 

calculated the configuration shown in Figure 18(a). Distortions are enhanced 20x to aid 

visualization. Recall that the input casting geometry for the inverse simulation is shown in 

Figure 1(a). Although it was not included in the stress analysis, the chill induced uneven 

cooling that led to an upward distortion of the bar ends. Keep in mind that this deformation 

was calculated within the inverse framework and is therefore reverted. In reality, the ends 

of a physical bar produced under the present conditions will distort downward. This 

behavior is easily confirmed through a forward stress analysis. In a similar vein, the usual 

thermal contractions that occur during casting are manifested as expansions for the inverse 

problem. For example, the calculated bar length in Figure 18(a) spans from -153.15 mm to 

153.15 mm, a total of 306.3 mm.  This value exceeds the input geometry length by 6.3 mm 

and corresponds to the unrestrained (i.e., free shrink) pattern allowance of 2.1% for a low 

allow steel. Thus, the inverse technique accounts for both mechanical and thermal strains 

to determine a pattern shape that can be expected to produce the as-cast geometry shown 

in Figure 1(a). For the second part of the loop test, the pattern shape determined by the 

inverse analysis (Figure 18(a)) was used as the input geometry for the forward analysis, 

which then calculated the shape shown in Figure 18(b). This configuration appears to be 

similar to the original input geometry shown in Figure 1(a) that was inputted into the 

inverse analysis.  

The calculated bar configurations in Figures 18(a) and 18(b) were further analyzed 

by plotting the vertical position of the bars’ top edges as a function of axial position in 

Figure 18(c). The reference lines in Figures 18(a) and 18(b) represent the zero vertical  



 

position. For the inverse analysis (blue curve), the top edge generally increases from an 

initial constant vertical position of 25 mm, which corresponds to the input geometry shown 

in Figure 1(a). This increase is due to a combination of thermal strains and distortions. The 

horizontal dashed line in Figure 18(c) represents the vertical increase of the top edge due 

to thermal strains for the inverse analysis. Deviations from this line represent distortions, 

which increase monotonically from zero at axial position = 0 to a maximum value at the 

bar ends. The increased bar length calculated by the inverse analysis due to thermal strains 

(a) Inverse Analysis 

Figure 18. Bar configurations calculated by the inverse (a) and forward (b) simulations. The 
vertical position along the top edge of the bars is plotted as a function of axial position in (c). 
A 20x deformation factor is used in (a) and (b). 
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is also apparent in Figure 18(c), as the inverse analysis curve extends beyond the two 

vertical dashed lines that represent the original bar length.  

The most important takeaway from Figure 18(c) is that the configuration calculated 

by the forward analysis recovers the top edge dimensions of the bar geometry inputted into 

the inverse analysis. Specifically, the 300 mm bar length and constant vertical profile of 25 

mm for the top edge is identical for both geometries. Since the deformation for the bar is 

relatively simple, recovery of the top edge can be expected to result in recovery for the rest 

of the bar. 

The temporal evolution of vertical displacement for a single point at the upper left 

corner of the bar is plotted on complete (30,000 s) and 200 s time scales in Figures 19(a) 

and 5(b), respectively. These plots demonstrate that for all times, the inverse and forward 

evolutions are equal in magnitude but opposite in sign. Thus, at any given time step, the 

forward calculation recovers the original geometry used for the inverse simulation. The 

forward curve provides a physical interpretation of the evolution (recall that the inverse 

simulation produces unphysical results). The forward curve begins to decrease downward 

at approximately 10 s and reaches a minimum value of -2.15 mm at 45 s. This sharp 

downward deflection is due to rapid cooling and solidification at the bottom of the casting, 

which is not only accompanied by an increase in strength but also triggers the onset of 

thermal contraction. Meanwhile, the upper portion of the bar is still mostly liquid and 

therefore, relatively weak. As a result, thermal contractions in the bottom portion of the bar 

create a bending moment that easily distorts the bar ends downward while also plastically 

deforming solidified regions in top of the bar. As the solidification front progresses upward, 

the upper portion of the bar gains strength and also begins to thermally contract. This 

counteracts the bending moment that caused the initial downward distortion. Consequently, 

the bar ends deflect upward, which is seen as an increase in vertical displacement from 45 

s to approximately 150 s. After 150 s, small negative changes in forward displacement are 

due to additional thermal strains, as minimal temperature gradients at these later times  



 

cannot generate the thermal loading needed to produce distortions. The final bar shape is 

characterized by a slight downward distortion at its ends, which is manifested as a negative 

vertical displacement at 30,000 s for the forward curve. This final shape was anticipated 

due to the generation of plastic strains at early times that increased the length at the top of 

the bar and prevented the bar ends from returning to their original vertical position. An 

additional feature of the curves in Figure 19(a) is the small “wiggle” seen at 1000 s, which 

is attributed to a brief volumetric expansion that accompanies the decomposition of 

austenite to ferrite and cementite.  

Figure 19. Vertical deflection at the upper left corner of the bar plotted as a function of time on 
complete (a) and 200 s (b) time scales. The configuration error is shown in (c). 
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The elemental configuration error is shown on a contour map in Figure 19(c). The 

largest errors are seen at the ends of the bar, which correspond to the regions of largest 

deformation. However, the maximum configuration error for the bar is less than 0.04%. 

Furthermore, the average configuration error over the entire bar geometry is 0.01% (see 

Table 1). Such small differences in configuration can be neglected for all practical 

purposes. Accordingly, the loop test validates the finite inverse deformation analysis for 

the bar casting. 

Contour plots of von Mises stress and equivalent plastic strain are plotted for the 

inverse and forward simulations and are shown with their associated errors in Figure 20. 

Errors are shown on the desired as-cast configuration. In general, the von Mises stress and 

equivalent plastic strain contour maps are similar for both for the forward and inverse 

simulation. The maximum error values are 6.9% and 1.5% for the von Mises stress and 

equivalent plastic strain, respectively. However, the average respective errors over the 

entire domain are only 0.23% and 0.29% for von Mises stress and equivalent plastic strain. 

 
Table 1. Average errors of configuration, 
equivalent plastic strain, and von Mises stress. 

Case err(conf) err(ep) err(qv) 

Bar 0.01% 0.29% 0.23% 

Plate 1.78% 2.38% 6.56% 

 

3.3.2 Plate casting 

The bar casting in the previous section was shown to recover the desired as-cast 

shape through successive inverse and forward stress simulations. Such a simple geometry, 

however, is not representative of a typical foundry casting. In reality, casting systems 

contain features (e.g., gating, risers) that inherently create complex geometries, which in 

turn may lead to uneven cooling that generates distortions.  Therefore, the plate casting  



 

model in Figure 1(b) was created to provide a realistic (albeit simplified) casting system to 

which the finite element inverse deformation analysis could be applied.  

The inverse analysis was again performed first. It was previously shown during the 

heat transfer analysis that the gating and risers naturally created uneven cooling and 

associated thermal loading for the plate casting system. Such loading resulted in the 

calculated configuration shown in Figure 21(a). Since deformations were symmetric about 

the vertical plane, only one half of the geometry is shown. In general, the deformation 

behavior for the plate resembles that of the bar. Specifically, 1) the ends of the plate are 

distorted upward and 2) the casting length increases. The upward distortion is expected 

because the cooling trends are the same for both castings, i.e., the bottom cools faster than 

the upper portion of the casting. The length increase, as previously discussed, is due to 

calculation of thermal strains in the inverse framework. In addition to distortions in the 

Figure 20. Von Mises stresses, equivalent plastic strains, and associated errors for the bar. 
A 20x deformation factor is used in (a) and (b). 
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plate, the gating is also distorted upward at its mid-length. Despite this additional 

complexity, the configuration calculated by the forward simulation (see Figure 21(b)) once 

again recovers the input geometry that was used for the inverse analysis. The final vertical 

displacement at the top edge for both configurations is plotted as a function of axial position 

in Figure 21(c). As in the bar example, thermal and plastic strains cause the vertical position 

of the top edge to evolve from a constant vertical height of 25 mm to the profile shown by 

the blue curve for the inverse simulation. The forward simulation subsequently recovers 

the constant vertical profile of 25 mm, as demonstrated by the red curve in Figure 21(c). 

 

(a) Inverse Analysis 

Figure 21. Plate configurations calculated by the inverse (a) and forward (b) simulations. 
The vertical position along the top edge of the plates is plotted as a function of axial 
position in (c). A 10x deformation factor is used in (a) and (b). 
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The temporal evolution of vertical displacement for a point at the top left corner of 

the plate is plotted on complete (80,000 s) and 5000 s time scales. Although the time scales 

and magnitudes of displacement are different, characteristic features of these plots 

resemble those of the bar casting. In particular, the initial decrease in forward displacement 

(to a minimum value at 675 s) is followed by an increase (until approximately 5000 s), 

after which the decomposition of the austenite phase is accompanied with a volumetric 

expansion that causes the plate ends to displace downward (from 5000 s to 8000 s). After 

the phase transformation is complete, additional thermal contractions cause the plate ends 

to gradually displace upward until 80,000 s. The configuration error shown in Figure 22(c)  
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Figure 22. Vertical deflection at the upper left corner of the plate plotted as a function of time 
on complete (a) and 5000 s (b) time scales. The configuration error is shown in (c). 
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is larger than that for the bar but still reasonably small (< 2%). The average configuration 

error for the entire plate casting system (1.78%) is summarized in Table 1. 

Contours of von Mises stress, equivalent plastic strain, and associated errors are 

shown in Figure 23. Errors are plotted on the desired as-cast configuration. Although the 

forward and inverse contours again appear to contain no discernable differences, the error 

calculations reveal local differences that are less than 10% and 4% for von Mises stress 

and equivalent plastic strain, respectively. The average errors over the domain, shown in 

Table 1, are 6.56% and 2.38% for von Mises stress and equivalent plastic strain, 

respectively. 

 

Figure 23. Von Mises stress, equivalent plastic strains, and associated errors for the plate 
casting. A 10x deformation factor is used in (a) and (b). 
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In general, the computed errors for the bar were smaller than those for the plate. A 

likely explanation for this difference can be found by comparing the maximum vertical 

deflection at the ends of the castings. The end of the bar and plate castings distort to 

maximum absolute values of 2.15 mm (at 45 s) and 5.93 mm (at 675 s), respectively (see 

Figures 19(b) and 22(b)). Therefore, the material points for the plate generally traveled a 

larger displacement path than those for the bar. For this reason, larger errors can be 

expected in the plate casting. Regardless, the configuration errors for both castings are 

reasonably small, as the finite inverse deformation analysis calculated pattern shapes with 

excellent accuracy. 

5. Conclusions 

Casting distortions arise during metalcasting and create dimensional inaccuracies 

in the as-cast part. Their presence necessitates a costly trial-and-error pattern design 

process that extends lead times and reduces efficiency. The present study explores the 

viability of the finite element inverse deformation analysis to calculate pattern allowances 

for steel castings. The underlying concept behind this technique involves finding, by 

solving a boundary value problem, a deformation that is the kinematic inverse of that for 

the usual forward analysis. As a result, the inverse analysis essentially works backward, 

starting from the desired as-cast configuration, to determine pattern dimensions in a single 

design iteration.  

The inverse deformation analysis was evaluated through a loop test, which involved 

performing an inverse simulation first using the desired as-cast configuration as input. The 

resulting calculated pattern shape was then inputted into a forward analysis, which 

attempted to recover the original geometry used for the inverse analysis. An important 

caveat for this recovery concerns the elastoplastic constitutive relation used in this study. 

The calculation of plastic deformations will generally lead to different loading paths 

between the forward and inverse problems. However, since plastic strains (i.e., distortions) 



for casting processes are typically on the order of a few percent, only marginal differences 

were expected between the inverse and forward loading paths. This was indeed the case 

for the plate casting system, which contained a moderately complex geometry and 

deformation history. Nonetheless, the loop test accurately recovered the original geometry, 

as the average difference between inverse and forward configurations was less than 2%.  

The finite element inverse deformation analysis potentially provides an efficient 

means to calculate pattern dimensions. Although this study represents an important step 

towards achieving this goal, further work is needed before this technique can be applied to 

production castings. Primarily, mechanical interactions between the casting and mold must 

be considered. Currently, the numerical difficulties associated with contact interactions 

prompted the authors to only consider distortions caused by thermal stresses. Overcoming 

this issue is paramount to the success of the inverse deformation analysis. It should also be 

noted that accuracy of the inverse analysis was evaluated based on comparisons to the 

forward analysis. Thus, the importance of the forward simulation’s predictive capability 

cannot be overstated. The present material model is based one that was previously 

calibrated for a low alloy steel using in situ data from casting experiments. If the finite 

element inverse deformation analysis is used for other casting materials, care must be taken 

to properly calibrate the associated material model parameters for the forward problem. 

Despite these concerns, the present results lend confidence to the inverse deformation 

analysis for its ability to ultimately determine pattern allowances accurately and with 

unprecedented efficiency. 
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