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ABSTRACT

A model is presented for the globulitic solidification of a binary metal alloy based on
the volume averaging and two-phase approaches. The microscopic processes of
nucleation and impingement are included in the model, as well as the modeling of
species diffusion in the solid and liquid phases while accounting for the movement
of the interface. Limiting case results are derived for the Scheil and Lever Rule
models, respectively, Simulations are conducted for the Al-4 wt.% Cu system in
which the effects of liquid undercooling, cooling rate, impingement, thesmophysical
propetrties and spatial effects are studied.

HEEN ign

Recent work in the area of alloy solidification has centered on the modeling of transport
phenomena occwting on macroscopic (system) and microscopic scales as well as the coupling
between the two [1-3]. For example, basic nucleation and crystal growth mechanisms at the
microscopic scale must be finked with macroscopic heat flow calculations in order 1o better predict
the latent heat evolution and microstructural features on the system scale. In the modeling of
equiaxed or giobalitic solidification, the usual approach is 1o consider the species diffusion-limited
growth of a single crystal where on a macroscopic scale, species redistribution is neglected {4},
On the other hand, the large value of the Lewis number of metal alloys allows for the assumption

of thermal equilibrium to be applied at the microscopic scale and the MAacroscopic temperature
distribution to be obtained from a mixture energy equation.

Recently, the volume averaging process has been applied to the microscopic conservation
equations o develop a two-phase model of solidification [5). The advantage of such a two-phase

model is that general macroscopic conservation equations for each phase with corresponding

3
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interfacial balances are derived which direcily relate microscopic and macroscopic guantities. The
purpose of this study is 10 apply this model to the globulitic solidification of a binary metal alloy
with a simple eutectic-forming phase diagram, i.e., the Al-Cu system. The MICroscopic processes
of nucleation and impingement are included in the model, as well as the modeling of species
diffusion in the solid and liquid phases on a microscopic scale while accounting for the movement
of the interface. In this fundamental study, simulations are conducted for a simple zero-
dimensional system, where certain parametric studies are undertaken, as well as for a one-
dimenstonal system. l

The physical sysiem under consideration is shown in Fig. 1, in which a liquid melt of
composition Cy is cooled from one side with the remaining walls considered to be adiabatic and ali
walls considered to be impermeable. The governing macroscopic equations for no fluid flow are
the mixture energy conservation, liquid and solid species conservation and the interfacial species
balance equations, obtained by volume averaging the corresponding microscopic equations over an
averaging volume, V. The averaging volume, shown in Fig. 2, is small compared to the system
but large compared to the interfacial structures that develop during the solidification process [5).

solid mush Hquid

adiabatic

AAVANAN

e
X
f— L e averaging volume, Vg globulitic crystal

FIG. I Schematic of physical system. FIG. 2 A typical averaging volume containing
globulitic crystals.

The following assumptions apply in the analysis: the crystals grow in the globulitic (spheroidal)
morphology; enthalpy is a function of temperature only; thermodynantic equilibrium at the
solid/liquid interface with constant liquidus and solidus slepes (x and m constant); thermal
equilibrium between phases within a given averaging volume; identical and constant liquid and
solid densities, in which there is no fluid flow in the melt with the solid crystals fixed in space;
constant properties, with identical specific heats and thermal conductivities of the liquid and solid
phases; no macroscopic species flux. Details of the derivation of the LOVETNINE MACTOSCOLC
equations ¢an be found elsewhere [5.6]. They can be written in nondimensional form as
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The dependent variables in eqgs. (1} - (4) are the solid volume fraction, €, the dimenstonless
termperature, 6, and the dimensionless liquid and solid solutal undercoolings, yy and ys,
respectively. The Stefan number, Ste, and the mass diffusivity ratio, D*, are defined,
respectively, as

Ste = - emCy _e(Tp - Tp) : D* :gi )
Ah Ah 4

The remaining parameters are defined in the Nomenclature. Additional dimensionless guantiiies

include the interfacial liquid concentration, 3, and the solutal supersaturation, £y, defined,
respectively, as

, ot k
Wﬂ=%f“9+1 : 0 =Sk <Ce>* | Wk

Crilt-xy Va4

where <C>K and Cy; are the intrinsic volume averaged and average interfacial concenuration of

{6)

phase k, respectively, given as (5]
<Ck>k=%lw [ XxCrdv ; Ekj:_l-jfcde (N
Vi Aj
Vo A
where Xy is a phase function that is equal 10 unity in phase k and zero elsewhere. Egs. () - &)
are vaiid up to the eutectic point, at which point solidification proceeds isothermally such that § =
8. Then, eq. (1) is used to update the unknown solid volume fraction,

Initiai and Boundary Conditons

Initially, the system is entirely liquid and exists isothermally at a given temperature and
concentration. Nucleation commences at the nucleation temperature, Ty, which may be below the
liquidus temperature. Therefore, the initial (1 = 0) conditions are given as

=0 : 6 =iy (82)

0 9
g = 0 : AL (8b)
1 -x 1 - K

where Bp 1S the dimensionless tempesature at nucleation, at which point £ = £g4. The boundary
conditions for the one-dimensional system are given as
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Limiting Cases for a Zero-Dimensional Svstem

A limiting case of the foregoing analysis is that of a zero-dimensional system, in which only
one averaging volume is considered. Because no macroscopic spatial variations exist is such a
system, the net macroscopic heat flux term appearing in eq. (1) is replaced with a constant
volumetric cooling rate, i.e.,

Ste e = zero-dimensional system &)}

Eqgs. (2) - (4) are identical for zero- and one-dimensional systems due to the assumption of no
IMACTOSCOpIC species fransport.  With such a simplified energy equation, various analytical
solutions can be obtained by considering certain limitin g cases with regard to species diffusion on a
microscopic scale.

The complete mixing of solute in the liquid (wy = 0) is an important limiting case in practical
solidiftcation processes. Further, for the limiting cases of complete and no mixing of solute in the
solid it is possible to derive the well-known Lever Rule and Scheil model, respectively [3]. The
Lever Rale is derived by summing egs. {2) and {3) and substitating eq. (4) to eliminate the
interfacial terms, setting Wy = wg = 0 and integrating to obtain

ya=[1-ey1 - 0] Lever Rule (10)

where 8 has been replaced by y; according to eq. (6). In a similar manner, the Scheil model is
derived by substituting eq. (4) with B* = 0 into eq. (2), setting y = 0 and integrating to obtain

Wi = (1 - gg)x- Scheil model (1

Together with the zero-dimensiona energy equation [egs. (1) and (9)], implicit equations for the
solid volume fraction evolution can be derived by differentiating egs. (10) and (11) with respect o
T, substituting into the energy equation and integrating. The results are

Qu=¢ - Ste { 1-[1-e41- K)]_i} Lever Rule (12)
Q=gs-Stefl - (1 - gg)*-1] Scheil model (13)

Mi ic Maod

The remaining parameters to be specified in eqs. (1) - (4) are the dimensionless interfacial
transfer coefficients, Ay and A, which are defined as
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Models for the interfacial area concentration, Sy, the diffusion length of phase k, £y, and the grain
density, n, are presented below.

Nucleation

Assumning that nucleation occurs instantaneously at a critical nucieation temperature, Tp, the

local and characteristic grain densities, n and nc, respectively, can be calculated as

aT g-u 2
=K +K "—l ' ; ne = Ky + Kp [~ (15)
n [ 2(8[ . C l z(pc )

where the mean cooling rate of the system, - q"/pcL, has been substituted into the expression for
ne, and Ky and Kz are constants determined experimenally for a given alloy [7]." The
dimensionless grain density, v, is then defined as

(16)
H

where KT and KE are dimensionless parameters obtained from the combination of eqs. (13).

:E=K¥+KS(§9
T at

Geometric Lengths

Assurning that the volumne of a crystal can be characterized by an equivalent spherical volume,
the mean solid and final (at £; = 1) radius of the crystals, Rg and Ry, respectively, are calculated as

I ! 1
385 T K
Ry =| =53 ; R =[~—-]3 a7
) [4““} f 4mn

with the mean liquid radius given as Ry = Ry - R,

Interfacial Area Concentration

During solidification, the interfacial area concentration, S, = Ai/V,, increases from zero to a
maximum value and then decreases again to zero due to the merging of the solid/liquid interfaces
and grain impingement. With the assumption of a spherical geometry of crystals, a general
expression for Sy can be written as

1oz
Sy = (36mn) €53 8(gg) (18)
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where & is dependent upon the impingement assumption, being equal to unity for no impingement.
A general approach has been proposed for the modeling of S, for impingement under the
assumptions that the crystals are fixed in space, impinge randomly and have shape-preserved
nucleation and growth transformations subject to subsumed nucleation and growth rate laws [8].
For an approximately constant interfacial velocity and instantaneous nucleation, § is given as

2
5<as)=1‘285[;n ! ]3 (19)
PN A
£s

Diffusion Lengths

The diffusion length of phase k, 2y, is used to model the miCroscopic species concentration
gradient at the solid/liquid interface, The meanings of the various diffusion lengths are #lustrated
in Fig. Al. The interface shown represents an infinitesimally small section of the interface of a
spherical crystal, and is drawn, for simplicity, as a straight line. 2y is defined as [5]

Cue o k

Cki- <Cy2k (20}
9Cx
aﬂk i

where ny is the outwardly directed unit normal vector on the interface of phase k. After
determining the microscopic species profile in each phase, a dimensionless diffusion length,
A= L1/Rs, can be derived for the liquid and solid phases, respectively, as (see Appendix)

1 2
Peegd | 2 Pee,
=gl e [ aReedty 1 ey
0 - s -
Pegg £5
where y is a dummy variabie and Pe is the Peclet number, defined as
WRr 1 1o
Pe=pg ==V Vo 22)
4 \48n2) lye,) o1

The separate simulations conducted in zero- and one-dimensional systems required separate
numerical procedures to solve the respective system of equations. For the zero-dimensional
systerm, an Adams-Moulton methed was used to solve the system of ordinary differential
equations, while for the one-dimensional system, the system of partial differential equations was
solved using a combined explicit and fully implicit control volume based finite difference scheme
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[6]. Time step and grid independence was verified, in which time steps of AT = 10 and 2.5x10-%
were used for the zero- and one-dimensional simulations, respectively, with 20 control volumes
{Ax = 1.25mm) used for the one-dimensional simufation. Eq. (21) was integrated numericaily
using a five-point Gaussian rule,

The base case parameters for the zero- and one-dimensional simulations are given in Table 1.
The thermophysical properties and phase diagram data resembie those of the Al-4 wt.% Cu system
(Co = 0.04}, in which the properiies used (with the exception of Dy) represent averages of liquid
and solid quantities between C = 6 and Cg, respectively [9-11]. Here Le = 9620, with K? and K;
selected such that the values of K and K7 in eq. (15) result in a value of ne consistent with the
given quantities of &1 and Q with a constraint that Re{n) = 1mm for T =0. The zero-dimensional
simulation results are presented in Figs. 3, 4 and 5, in which the effects of the mass diffusivity
ratio, D* {with no liquid undercooling), the cooling rate, (J (with no impingement) and the Stefan
number, Ste, respectively, are studied. The one-dimensional results are presented in Fig.6.
Unless otherwise stated, impingement is assumed in all cases.

TABLE 1. Base Case Parameters {9-11]

Zero-Dimensional Svstem Common Parameters
Q=10 Egp= 109
Qin=0 6 =0
D=0 6g = 7.177

One-Dimensional System Ste =0.04
Q=1 xk=0.173
EL =0.5 =- 373 K/wr.%
Bip =- 0.1 K = 3.163x10-2
D* = 10+ K3 = 1.550x10-3

For the case of no liquid undercooling (Fig. 3), the mass diffusivity ratio D is seen to have an
influence on € and 8 during the later stages of solidification. This is due o the microsegregation
occurring in the solid phase, which can clearly be seen in the plot of €. For intermediate values
of D, the results are dependent upon the impingement assumption, although the limiting case
results given by the Lever Rule and Scheil models, respectively, are independent of this effect as
evidenced by eqs, {10) - {13). Nete that relatively large (and unrealistc) values of D* are required
to produce discernible differences in € and 0, signifying the relative unimportance of this
parameter, although this is not true in the calculation of Qg
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A more important parameter governing the solidification process is the cooling rate Q (Fig. 4),
which ultimately determines the total solidification ime. Note the occurrence of recalescence, i.c.,
the minimum in the cooling curve bronght about by the latent heat release becoming larger than the
heat removal, and of the eutectic plateau (8 = Og), where € is a linear function of T [see mixture
energy equation]. Because D* =0, the Scheil model result is included as a comparison on the plots
of €5, 0 and €25 (Q, = 0 in the Scheil model). The undercooling present in the Hquid during the
initial solidification stages accounts for the discrepency between the curves, although all cases
approach the Scheil limit in the later stages due 1o the increasingly smatler liquid volumes becoming
more well-mixed (£24 —» 0). Observable trends for higher cooling rates are the effect of the
impingement assumption and the diminishing size of the eutectic plateau.

Fig. 5 shows the effect of another important parameter, Ste, in which again the results in the
fater solidification stages approach the Scheil limit since D* = 0. Because Ste is dependent upon
the initial concentration, Cg, a smalf value of Ste implies that the melt is of low impurity, which
tends to be heat-flow rather than species controlled. In the limit of Ste = 0, &g is linear with T as
evidenced by the mixture energy equation. This result is also seen for the Scheil model, eq. (13),
as well as the Lever Rule, eq. (12}, which reduce to £ = Q1 for Ste = 0.

Spatial effects can be seen in the one-dimensional results shown in Fig. 6, in which the same
general mends in £, 9, £25 and s are seen as in the zero-dimensional case. Note, however, that
while recalescence is observed in the first averaging volume, it is not observed for several inferior
nodes. The recalescence occurring in the deeper interior nodes is due to the reheating effect
introduced by the adiabatic boundary condition existing at the right side boundary. This effect is
also seen in the plots of L2, and g, although as in the zero-dimensional studies, §2; tends to zero
as the volumes become fully solid. Fig. 6 also includes the dimensionless final grain radius,
Re/Rene =¥ 13, which is seen to increase for sequential nodes in the casting (note that ¥ = 1 in the
zero-dimensional case). This is due to the lower cooling rates experienced away from the cooled
boundary, resulting in smaller grain densities and larger grain radii according to egs. {15) and (17).
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FIG. 3 Effect of mass diffusivity ratio for no liquid undercooling (€25 = 0).
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FIG. 4 Effect of cooling rate.
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Conclusi

A micro-macroscopic model was presented for the globulitic solidification of a simple binary
alloy in which the microscopic processes of nucleation, impingement and species diffusion were
addressed. The microscopic species diffusion process in the liquid was modeled by means of a
transformed diffusion equation which accounts for the movement of the growing interface,
Limiting case results were derived for the Lever Rule and Scheil models, respeciively. Parametric
studies were performed in a zero-dimensional system to study various effects such as no liquid
undercooling, cooling rate and property ratios. For no liquid undercooling, the effect of the mass
diffusivity ratio was seen to be important oniy in the calculation of the solid supersaturation, in
which the effects of microsegregation could be observed. The cooling rate studies showed the
importance of the impingement assumption for higher cooling rates, while the Stefan number was
shown to represent the degree of impurity in the melt, which greatly influences the solidification
process. Subsequent simulations were conducted in a one-dimensiona System (o represent more
pracucal solidification conditions. Spatial effects were shown in this case, such as the observance
of recalescence in different regions of the casting and the distribution of grain sizes. A more
complete analysis of this problem, in which the effects of melt convection and solid movernent are
included, can be found in ref. [12].
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Nomenclature

Lewis number, o/D;

liquidus slope, dT/C 5 (K/wt.%)
grain density of nuclei (m-3) phase function

outwardly directed unit normal vector moving coordinate (m)
Peclet number, WRy/D ; Ah latent heat of fusion (J/kg)

interfacial velocity, dRg/dt (m/s)
spatial coordinate (m)

N E o<

a  coefficient in diffusion length mode} g"  wall cooling fiux (W/m?)

A area {m?) Q  dimensionless cooling rate, q"/pAhD pn 2L
¢ specific heat (J/kg-K) r  radial coordinate

C  solwal concentration (wt.%) R radius (m)

D solutal diffusivity (m2/s) Ste Stefan number, - cmCop/Ah

k  thermal conductivity (W/m-K) Sv  interfaciat area concentration, AV (mh
K coefficient in nucleation model time ()

£ diffusion length (m) temperature (K)

L length in x direction (m) volume (m3)

Le

m

n

0

Pe
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Greek Symbols Subscripts

o thermal diffusivity (m2/s) ¢ characieristic

®  interfacial area concentration parameter E  eutectic

£x volume fraction, Vi/Vy f final

v dimensionless grain density, n/ng i interfacial

¥ segregation coefficient, Cg/C 5 in initial

Ax dimensionless diffusion length, £./Rs k  phasek

Ag dimensionless interfacial transfer £ liguid
coefficient, Svliknczﬁ’ L liquidus coresponding to Cq

p mass density {kg/m3) n  nucleation

& dimensioniess temperature, (T - T YmCy  ©  averaging

T dimensionless time, 1D yn¢ P pure substance

¢ dimensionless x distance, xnCIBNE s solid

$y solutal supersaturation,

(Cyi - <CeMIC i1 - ®) Superscripts

yi dimensionless solutal undercooling,

(Cxi - <C>)/Co(1 - ¥) " interfacial average, mean

Y dimensionless interfacial liquid ¥ dimensioniess property
concentration, "C",‘mlifco © tme-dependent rate
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Appendix

The diffusion length in the liquid region, 2, is derived by transforming the stationary

unsteady one-dimensional spherical diffusion equation into that of a coordinate system which

moves with the interface as shown in Fig. A2, For constant W, the moving coordinate, 2, is
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defined as

1
2={r’ - r3P (A

By introducing eq. {Al) into the diffusion equation, applying the chain rule of differentiation and
converting back to stationary coordinates, the diffusion equation for quasi-stationary conditions
{dC4/dt =0} and its general solution are given as

GZC£+[2 W Rg}gg_&: WRYD 4

a2 T* B; 2| 0 : Cely=a; +aze (A2}

The constants, a;, are determined by application of the following conditions:

Ry
C4Rg) = Cyj ; <Cy>t = ~3——3——-§~ j CynirZdr (A
(RF - R5) Rs
2 4 is then calculated from eq. (20), with the result given as
Ry
2
2:*934 - 3 3 3 C_WRS/DJE j rzems'{bﬂ dr (A
w (R7 - Rg) Rs

in the derivation of the solid diffusion length, £¢, a quadratic distribution is assurned for Cqlr),
in which the unknown coefficients are determined by application of the interfacial and symmetry
conditions as well as the equation for <Cg>S, calculated from eq. (7). A is then calculated from
eq. (20), given as

(AS5)
2
imerface
r
FIG. A1 Schematic illustration of the FIG. A2 Schematic of moving coordinate system

diffusion lengths [5]. in the liquid region.
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