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A NUMERICAL STUDY OF NON-DARCIAN NATURAL
CONVECTION IN A VERTICAL ENCLOSURE FILLED
WITH A POROUS MEDIUM

C. Beckermann, R. Viskanta, and S. Ramadhyani
Hear Transfer Laboratory, School of Mechanical Engineering,
Purdue University, West Lafayette, Indiana 47907

A numerical study of non-Darcian natural convection in a vertical enclosure filled with a
porous medium is performed. The flow is modeled using the Brinkman-Forchheimer-
extended Darey equasions. The governing equations are solved with the SIMPLER algo-
rithim and good agreement with previously reported numerical and experimental results is
found. An order of magnitude analysis and the numerical results dernonstrate the impor-
tance of non-Darcian effects. Far high Darcy numbers {(Da > 10~%), both exiensions are
of the same order of magnitude and must be used simultaneously. In addition, Forch-
heimer's extension must be inchuded for Pr = 1.0 and all Darcy numbers. Finally, Nus-
selt number correlations are presented for three different ranges of the Darcy number
covering wide ranges of the governing paraimeters.

INTRODUCTION

Natural convection in vertical enclosures filled with a porous medium agtracts a
great deal of research attention because of the fundamental nature of the problem and the
broad range of applications, including geothermal systems, fiber and granular insula-
tions, storage of nuclear waste materials, solidification of castings, and electronic cool-
ing. Most of the theoretical work has been based on the assumption of the validity of
Darcy’s law [1-10]. There are relatively few experimental studies of heat transfer in
vertical porous cavities {} 1-14] and, as noted by Prasad et al. [15], the experimental
results for systems other than the glass-water system at low Darcy-Rayleigh numbers
have never agreed with the theoretical results obtained with the Darcy model. This has
led to the inclusion of inertia and viscous diffusion effects in recent studies of natural
convection in porous enclosures [16-22]. Chan et al. [16], Tong and Subramanian [171,
and Lauriat and Prasad {18} have studied the viscous effects by using the Brinkman-
extended Darcy equations. Tong and Subramanian [17] found that the pure Darcy analy-
sis is applicable only when RaDa%4 < O(107*). The inertia effects have been investi-
gated by Poulikakos and Bejan {19, 20} through the inclusion of Forchheimer’s
gxtension.

Beckermann et al. 122 have shown that at high Darcy numbers the inertia and
viscous terms must be included simuitaneously to obtain realistic predictions of the
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NOMENCLATURE

aspect ratio (= H/L) v

y-component velocity
specific heat

X horizontal coordinate

inertial coefficient ¥ vertical coordinate

Darcy number (= K712 g effective thermal diffusivity (=kelpc,)
gravitational acceleration A coefficient of thermat expansion

average convective heat transfer coefficient % dimensionless vertical coordinate {=y/L}

height of enclosure ¢ dimensionless temperafure [={7 - el
thermal conductivity (T ~ T

ermeability of the poroys mediam u dynamic viscosi
pe ¥ p Y 1y
fength of enclosure ¥ kinematic viscosity

average Nusselt number (== hLik ) 3 dimensionless horizontal coordinate
dimensionless pressure (= Pszpafff{) (=x/L)

pressure 2 fluid density
Prandtl number ( = Pl tegy)

Rayleigh number { m g8(7, T vyl

s:-..iz‘g:‘g-v’u Czh:qu-;t:rw Eqﬁf\.m

Subscripts
{emperature
dimensionless x-component velocity { = L/ C cold
prp) B Darcy
U x-component velocity cff  effective
v dimensionless y-component velocity (= Vi/ ¥ fiuid
Dogpd H  hot

Nusselt number. Recently, Georgiadis and Catton {21} used Brinkman's and Forch-
heimer’s extensions of Darcy’s law to study non-Darcian free
infinite vertical porous slot and found that both effects :
numbers. Thus, it is the objecti
effects of inertia and viscou
filled with a porous medjum with the vertical walls held at different by
atures and the connecting horizontal walls considered adiabatic. The flow is modeled
with the Brinkman-Forchheimer-cxtcndcd Darcy cquations. The predictions are com-
pared to numerical and experimental results available in the li
Rayleigh, Darcy, and Prandil numbers and the aspect ratio A

convective motion in an

t uniform temper-

GOVERNING EQUATIONS

A schematic of the Physical model and coordinate systemi is shown in Fig. 1. It is
assumed that the flow ig steady, incompressible, and two-dimensional, The thermophysi-
cal properties of the fluid are assumed constant, except for the density in the buoyancy
term in the momentum equations. The porous medium js considered homogeneous and
isotropic and is saturated with a fluid that is in local thermodynamic equilibrium with the

solid matrix. In terms of the superficial (Darcian) velocity, the governing equations can
be written as follows {21, 22
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The value of the inertia coefficient C in Forchheimer's extension [see Fgs. (2) and (3%
iy tias been measured experimentally by Ward [23]. Although it is now generally accepted
3 that C is a function of the microstructure of the porous medium {25, 26}, Ward found
that for a large variety of porous media C can be taken as a constant equal to approxi-

i mately 0.55. This value is used in all calculations in this paper. While the value of jrq in
Brinkman’s extension in the momentum equation remains controversial [26], as 2 first
approximation peg is taken equal to p in the present study. With this simplification, the

governing equations can be written in dimensionless form as follows:
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The boundary conditions are given in dimensionless form as

=1, u=ve=y at =0, 0=y

=
§ =0, u=vwe={ af =1, 0=<94 =
Y 0 e v=0 ag=00<t=1
dn (10)
a0

— =0, u=v=0 ayp=A,0=<¢=x1

The results for the total heat transfer rate across the enclosure are presented in
terms of the average Nusselt number, defined as

Al 1 r a9

Ny = — m — )
Ko A Jo dE | D, dn (an

From the dimensionless equations (6)-(10) it can be seen that the Nusselt number
is a function of four parameters, namely Ra, Da, Pr, and A. In addition, the relative
importance of the various terms in the momentum equations (7) and (8) can be examined
by an order of magnitude analysis. The magnitude of Forchheimer’s extension varies
with the square root of Da, while the magnitude of Brinkman’s extension is directly
proportional to Da (with the Darcy term being of the order of unity). Thus, for Da and
+Da < 1, Brinkman's and Forchheimer’s extensions are insignificant compared to the
Darcy term and Darcy’s law is applicable. Note that for any Darcy number less than
unity, the magnitude of Forchhetmer’s extension is greater than the magnitude of
Brinkman's extension. For very high Darcy numbers, that is, Da and +vDa = o,
Forchheimer’s and Brinkman’s extensions are of the same magnitude as the Darcy term.
In this high Darcy number regime, both extensions must be used simultaneously and
neglecting one extension in favor of the other will lead to serious errors. This order of
magnitude analysis also shows that the functional relationship Nu = Nu(Ra, Da, Pr, A)
will take different forms for the Darcy number regimes established above (see the
Results and Discussion section). In addition, as expected, the relative importance of the
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inertia term, modeled through Forchheimer’s extension, increases with decreasing
Prandt! number.

NUMERICAL PROCEDURE

The governing equations (6)-(10) were solved using the SIMPLER algorithm [27].
The mesh size required for sufficient qumericat accuracy depended mainly on the Ray-
Jeigh and Darcy numbers. A grid of 25 X 2510 50 % S0 nodal points ensured indepen-
dence of the solution on the grid. The nodal poinis were uniformty distributed in the y
direction, whiie the distribution along the x direction was slightly skewed to have a
greater concentration of points near the vertical boundaries. The iteration procedure was
terminated when the dependent variables agreed to four significant digits. Convergence
of the mumerical solution was also checked by comparing the Nusselt numbers obtained
along the two vertical sidewalls; see Eq. (11). The agreement between the two values
was always better than 0.1 9 . The calculations werce performed on 4 CYBER 205 digital
computer and required less than 250 CPU seconds.

The accuracy of the numerical algorithm was obtained by comparing the present
results for the Nusselt number with values reporied in the literature. Table ia shows a
comparison with qumerical results based on the pure Darcy formulation (1.6., fer =
C = 0). In this case the solution becomes independent of the Prandtl number, and the
Rayleigh and Darcy numbers can be collapsed into a single parameter, Rap = RaDa,
often called the Darcy-Rayleigh aumber. In Table la the values for the Nusselt number
of Prasad and Kulacki [9] were read from. a graph. Considering the large scatter of the
data, the agreement with the present results is very good.

In Table 15 previous numerical and experimental resuits are compared with present
predictions for cases where both Darcian and non-Darcian formulations have been used
to predict the Nusselt number. The results of Weber [2] and Shiralkar et al. [8] were
obtained using the pure Darcy model, while Tong and Subramanian [17] performed 2
poundary-layer analysis using the Brinkman-extended Darcy model. Klarsfeld’s results
{12] are actual experimental data. The Prandtl number was estimated from the informa-
tion reported in [12], while the other dimensionless parameters were given explicitly. In
cases 1 and 2 in Table 1b, the present results (obtained with the Brinkman and Forch-
heimer extcnsions) show some improvement over the previously reported sotutions when
compared to the experimental data. In all cases the present values of the Nusselt number
are below the expcrimemal data, and in cases 3 and 4 Tong and Subramanian’s resuits
agree with the experimental data better than do the present results. As noted by Shiralkar
et al. [8], some of the discrepancy between the numerical and experimental values may
he due 10 viscosity variations (about 10%) in the experiments of Klarsfeld. Overall, the
present results agree to within 5% with the experimental data. It should be noted that the
cases shown in Table 1b are actually fairly close to the Darcy regime, hence the differ-
ences between the Nussclt numbers obtained with the various models are expected to be
relatively small. There is 2 fack of experimental data for non-Darcian natural convection
in vertical enclosures, which makes a definitive test of the accuracy of the present model
difficult.
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Table 1 Comparisons of Nusselt Numbers Between Present and Previously Published Results

(@) Pure Darcy formulation, 4 = 1.0
Present results Watker Prasad
f25x25 and Hemsey Shiralkar et al. and Kulacki
Rap = Raba grid) i3] (] {91
50 1.981 1.98 — =2.0
160 3.113 3.097 ER RS =32
200 5.038 4.89 4.976 =33
500 9.308 8.66 8.944 =973
2,500 23.64 =24.5 22.660 =246
10,000 48.90 =50.5 - =50.5

(&) Other resuhts

Tong

and
Shiratkar  Subra- Present
Weber et al. manian  Klarsfeld results

Case Ra Da Pr 4 (2} (8] ! 123 (26X 26)

1 159810 8.125%x10°7 ~4 225 139 10.89 13.5 11.8 11.15
2 1997xi0" BI25xi0”T =4 225 155 12.31 15.0 13.3 12.61
3 9969%107  3250x107% =4 45 49 - 4.8 a7 4,54
4 1.994xi0%  3250%107% =4 4.5 6.9 - 6.8 6.8 6.62

RESULTS AND DISCUSSION

Importance of Non-Darcian Effects

Table 2 shows some representative numerical results that demonstrate the effects of
the Forchheimer and Brinkman extensions on the Nusselt number. Four different cases
are considered: (1) no extensions, (2} Forchheimer’s extension only (C 0.35), (3)
Brinkman’s extension only (C = 0.00), and (4) both extensions. The Rayleigh and
Darcy numbers were chosen to maintain a constant RaDa product. Thus, with the pure
Darcy model (i.c., no extensions) the same Nusselt number is obtained in all cases.

From Table 2 it can be seen that the effect of Brinkman's extension {without inertia
effects, i.e., C = 0.00) on the Nusselt number is most pronounced at Da = 107! (90%
reduction) and Da = 107* (49% reduction), while there is basically no effect at Da =
107%, As expected, the Prandtl number has no influence on the Nusselt number if inertia
effects are not included (C = 0.00). These results are in agreement with Tong and
Subramanian [17], who proposed that RaDa*/4 < O(10™% be used as a criterion for the
validity of Darcy’s law (with inertia effects not considered).
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Through the inclusion of Forchheimer's extension, the effects of inertia forces and
hence of the Prandtl number on the flow and heat transfer are modeled. In the high
Pranddl nurnber Limit (Pr > 10003, inertia effects are negligible and the Nusselt number
approaches the valucs obtained without Forchheimer’s extension (.., C = 0.00). On
the other hand, for Pr = 1.0 the influence of Forchheimer's extension (without viscous
effects, L.e., et = (.00} on the Nusselt aumber is very large at Da = 107" and 107
(82 and 57% reductions, respectively) and is relatively small at Da 107 2.2%

reduction). For Pr = 0.01 the eifect of Forchheimer's extension is even more pro=""

nounced and the inertia effects raust be included at Da = 107° E(@"féﬂuction). In
general, inertia effects are important for Re = {UjvyDa C/Pr > 1 28, 251

Table 2 also shows that for large Darcy numbers and Pr = 1.0 (cases | and 3,
both extensions must be included simultaneously to obtain realistic results for the Nus-
seit number. For Da = 10°* cases 3 10 6) the Nusselt numbers obtained with Forch-
heimer's extension alone are within 3% of the results obtained with both exiensions,
indicating that the effect of Brinkman's extension is small if Forchheimer’s extension is
included. This is further Alustrated by the fact that in cases 3and 4 (Da = 1077 the
Nusselt numbers obtained with Brinkman’s extension alone are significantly higher than
the values obtained with both extensions. This discussion shows that Forchheimer’s
extension should always be included if Pr = 1.0. For large Prandtl numbers, however,
Brinkman’s extension alone yields realistic results for the Nusselt aumber. For large

" Darcy numbers (and Pr = 1) both extensions are of the same order of magnitude, while

for Da = 107 Forchheimer’s extension becomes dominant Over Brinkman’s extension.
Note that these conclusions are in agreement with the order of magnitude analysis pre-
sented in the Governing Equations section.

The importance of the non-Darcian cffects are further demonstrated by the stream-
lines and isotherms shown in Figs. 2.-4 for cases 5, 3, and | of Table 2. For pure
Darcian flow, there would be no difference between the three cases considered. With
both extensions included, however, the flow patterns change drastically with increasing
Darcy number. For Da = 107% (Fig. 2) the viscous effects are confined to thin boundary
layers close to the walls. The isotherms show a thermally stratified core region and sharp
temperature gradients along the vertical sidewalls. Obviously, this case is fairly closc to

Table 2 Effect of Brinkman’s and Forchheimer's Extensions on the Nusselt Number (4 = 1.5

Without Brinkman’s With Brinkman’s
gxtension extension
e
Case Ra Da Pr C = 0.00 C = 0.53 C = 0.00 C = 0.55
10 10! 1.0 48.90 8.782 4,724 4,385

1

2 10° 1! 0.01 48.90 2.184 4.724 1.642
3 Hid 10! 1.0 48.90 21.21 24.97 20.5%
4 0% 1ot 0.01 48 90 9.276 24,97 9.152
5 ik 167" 1.0 48.90 47.82 48.90 47.82
6 16' 107F 0.0} 48,90 36.34 48.90 16.34
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it}

Fig. 2 Numerical resuits for case 5 of Table 2. (&) Streamlines {equal increments); (b} isotherms {equal
increments).

pure Darcian flow and heat transfer. On the other hand, for Da = 107" (Fig. 4) the

viscous forces (modeled through Brinkman’s extension) act in the entire cavity and the
boundary layers are relatively thick. Accordingly, the core is thermally less stratified and
heat transfer due to convection along the horizontal walls has decreased. The flow and
heat transfer patterns shown in Fig. 4 are fairly close to what one would expect for
natural convection in a vertical enclosure filled with pure fluid at a similar Rayleigh

Fig. 3 Numerical results for case 3 of Table 2. {a) Streamlines (equal increments); (b} isotherms (equal
ingrements).




PRt

[ S PR S

Vis kg 24 AL R il byl

NON-DARCIAN CONVECTION IN A VERTICAL ENCLOSURE 585

Fig. 4 Numerical results for case 1 of Table 2. (a) Streamlines (equal increments); {b) isotherms (equal
increments).

number. This indicates that the Brinkman- and Forchheimer-exiended Darcy equations
reduce to the correct limit for an infinite permeability (and Darcy number).

Nusseit Mumber Correlations

A parametric study was performed to investigate the influence of Ra, Da, Pr, and
A on the Nusselt number. In Fig. 5 the Nusselt number is plotted against the Darcy and
Rayleigh numbers (for Pr = 4 = 1.0). For a fixed product RaDa, the Nusselt number
increases with increasing Rayleigh number and decreases with increasing Darcy number.
For small Darcy numbers, the curves of constant RaDa become horizontal, indicating
that in the Darcian regime the Nusselt number is a function of Ra, = RaDa only. For the
Darcian regime, Walker and Homsey {3] correlated their numerical results for A = 1.0
according to

Nu = 0.51(RaDa)"” (12

which is in agreement with the above finding. In the non-Darcian regime (i.e., for
higher Darcy numbers), however, the slopes of the curves of in Nu versus In Da or In Ra
change continuously. Hence Ra and Da become independent parameters with their expo-
nents being a function of Da (or Ra). Nonetheless, an attempt was made to correlate the
present results for different ranges of the Darcy number. A total of 143 computational
runs were performed covering a broad range of the governing parameters. The Nusselt
numbers were correlated according to

f
Nu = gRa’Da’4“ (%) (13)
e T
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Fig. 5 Effects of the Darcy and Rayleigh numbers on the Nusselt number (Pr = A4 = 1.0}

The values of the coefficients « to f were obtained from a least-squares fit of the numeri-
cal results and are listed in Table 3. From an examination of Fig. 5, it was decided to
correlate the Nusselt numbers for three ranges of the Darcy number (Table 3). A further
subdivision of the data would not have resulted in a significant improvement in the mean
deviation of the correlations. The present numerical results are belicved to be of about
the same accuracy as the correlations presented in Table 3. A plot of the correlations
together with the numerical data is shown in Fig. 6. The large discontinuities between
the lines for each correlation are due to the different ordinates used for the three correla-
tions. Note that the Nusselt number should always exceed unity. If a certain combination
of Ra, Da, A, and Pr results in a Nusselt number below unity, the heat transfer is by pure
conduction and the Nusselt number is actually equal to unity. For example, the lower the
Darcy number, the larger is the Rayleigh aumber required for Nu to exceed unity.

An examination of the magnitude of the exponents of the governing parameters
(Table 3) reveals several interesting features of the correlations. For example, the expo-
nent of the Rayleigh number changes from 0.315 for large Darcy numbers (correlation
1) to 0.538 for small Darcy numbers (correlation 3). The first value is very close to that
reported for vertical enclosures filled with pure fluid, while the latter is close to the
theoretical value for the Darcian regime [see Eq. (12)]. A similar observation was made
by Prasad et al. [15]. In addition, the influence of the Darcy number increases with
decreasing Darcy number. In correlation 1 the exponent of Da is only 0.1, while in
correlation 3 the value is very close to the exponent of the Rayieigh number (i.e., 0.53),
indicating that in correlation 3 the influence of the extensions is very small and the pure
Darcian regime is reached. The importance of Forchheimer's extension can be seen
clearly by examining the Prandtl number dependences in the correlations (see also the
preceding section, on nen-Darcian effects). As in pure fiuid enclosures, the Prandtl
number has very little influence on the Nusselt number for Pr > 1. This has been
accommodated by choosing the general {rom of the correlations as shown in Eq. (13).




567

0oL 0% 90°0 S0 90—  £€°0  BESO 187°0 0O0'0ESISI00  OIFVE] 0TS EEE 01 o 01 RTAZ, 01 £

St'6 LE ¢z’ sy'o 90—  £E0 STFO (61°0  000'GISHEI00  JIFVEL 01 SEL 01 ;- 01REdE, O 4
65'8 oF e s¥0 sT0- 00 S1E0 DLLO  COBOISNEFI00  OIFVEI LIFed= 01 (or=ed=, 0l [
%) swrod S 2 b4 2 q o S¥ | 14 ey ®Q uone|

UCTIEASD gep ~21107)
UEIN Jo oN simaurered Sunuzacd g jo saduey

{1) b ‘uvonepauo) PQWNN OSSN 81 0] SWUAOLYLO0 m e

Y




568 C. BECKERMANN ET AL.

==
o L Correlation 1
- o
L0 &7 2
&%
ol et
z S
uq_ /5/
“a 107" - E/E
o
=
_ 3
IOD;Q/
IOVS | i { 1 i
o' 1o 107¢ 107 107¢ 1
Da

Fig. 6 Comparison of predicted Nusselt numbers with correlations.

For Pr < 1 and large Darcy numbers {correlation 1), however, the Prandtl number
dependence is very strong. The influence of Pr becomes less for decreasing Darcy
numbers. For Da < 1077 (correlation 3) the Prandtl number dependence is very weak,
indicating again that the pure Darcian regime is reached. In general, the exponents of
Ra, Da, and Pr/(0.45 + Pr) are expected to vary continuously from their values at very
high Darcy numbers (e.g., Da = 107"y to the values for pure Darcian flows (see also
Fig. 5). Hence, a more accurate correlation covering the entire range of Darcy numbers
might be obtained by including the dependence of the exponents on the Darcy number in
Eg. (13). Because of the complicated nature of these exponents, a reasonable fit of the
Nusselt number data for a correlation of this form has not been found.

CONCLUSIONS

A numerical study of non-Darcian natural convection in a vertical porous enclo-
sure is performed. The Brinkman-Forchheimer-extended Darcy equations are solved
using the SIMPLER algorithm and good agreement with previously reported numerical
and experimental results is found. An order of magnitude analysis and the numerical
results clearly show the importance of the non-Darcian effects for high Darcy numbers
(Da > 107"). Through the inclusion of Forchheimer’s extension, the effect of the
Prandtl number on the heat transfer is investigated for the first time and is found to be
important at Pr < 1. In addition, it is shown that for large Darcy numbers (Da > 1079,
both extensions must be used simultaneously to obtain realistic heat transfer results.

In a parametric study, the dependence of the Nusselt number on the governing
parameters Ra, Da, 4, and Pr is investigated. It is found that the influence of Ra, Da, 4,
and Pr on Nu changes continuously with decreasing Darcy number up to the point where
the pure Darcian regime is reached (i.e., Da = 10™%. A set of three correlations for
calculating the Nusselt number is proposed for three ranges of the Darcy number. These

correlations should provide reasonable estimates of the Nusselt number for most practi-
cal purposes.
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