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TECHNICAL NOTE

INCORPORATION OF INTERNAL SUREACE RADIANT
EXCHANGE IN THE FINITE-VOLUME METHOD

C. Beckermann and T. E Smith
Departmenr of Mechanical Engineering, The University of Iowa, Iowa Ciry,
Towa 52242

INTRCDUCTION

Patankar [1] gives a background of the finite-volume method (FVM) for solving
fluid flow and heat transfer problems. The situation where radiant exchange exists be-
tween surfaces internal to the computational domain, however, was not considered by
Patankar. The purpose of this analysis is to derive a discretization procedure for the
energy equation, for applications involving surface radiant exchange. The new formula-
tion is compared to a more simple, but inaccurate, method of incorporating surface
radiation, and its applicability to a large variety of conduction/convection heat transfer
problems is discussed.

ANALYSIS

Consider Fig. 1, where control volume P is opaque and control volume E is
radiatively transparent. Control volume P has a net radiant heat flux g, leaving interface
e. Because of the radiant heat flux, alternative derivations for the discretization equa-
tions for nodes P and E must be made. In this derivation, the procedures and notation of
Chapter 4.2 in Patankar [1] are followed and the simple case of steady, one-dimensional
conduction and radiation (no heat generation) is considered. The distances between
nodal points E and P and W and P are denoted, respectively, by (6x), and (6x),. Let e
and w denote the interfaces between control volummes that are adiacent to P,

An energy balance on interface e states that

Kp Ke
) (Tp ~ T) + 7 Tg~T)-g =0 H

where kp and k; are the thermal conductivities of control volumes P and E, respectively,
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Fig. 1 Contro] volumes and interfaces.
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respectively. 7" denotes temperature. Note that (6x), = (8x),_ + (6x),. . Solving for T,
gives

_ &pl0x). ) Tp + kil (8). 4] T — g,

e (2}
s/ (8x).-1 + [kp/(85),.]
The energy balance for control volume P states that
ke (T, = Tp) + L (T —~ Tp) = 0 3)
G9.. ¢ 7 @0, A

Note that the expression for the heat flux on the east side is based on T, rather than on
Te. Therefore, the thermal conductivity in this term should be &,. The interfaciai ther-
mal conductivity k,, is calculated from the harmonic mean formula [1]

AR
kw=(i—+ kf) @
w P

where f,, = (6x),,_/{8x),,.. The expression for T, from Eq. (2) is inserted into Eq. (3) and
Eq. (4) is employed o yield

HPTP = GETE + awTW -+ Sr,P AxP (S)

The temperature coefficients are given by

k, k,
a e
T

© (6%,

g ap = ap + ay &)

and the source term due to radiation is
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As a result of the above substitution of the interfacial energy balance, Eq. (2), into Eq.
(3), the interfacial thermal, conductivity, &,, in Eq. (6) is given by a harmonic mean
formula analogous to Eq. (4). In other words, the inclusion of surface radiant exchange,
according to the present analysis, makes it mandatory to utilize the harmonic mean
formulation for the interfacial thermal conductivity, A similar derivation for control
volume £ yields the following radiation source term:

g i
S, = —
* Axp [(0%)e. hp{[kp/(85),_] + [Kp/(8%),,]1}

(8)

The analysis reveals that the temperature coefficients in the discretization equa-
tions do not contain the radiation term and are computed as derived by Patankar [1].
This property of the present formulation should prove to be useful in implementing
surface radiant exchange in existing finite-volume computer codes. Radiation appears,
however, as source terms in both discretization equations for the nodes adjacent to the
radiatively participating interface, as stated by Egs. (7) and (8). if k, = k. and {6x), _
{0x),, the source terms are equal to —¢,/2 Ax. These terms arise because of the influ-
ence of radiation on 7,. Because radiation changes T,, the conduction fluxes on both
sides of interface ¢ are modified. The use of the harmonic mean formulation for the
interface conductivities is reflected directly in the radiation source terms and yields
realistic results for k, # k. For example, if kg — 0 (i.c., the transparent medium is an
insulator), the source terms reduce to Sp = —q/AX, and S,p = 0, implying that
radiation acts as a source for the opaque material only, as it should. Equation (2) allows
for the calculation of 7, which is typically needed in computing the radiative flux g, on
interface e. This needs to be done iteratively because of the nonlinear dependence of Q,
on 7; linearization procedures could be worked out, but distract from the general nature
of the present formulation.

COMPARISONS

The present formulation for the incorporation of surface radiant exchange is exam-
ined using & simple one-dimensional test problem and is compared to (1) the exact
solution and (2) 2 more simple method for the inclusion of radiation. The test problem is
illustrated in Fig. 2 and consists of an infinite slab of an opague medium of thickness
AXp and thermal conductivity &, adjacent to an infinite slab of a radiatively transparent
medium of thickness AX, and thermal conductivity k.. The left and right sides of the
domain are isothermal at temperatures T, and T,, respectively. Heat conduction is one-
dimensional and steady. Radiant exchange exists between the interface that separates the
transparent and opaque slabs (denoted by e) and the right side of the domain (at T,). For
simplicity, the surfaces are taken as black, so that the net radiative flux leaving surface ¢,
q,, is given by

gr = o{Ti — T3 9

where ¢ is the Stefan-Boltzmann constant. The exact solution for the interface tempera-
ture, 7,, can be calculated from
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In the numerical solution of the test problem, a single control volume is assigned
to each slab, with the nodal points £ and E in the geomeiric center. A cloge exarmination
of the present formulation as well as our calculations reveal that the numerical solution
always coincides with the exact solution, which is expected.

In order to establish the utility of the present formulation in more detail, it is
compared to a more simple method of incorporating surface radiant exchange, This
more simple method (1) does not rely on the calculation of the interface temperature 7T,
[through Eq. (2)], but utilizes the nodal temperature in the opaque slab nearest to the
interface (i.e., Tp) in the calculation of the radiative heat flux g, and (2) allocates the
entire radiative heat flux to the opaque slab. This procedure may be justified by the fact
that the radiation is emitted/absorbed by the opaque slab. In the present notation, the
more simple method can be expressed as

T, = Tpin Bg. (9)

Sp=0 (1)

As before, the harmonic mean formula is utilized for the thermal conductivity at inter-
face e. Note that, in the absence of radiation, the more simple method does reduce to the
exact solution,

Comparisons are made for 7; = 400 K, T, = 300 K, and variable slab thick-
nesses and thermal conductivities. Results are presented in terms of the relative error
in Tp and T calculated using the more simple method (recall that the present formula-
tion presented in the previous section coincides with the exact solution for the test
problem). Figure 3 shows the error as a function of the slab thicknesses, with AX, =
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AXp = AX and kp = k; = 1.0 W/m K. As expected, the error in both Tpand T,
increases with increasing slab thicknesses. However, the error in 7 is about one order
of magnitude less than the error in T, and levels off fir AY > 0.1 m. Obviously, the
magnitude of the error would be different for other choices of T, and 75, but the trend
would be the same.

Figures 4a and 45 show the error in Tp and Ty, respectively, as a function of kp
and kp with AX, = AX, = AX = 0.0l m (a typical grid size). In Fig. 4a, the
transparent medium is an insulator (e.g., air) with &, = 0.01 W/m K. It can be seen
that the error in both 77, and Tz becomes relatively small for a thermal conductivity of
the opaque slab, k,, above 1.0 W/m K, because T, approaches T, for a high k,. On the
other hand, for a smaller k, the error in T, increases rapidly, indicating that the more
simple method of incorporating surface radiant exchange should not be used if the
opaque material is an insulator. The error in T stays relatively low. This is further
underscored in Fig. 4b, where the thermal conductivity of the opaque material is kept
at a fow value (k, = 0.01 W/m K). For all thermal conductivities of the transparent
material kg, the error in T is very large, whereas the error in T is relatively low.

In summary, the above calculations clearly indicate the danger of basing the radia-
tive heat flux on the opaque material only, as is done in the more sitnple method, Unless
a very find grid is utilized in the opaque material in the neighborhood of the radiatively
participating interface, a large error may result in the temperatures of the opaque mate-
rial. On the other hand, an excessively fine grid does not appear to be necessary on the
transparent side of the interface. The new formulation presented in this article, however,
does not suffer from these shortcomings and coincides with the exact solution for any
grid size and thermal conductivities.
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EXTENSIONS

The present formulation for incorporating surface radiant exchange into the
finite-volume method was derived for a steady, no-source, one-dimensional situation.
Extension of the method to transient, and multidimensionai heat conduction with heat
generation is straightforward. It can be expected that the inclusion of radiation would
not cause additional inaccuracies beyond those associated with the finite-volume
method itself. The present formulation is equaily valid for conjugate heat transfer
problems involving radiant exchange at a solid-fluid interface internal to the computa-
tional domain. This is because the mass flux (or velocity) across such an interface
vanishes and the temperature profiles between the nodes adjacent to the interface and
the interface itself become, in the finite-volume method as described by Patankar {11,
linear. In other words, it would be inconsistent to calculate the interface temperature
from an expression cther than Eq. (2). Application of the present formulation to an
electronic cooling problem involving heat generation, conduction, convection, and
surface radiant exchange inside a relatively complicated two-dimensional geometry
has been demonstrated by Smith et al. [2].

CONCLUSIONS

The analysis of Patankar [1] has been extended to include an internal surface
radiant exchange formulation in the numerical solution of conduction/convection heat
transfer problems. The radiation terms are accounted for in the source terms, while the
teriperature coefficients remain unchanged. Consistent and accurate results have been
obtained with the present formulation,
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