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A newly developed two-phase mixture model is applied, in conjunction with a confrol-
volume-based finite difference method, 1o numerically investigate boiling with thermal
conveetion in a porous layer heated from below. The numerical procedure employs a fixed
grid and aveids tracking explicitly the moving interface between the liguid and two-phase
regions. Numerical results are obtained 1o shed light on the intricate interactions between
boiling and natural convection as well as to explain experimental observations. Four distinct
flow patierns that were observed in previous experiments are predicted. A gquantitative
comparison of the predicted and measured vapor valume fraction in the porous bed shows
good agreement. The numerical results alse agree with published linear stability resulls. in
addition, the present study documents the effects of important parameters such as Rayleigh
number, bottom heat flux, and aspect ratio.

INTRODUCTION

Liquid /vapor phase change and associated two-phase flow in porous media
oceur in a wide variety of systems. Examples include geothermal systems, postacci-
dent scenarios of nuclear reactors, heat pipes, drying processes, and fatent heat
energy storage systems using packed beds.

In spite of the importance of these problems in engineering, their numericat
analysis has been severely hindercd due to several features inherent to two-phase
flow with phase change in porous media, The first ditficulty centers on the fact that
the traditional mathematical formulation to describe the transport phenomena,
namely, the separate flow model [1], involves a large set of strongly nonlinear
governing equations in the two-phase zone. Their solution in a multidimensional
domain represents a challenging computational task and has been the subject of
numerous studies [2] Usually, by neglecting the capillary force, the number of
main variables can be reduced and the governing equations can be considerably
simplified. However, such a simplified model loses generality in low-permeability
and heterogeneous media, where the capillary force 1s significant. The second
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NOMENCLATURE
A aspect ratio {= L, /L ) o, heat capacitance ratio of solid
¢ specific heat matrix to kouid
Dy capillary diffusion coefficient, (= poc. A pey))
Eg. (23) a, heat capacitance ratio of vapor
Jis} hindrance function, Eq. (20) o diquidi= p,c /4 p,o))
2 gravitational acceleration B thermal expansion coefficient
g gravitational acceleration vector Vi two-phase advection correction
h enithaipy coefficient, Eq. (1)
g latent heat of liquid /vapor r, effective diffusion coeflicient,
phase change Eq. {13)
H volumnetric enthalpy Ap density difference (= o, - p)
j diffusive mass fux & poTosity or volume fraction
Js) capillary pressure function 4 dimensionless temperature
k, relative permeability [=(T-T)/7, - T
Koge elfective thermal conductivity A relative mobility or latent heat
K absolute permeability parameter { = Ay /[c (T, ~ T}
L length 7 VISCOSItY
lLe, Lewis number of capillary v kinetic viscosity
diffusion, v ratio of kinetic viscosity
L= (K hoey k)] (= v, /v))
i pressure I density
G bottom heat flux b density ratio (= p,/p,}
Q. dimensionless bottom heat flux o surface tension
{= gy Ly Mkl T — T Y stream {unction
Ra Rayleigh number in the liguid Q effective heat capacitance ratio,
region Eq. {12
[=KLyg o) BT — Todey /e k)]
Ra,, Rayleigh number in the two-phase
region [= KL, g pe, /v ko } Subscripts
5 liquid saturation
‘ ume C capillary
T temperature h in verticat direction
u superficial or Darcian velocity I Hguid phase
vector 0 top boundary
X coordinate in horizontal direction sat saturated state
X dimensionless x coordinate v vapor phase
¥ coordinate in vertical direction w in horizontal direction
¥ dimensionless y coordinate I “kinetic” property

obstacle to a numerical simulation of two-phase flow in porous media is associated
with the presence of a moving and irregular interface separating the single- and
two-phase regions (3, 4]. The location of this phase interface is not known a priori
and depends on the coupled flows in both regions. If based on the traditional
separate flow model, a numerical procedure for such a multiregion problem needs
o explicitly track the moving interface, thus calling for complex coordinate
mapping or numerical remeshing {31

Recognizing that the separate flow model is not well suited for the analysis of
two-phase flow in porous media with and without phase change, Wang and
Beckermann [5] proposed a two-phase mixture model in which the conservation
equations of mass, momentum, and energy are formulated for the two-phase
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mixture. The new model has severat advantages over the conventional separate
flow model. First, significantly fewer governing equations (.e., only those for the
two-phase mixture) are required to be solved. Second, the model is a single-domain
formulation in which each of the conservation equations is valid in all regtons
throughout the problem domain. Hence, there is no need to prescribe compiex
internal boundary conditions at the phase interface and 1o track the moving
interface explicitly. This offers great simplifications in a numerical implementation
of two-phase flow problems. Finally, the two-phase mixture model is mathemati-
cally exactly equivalent to the traditional separate flow model, in the sense that no
additional approximations are introduced and the two-phase characteristics {ie.,
the phase velocities) are readily attainable from the fields of the mixture variables.

Although the above features were discussed in detail in Ref. {5}, and the
advantages of the new model in the analytical solution of a boundary layer
two-phase flow probiem were demonstrated in Ref. (6], a general purpose numeri-
cal method, which is based on the two-phase mixture modet and can be applied 1o
a large class of phase change flow problems in capiliary porous media, has not yet
been developed. The objective of this paper is therefore to formulate such a
numerical methodology in detail. Specifically, we utilize the error vector propaga-
tion (EVP) method [7] to selve the pressure equation of the Poisson type, and the
control-volume-based finite difference scheme of Patankar {8] for the energy
equation. Boiling with natural convection in a horizontal porous cavity heated from
below is selected as a computational example. Comprehensive numerical resuits
are presented to highlight the rich physics behind the interacting boiling and
natural convection phenomena, to explain previous experimental observations, as
well as to demonstrate the utility of the two-phase mixture model in a numerical
solution.

MATHEMATICAL FORMULATION

Conservation Equations

As described in a recent paper [5], the liquid /vapor mixture is viewed simifar
to a binary chemical mixture, with the two flowing phases represented as different
species. Then a set of conservation equations of mass, momentum, and energy for
such a mixture can be derived. By invoking the Boussinesq approximation, which
considers the density variation only in the buoyancy term of the momentum
equation in the single-phase region, and assuming that the two-phase region is
isothermal at the boiling temperature {T,,,), the governing equations can be written
as follows [5%

Continuity
ap
g 4+ V- {pu) =10 (1]
at

Momentum

K
U= - A”(vp o [)Kg) (2)
M
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Energy

(P(ph)
b=+ Vo (y, puh) = ¥-([,Th)

2

+ V- [IAa ~ h  Vinpl

KAphy ]

-—g (3)
I’/v

+ V‘[f(s)

where volumetric heat generation is exduded and the mixture properties and
variables are defined as follows:

Density
p=ps+all—ys) (4)
Kinetic density

P = pdl = BAT - A (s)

ol = BT — T )N (s) (3)

Viscosity

s +pfl—5)

4= Gy i ®

Velocity
pu = pu, + pu, (7}

Enthalpy
ph = pishy + p (1 — $)h, (8)

In the above equations, a quantity without a subscript is reserved for the mixture,
while the subscripts | and v denote liquid and vapor properties, respectively. The
other symbols are defined in the nomenclatre, and their physical meanings have
been provided in Ref. [5].

It 1s important to recognize that both the mixture enthalpy and velocity are
tass averages of their corresponding phase quantities. Moreover, the conservation
equations, Eqs. (1)-(3), are valid throughout a physical domain, inciuding both the
single- and two-phase regions. It is notewosthy that the energy equation, Eq. (3),
represents a unified form of the temperature equation in the liquid region and the
fiquid saturation equation in the two-phase region (see below).

For computational convenience, the esergy equation can be further stmpli-
fied by writing it in terms of a volumetric eathalpy, which is defined as

H = plh ~h,.) (9)
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Then the energy equation is recast into the more simple form,

dH

i

r
0 4-V-(yhuH)=V-(—iVH)

o)

KAph
ey (f(s)-~£m~f£g) (10)

12

v

where the coefficient v, is redefined (as opposed to that in Eq. {3} and Ref. {5]) as

(11)

y
Yy, = {s 4+ (1 —§)
s

A(s)
Py ]

The effective heat capacitance ratio  and the effective diffusion coefficient I’
are given by

G =c+ {1 - )——d (12)
= £ T e 2
£+ pc, & TH
L =D +k {13
e = + JU—
P eff TH

respectively, where dT/dH is the derivative of the temperature with respect to the
volumetric enthalpy. Equations (12) and (13) are again valid in both the single- and
swo-phase regions. The temperature and liquid saturation can be recovered from
the volumetric enthalpy via the following relations [5]:

H 4 piho
T = 2T P H < = phy
e )
T =T, wplh[g <H <0 (14)
H
T =T, + 0 < H
n,cy
and
s =1 H< -~ phy
" h H <0 (15)
5 = —pihg <H = :
_P;hfg 7" fg

s =0 < H




380 €. Y. WANG ET AL.

From Eq. (14), it is easy to show that

dT | 1

N = e < 7 h

dH  pe Pty

dr

Ei]; =0 - ();J’?f% < H < ( (16)
dT I

= 0<H

dH  p,c,

Supplementary Reijations

To complete a mathematical system for two-phase flow in capillary porous
media, certain supplementary relations are necessary. In this study, the relative
permeabilities of the phases are simply chosen as linear functions,

ko (s) =5 ko (sy=1—35 (17
which are commonly used ir geothermal reservoir simulations. Following the

derivations by Wang and Beckermann [5], the relative mobilities are accordingly
given by

Als) = A (18)
O OIS N T Sy
and
(1 — 5} v,
A(s) — 1/ (19)

(/) + (1 =s)/p,]
Similarly, the hindrance function f(s5) is evaluated from

) s(1 -~ s}/ v 50
A /v + [ —s)/u,] (20)

and the capillary pressure function p.(s) is represented by the Leverett function,
such that

£ 12
g (s} = [E} ad{s) (21)

where the functional form of ) established by Udell [9] is employed, i.e.,

J(s) = 1417(1 —5) — 212001 — ) + 1.263(] — §)° (22)
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Finally, the capillary diffusion coefficient D(s) can be expressed as

Des) (eK) o s~ 5}
AR TOR I Py RN § RS

w1417 ~ 4.240(1 ~ 5) + 3.789(1 ~ §)7) (23

Apparently, other combinations of the constitutive relations for the relative perme-
abilities and the capiilary pressure function can be employed without difficulty.

Velocities of the Individual Phases

The two-phase mixture model [5] also establishes the relations for calculating
the phase velocities from the mixture velocity field. These are

§=pu — A pu {24)
—i=pu, A pu (25)

with
j= ~pD(s)Vs + f(s}f?ig (26)

v

The term f denotes a mass diffusion flux. Equation (26) imptlies that the diffusive
flux is directly propertional to the liquid saturation gradient and the gravitational
acceleration. The former is known as capillary diffusion, while the latter plays a
role in diffusion because of the large density difference between the hiquid and
vapor phases. It should be pointed out that Eq. (26) is directly derived from the
separate flow mode] without introducing any ad hoc assumption. In other words,
Fg. (26) is of a purely theoretical nature. However, an analogy exists between Eq.
(26) and the empirical Fick’s law, which purports, in another respect, that two-phase
flow in porous media can be viewed as a multicomponent mixture flow, With the
help of Egs. (24)-(26), the two-phase characteristics are completely retained in the
present two-phase mixture formuiation because the phase velocities can be imme-
diately calculated from these equations once the mixture velocity is obtained.

Computaticnal Example

As a numerical example, boiling with natural convection inside a horizontal
porous cavity heated from below is chosen for detailed study. This selection is
based on several considerations. First, the problem is of great importance in
technotogical fields such as geothermal reservoir engineering and safety analysis of
nuclear reactors. Second, it 15 of fundamental interest to explore the rich phenom-
ena occurring in interacting singie- and two-phase flows in porous media. Finally,
there is a large body of experimental data available for validation of the present
numerical results.
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Several numerical studies {3, 4, 10, 11j dealing with the subject have ap-
peared. Of particular interest to the present study is the work by Ramesh and
Torrance [3, 10]. They presented a linear stability analysis of the onset of convec-
tion and boiling in the porous layer in Ref. [10], which can be used to verify some
of the present numerical predictions. Another objective is to study the interaction
between boiling and natural convection in the supercritical region, that is, at high
Rayleigh numbers. The numerical investigation by Ramesh and Torrance [3] based
on the separate flow model provides a few results for a relatively coarse 9 % 15
grid,

The system consists of a two-dimensional rectangular porous cavity of dimen-
sions L, x Ly, as shown in Figure 1. The porous medium is assumed 1o be
uniform, isotropic, and initially saturated with a liquid. The cavity is heated from
betow and cooled from above. The impermeable bottom is subject to a uniform
heat flux, and the top boundary is permeable and kept at a constant temperaturc
T,. The two vertical walls are well insulated. When the bottom heat flux exceeds a
certain value, boiling occurs first adjacent to the bottom; the thermodynamic
structure of the system then consists of a liquid region overlying a two-phase
region.

The appropriate initial conditions for the problem are

At t =
H=H, =ple,T, - h,) (27)
p=0 (28)
and the necessary boundary conditions for Egs. (1), (2), and {10} are
Al y = L, (top surface):

H=H, = p(eT, ~ h,,) (29)
b= {30

Isothermai (T'=T,)
Permeabls (p = const}

Adigbatic |,
Imperineable

Two-Phase

[T

Constant heat [ux, Ty
Impermesble |
L

Lt t

4

Figure 1. Schematic of the physical problem and coordinate
System.
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where Eq. (29) is for isothermal conditions and Eq. (30) is for isobaric conditions,

At vy = 0 {(bottom surface):

I, ¢ KAph,,
- —— + (s tg = q. 31)
pody v,
ap
— = —p.8 (32
oy

where Eq. {31) is for a constant heat flux and Eq. (32) is for o = 0, impermeable.

At x =0 and x = L (left and right wails):

aH

— = (33)
ax

ap )
=9 34
R {34)

where Eq. (33) is for adiabatic conditions and Eg. (34) is for impermeable
conditions.

Difficulties arise when attempting to nondimensionalize the governing equa-
tions, Eqs. (1), {2), and (10), and their corresponding initial and boundary condi-
tions, Eqs. (27)-(34). For example, the variable size of the singie-phase region and
of the flow cross-sectional area preclude the identification of meaningful length
and velocity scales. Depending on the selection of these scales, various dimension-
less forms may result. Nevertheless, for the purpose of generalization and interpre-
tation, it is useful to present results in a dimensionless form. Omitting details of
the nondimensionalization process, it can be shown that the present problem is
characterized by 10 dimensionless groups: p, ¥, o, «,, A, Le,, Ra, Ra, ;. O, and
A. The first four dimensioniess parameters solely depend on the fluid properties,
while the remaining groups are the latent heat parameter, the capillary Lewis
number, which is the ratio of the capillary diffusion coefficient to the thermal
diffesivity, the two Rayleigh numbers, the dimensionless imposed heat flux, and the
aspect ratio of the cavity, respectively. The two Rayleigh numbers for the singie-
and two-phase regions are related by a density ratio, i.c.,

Ra o BT, ~ T,)
T A
Ra,, P

(35)

It is clear that the numerator is simply the maximum density variation in the liquid
region and the denominator is the density difference between the phases in the
two-phase region (since p, — p, = p,). If the boundary temperature s fixed, the
two Rayleigh numbers are not independent.

While these dimensionless parameters permit generalization of the predicted
results, caution should be exercised when using them for physical interpretation.
The problem lies in the fact that the variation of certain physical (dimensional)
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variables would cause variations in more than one dimensionfess parameter. One
example is the two Rayleigh numbers as shown above. Another example is that the
influence of the permeability would be reflected through three dimensionless
parameters, namely, Le_, Ra,,, and Ra.

[n what foliows, we numerically solve the set of Egs. (1), (2), and (10) subject
to conditions Egs. (27)-(34), and report the complete flow, temperature, and liguid
saturation fields that prevail in the steady state.

Mumerical Method and Validation

[nstead of solving the governing equations directly, the momentum equation
is substituted into the continuity equation to obtain the following Poisson-tfype
equation:

, vi dp K L K
V[):E E‘E“VP‘V " + V- P8 (36)

It is convenient to solve this pressure equation and then calculate the flow field via
the momentum equation, Eq. (2). In the present paper, Eq. (36) is discretized by
the central difference method and solved using the stabilized EVP method devel-
oped by Roache [7], which is a direct method for the solution of Poisson equations.
The left-hand side of Eq, {36) is intentionally organized to have constant coeffi-
cients, in order to maximize the efficiency of the EVP method.

With the knowledge of the pressure field, a modified velocity field can be
catculated, which 1s defined as

5 KFYI‘; .
ut = yu = T (Vp - p.g) (37)

This modifted velocity is directly useful in the energy equation, Eq. (10). The
energy equation is solved by the control-volume-based finite difference formulation
of Patankar [8]. The combined convective and conductive terms are discretized
using the power law scheme (8], and the last term on the right-hand side of Eq. (10)
is simply treated as a source term. To obtain an interface diffusion coefficient
between two control volumes, the arithmetic mean formula [8] is adopted.

The rectangular domain L, X L, is divided by a uniform and fixed grid
consisting of /m horizontal and » vertical grid lines. Considerable effart was made
to ensure grid size :ndependence of the results presented here. It was found that
the results obtained with a 42 % 42 uniform grid for a square domain are suffi-
ciently accurate and that a finer grid leads to no discernible differences from the
results using the 42 x 42 grid.

The equations are solved as a simultaneous set, and convergence is consid-
ered to be reached when the relative errors in the enthalpy and velocity fields
between two consecutive iterations are less than 107°. The total mass and heat
flows through the top surface are also calculated and checked against the quanti-
ties imposed at the bottom. In all results presented here, mass and energy
conservation is ensured to within 0.1% error after convergence is achicved.
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To validate the present numerical algorithm, the predictions are compared
with avatlable numerical and analytical results. One case 15 concerned with single-
phase natural convection in a horizontal porous cavity with a permeable (op
boundary. This problem has been numerically explored by Ribando and Tarrance
[12]. A representative set of results in Ref {12] for a beat-flux-based Rayleigh
number (equivalent to Ra (, in this paper} of 200 and an aspect ratio of 1.67 is
chosen for comparison. Ribando and Torrance [12] used a 16 < 16 gnd and the
upwind scheme for the convective term in the energy equation. Therefore, 10 be
comparable, calculations are carried out using a relatively coarse 22 x 22 gnid as
well as the upwind scheme. The present prediction for the maximum value of the
stream function, W, = 3.237, agrees with the value of 321 reported by Ribando
and Torrance {12]. Moreover, the temperature fields {not shown here) are aiso
indistinguishable. Finally, it is of interest to point out that the same cajculation but
employing the power law instead of the upwind scheme results in W, = 3.35.

To validate the present algorithm for the case of mwo-phase flow, another
example is considered where the single-phase region is conduction controlled and
the two-phase region is dominated by one-dimensional countercurrent two-phase
percolation. This situation typically occurs in low-permeability media, and an
appropriate mode! is formulated in the appendix. The liguid saturation profile
abtained from the model is compared with that from the numerical simulation
using the present algorithm, as shown in Figure 2. It can be seen that the 12- and
22-grid lines lead to fairly close agreement with the semi-analytical predictions,
which are obtained via the fourth-order Runge-Kutta method. The 42-grid lines
produce an excellent match.

RESULTS AND DISCUSSION

As noted above, the problem under investigation is governed by a large
number of dimensionless parameters. Instead of covering wide ranges of all of
these parameters, results are obtained only for a water-steam—giass bead system at

l(}()l-“ j " i i T T g_

Ra = 0.4263
Ragg = i1.65
075 1 (u =476

w150
® nurerical. ny=12

a namericl ny=22

G aumnericat, ny=4?

serti-unaiyhcal

Figure 2. Comparison of liquid satura-
tion profiles predicted numerically by the
complete two-dimensional model  and
semi-anaiytically by the one-dimensionat
Liquid Satusation model presented in the appendix.

0.4 -
wan a0 8436 046G 87 R0 hon fR]

. \ Az 1 s .
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atmospheric pressure, with the temperature dilference and layer thickness fixed
e, T, =373 K, 7T, = 293 K, and L, = 0.2 m). Attention -is focused on the
effects of the Rayleigh number (either Ra,; or Ra), the dimensionless bottom heat
flux (Q,), and the geometric aspect ratio (A). To vary Ra,, or Ra while keeping
Q. and A constant implies a variation in the permeability of the porous layer,
Stmilarly, a variation in @, is practically achieved by adjusting the bottom heat
flux, and a change in A is realized by changing the width of the porous bed.
Comparisons are first made to orevious studies available in the literature, which
include three independent sets of experiments of two-phase flow in porous media
of various permeabilities {13-16] as well as the linear stability results reported 1n
Ref. {10]. This is followed by a parametric study. Thermophysical properties used
for the water-steam-glass bead system are listed in Table 1. All numerical
simulations carried out in this study are summarized in Table 2. In the table there
appears 4 new quantity, e, which is the volume fraction of the vapor phase present
in the entire porous hed, ie.,

174 /1
g, = A (1 ~s)dxdy (38)
Wk

‘The vapor fraction is a direct measure of the boiling strength and the extent of the
resulting two-phase zone. From an experimental point of view, the vapor volume
fraction is a convenient quantity to measure, since the liguid dispiacement due to
boiling is just equal to &,(p, — p,).

Comparisons with Previous Studies

The three independent sets of experiments listed in Table 2 correspend to
low-, intermediate-, and high-permeability porous media [13-16]. The present
numerical simulations are designed 1o explain the experimental observations made
in these studies [13-16].

In low-pesrmeability media (K = 107"' m?), Bau and Torrance’s experimental
data [13} indicate that the liquid region is conductive before and after the onset of
boiling. This is now verified by the present numerical simulations, as shown in the
first two cases of Table 2. No thermal convection is found without boiling simply

Table 1. Thermophysical Property Data for a Water-Steam~Glass Bead System

Property Symbol Value Liquid Vapor Unit
Density g 957.9 0.598 kg/m®
Specific hea ¢ 4178 % 107 LS48 % 100 I/kgK
Kinetic viscosity v 467x 1077 2002 % 16°° miss
Expansion coefficient g 523 % 107* - K1
Thermal conductivity feoq 0.85 W/mK
Sarface tension o 0.0588 - N/m
Heal capacitance ratio  pc,/pyc, (0.5820 -
Latent heat hrgy 2.257 x 19° I/ke

Porosity e 0.35
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Table 2. Summary of the Numerical Simulations Performed

Vapor volume
Case Ra,, (Ra} 4 0, Convection Boiling fraction, e, X 107 Features

1 20 (835 1 1.0 ne no - K =10 mh
conduction belore
and after boiling;

2 200 (85) 2.0 no yes 203 Bau and
Torrance’s
experiments [13]

3 1400 {6 1 LG no no - Ko=7x 10" m:
conduction before
boiling and

4 1400 60) 1 2.5 yes yes 103 convection afrer
boiling;

5 1400 60y 1 30 yes yes i.71 Sondergeld and
Turcotte’s

6 1400 6 1 448 yes yes 3.56 experiments
i14, 15]

7 140G 60y 0.5 40 yes yes (4.92

& 2000 (8%) 1 2.0 yes no - K= 1071 m?;

canvection before
and after boiling;
g 2000 (85 1 5.0 yes yes 0.906 transition to a
conductive hiquid
10 2006 (85) 10.0 ves yes 6.71 layer at high heat
fluxes; Bau and
i1 2000 (83 1 150 no yes 41.1 Torrance’s
experiments [ 16]
12 617 {25} 1 2.0 yes yes 2.4 K=13x10"""m*
unicellular
convection

because Ra is smaller than the critical value as obtained from a linear stability
analysis. Even m the presence of boiling (case 2}, the phase interface between the
single- and swo-phase regions remains horizontal, as can be seen from the dashed
line in Figure 3. The isotherms in the overlying liquid region and the isoliquid
saturation lines in the underlying two-phase region in Figure 3 suggest that the

e 2 ) | ST .
- 0.30
045
.60
G735 3
0.90
<= (LYKl
) 963 Figure 3. Steady state temperature and
pgss— liquid saturation fields for case 2 (Ra =
835, 0, =20 and A = 1) The dashed
TSy e line denotes the phase interface between
the hquid and the two-phase regions.
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transport phenomena in such a low-permeability medium are characterized by pure
heat conduction in the liguid region and one-dimensional vertical countercurrent
percolation of liquid and vapor in the two-phase zone. Isotherms depicted in the
present paper represent lines of constant 8 = (7 - T) /(T — 7}, with the top
boundary and the phase interface represented by 8 = 0 and 1, respectively. The
isoliquid saturation lines, however, denote absolute values. The temperature distri-
bution in the liquid region is horizontally uniform and linear along height, as it
should be. In contrast, the liquid saturation profile exhibits a noniinear variation
with height. This is because the transport properties in the two-phase region vary
strongly with the liquid saturation.

In porous media of intermediate permeabilities, the picture of boiling is
substantially different from what is described above. As observed by Sondergeld
and Turcotte [14], thermal convection does not oceur in the absence of boiling, but
starts with the onset of boiling. Furthermore, a visualization study by the same
authors [15] revealed distinct cellular convection patterns that involve both the
overlying liquid layer and the underlying two-phase zone. Their experimental runs
are now numerically simuiated, and Figures 4~6 illustrate the predicted isotherm,
isoliquid saturation, streamline, and phase velocity distributions for dimensionless
bottomn heat fluxes of @, = 1.0, 2.5, and 4.0 (cases 3, 4, and 6 in Table 2,
respectively). The streamlines are based on the dimensionless mixture velocity
{which is the liquid velocity in the liquid region), and the liquid and vapor velocity
vector plots correspond to u, and pu,, respectively.

All three cases have the value Ra = 60, which corresponds to K = 7.0 = 107!
m’, as in Sondergeld and Turcotte’s experiments [14, 15], The first numerical run is
performed for @, = 1.0 (case 3), and the predicted temperature profije shown in
Figure 4 indicates no evidence of thermal convection. It is worth mentioning that,
in the pure conduction case, O, = 1.0 marks the onset of boiling because the
reference flux used in the definition of Q,, kT, — 7,)/H, represents the
maximum conductive flux across a Hquid-saturated fayer,

When Q,, increases to 2.5 (case 4), boiling initiates at the bottom surface, as
shown in Figure 5a. It is more important to notice that thermal convection is
triggered immediately upon the onset of boiling, The cellular eonvection is so
strong that the phase interface is highly distorted. Figure Sb further iltustrates that
there are two convective cells present in the liquid region and the streamlines
penetrate into the two-phase zone. Figures Sc and 5d depict the phase velocity

i s @ [ (e —
0.20
e 3o -
— 0.40
.50
0.60
.70 Figare 4. Steady state temperature field
- 6.80" " forcase 3(Ra =60,0Q, = l,and 4 = i)
- )90 This case is marginal 1o the onset of
N boiling.
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Figure 5. Steady state solution for case 4 (Ra = 60, 0, =25, and A4 = I¥ {a) igotherms and
isoliquid saturation lines, (5} streambines for the two-phase mixture, (¢} lguid velocity vectors
{laglmas = 015 % 167Y mysh, and (d) vapor velocity vectors {1t bmax = 038 % 107% m/s).

fields. It is clear that the vapor flows primarily vertically upward, whereas the liquid
phase has considerable lateral motion. The simulation results for this case agree
excellently with the experimental observations made by Sondergeld and Turcotte
[14, 151 When the bottomn heat flux increases further, the underlying two-phase
zone expandds, and thermal convection is more evident, as shown in Figures 6a—0d
(case 6). The fact that the formation of a two-phase zone can drive thermal
convection can be understood by recalling that the two-phase Rayleigh number,
Ra,,, is substantially higher than the critical single-phase Rayleigh number, Ra.
Although the present steady state investigation provides results that are consistent
with the experiments, the detaited mechanisms through which natural convection 18
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Figure 6. Steady state solution for case 6 (Ra = 60, Q,, = 4.0, and A = 1): (a) isotherms and
isotiquid saturation iines, (b) streamlines for the two-phase mixture, (¢} liquid velocity vectors
Ueglonar = 0.21 % 107 m/5), and (o) vapor velacity vectors (i pu | = 0.63 3 107° m /5).

induced by boiling have not been identified. For this purpose, a transient simuja-
tion would be helpful because it can reveal the evolution of boiling and the
interactions between the single- and two-phase regions.

The last simulation set {cases 8-11) for a relatively high permeability (K =
107 m?) is conducted for comparison with Bau and Torrance’s experiments [16]

In these cases, the Rayleigh number (Ra = 85) is larger than the critical value for
the onset of single-phase natural convection, so that steady cellular convection
prevails before the onset of boiling. This is shown by the temperature and
streamline contours depicted in Figures 7a and 7b for Q. = 2.0 {case 8). The
dashed line appearing on the very left and right corners suggests that this case is
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marginal to the onset of botling, When O, Is raised to 5.0 (case 9}, a two-phase
region develops at the bottom, and thermal convection persists (see Figure §).
Again, it is seen that the streamlines penetrate into the two-phase region, implying
that there exists a strong interaction between the boiling and narural convection
flows in the two regions. The phase velocity vector plots exhibit similar features as
in Figures 5 and 6. When 2, is further increased (case 10), the two-phase zone
occupies almost half of the porous bed, and the interaction between boiting and
natural convection is mare proncunced {see¢ Figure 9). However, when Q0 s finally
raised to 15.0 (case 11), thermal convection in the Tiquid region disappears, and the
phase intertace becomes horizontally flat, as shown in Figure 10. The high heat flux
is, instead, achieved by conduction through the thin liquid layer.

To summarize, the present results for high-permcabifizy porous medja show
that the liquid layer is convective before the onset of boiting and stays convective
after boiling, which is consistent with the experiments conducted in Ref. [16].
Furthermore, Bau and Torrance {16] observed that, at large bottom heat fluxes
(e.g. g, = 7kW,/m? in their experiments) the overlying liquid region reverts back
to a conductive hear transfer mode, which is again in agreement with the present
simulations. For even higher heat fluxes (e.g, q, =11 kW,/m?), Bau and Tor-
rance’s experiments {16] indicated that the system is oscillatory in time, and thus
the present steady state analysis is expected to become invalid,

In addition to the above qualitative comparisons, more quantitative compar-
isons are attempted below. The experiments of Sondergeld and Turcotte {14] are
best suited because the properties of the porous medium tested are less uncertain
and the experimental conditions are well defined. Figure 11 compares the mea-
sured and predicted volume fractions of the vapor phase present in the porous
layer for different bottom heat fluxes. The solid line in Figure 10 represents the
present numerical results, and the dashed line corresponds to the semi-analytical
solution of the one-dimensional model presented in the appendix, which is applica-
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Figure 7. Steady stale solution for case 8 Ra =85 0, =20 and 4 = 1} (a}isotherms and (5}
streamlines.
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ble to cases where the overlying liquid layer is conduction controlied and the
two-phase region is dominated by one-dimensional two-phase countercurrent per-
colation. The squares represent the data points measured in Ref. [14]. It can be
seen that at tow and intermediate bottom heat fluxes the two-dimensional numeri-
cal model predicts the experimental data reasonably well, while the one-dimen-
sional analytical model leads to considerable overpredictions. Beyond a certain
value of the bottom heat flux, the two-dimensional results merge into the one-di-
mensional solution line. This is because, at high heat fluxes, the liquid region
shrinks and reveris back to the conduction regime, and the flow inside the
two-phase zone becomes one-dimensional, as discussed earlier. However, the
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experimental data for £, do not follow this trend, but instead approach an upper
limit at high heat fluxes [14] This deviation between theory and experiment is
suspected to be caused by fluidization of the solid matrix under violent boiling,
which creates additional void spaces through which the vapor can pass. As
mentioned above, the experiments performed by Bau and Torrance [16] do confirm
the transition of the flow from a two- to a one-dimensional mode at high fluxes.
More experiments are needed to resolve the issue.

Recalling that the present two-phase mixture model is mathematically exactly
equivalent to the separate flow model, the present numerical results can be used to
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Figure 9. Steady state solution for case 14 (Ra = 85, @2, = 10.0, and A = 1} {a) isotherms and
isoliquid saturation lines, (h) streamlines for the two-phase mixture, (¢} liquid velocity vectors
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Figere 10, Steady state temperature and
liquid saturation fields for case 11 (Ra =
85,0, =150,and 4 = 1).

verify the linear stability results of Ramesh and Torrance 110] based on the latter
approach. Figure 7 shows that in a porous layer with Ra = 85, the onset of boiling
takes place at a dimensionless bottom heat flux O, of approximately 2.0. This
finding validates the boiling onset curve labeled “BE” in the stability map devel-
oped by Ramesh and Torrance [10]. In addition, Table 2 indicates that for
Ra = 85, the transition from a convective to a conductive overlying liquid layer
occurs at a heat flux between 10 and 15. However, the convection onset curve
labeled “BD” in the same map [10] indicates ¢, = 7.3 {or the transition. This
quantitative discrepancy has recently been found to be related to a hysteresis effect
present in the system under consideration. By performing a transient analysis [17],
it has been shown that the transition from a convective to a conductive overlying
liquid layer can occur over a wide range of bottom heat fluxes, i.e., 8.9 < Q. < 175,
depending on how the heat flux is changed {i.e., decreasing or increasing). The
siight difference between the linear stability result and the minimum heat flux (i.c.,
@, = 8.9} for the transition as found in the transient numerical simulations is
possibly due to the fact that the present numerical analysis includes the capillary
effect, which was neglected in the linear stability analysis.
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Parametric Study

In this subsection the effects are investigated of three major parameters that
characterize the present system, namely, the Rayleigh namber, Ra,; or Ra, the
dimensionless bottom heat flux @, and the geometric aspect rafio A.

The effect of the Rayleigh number can be understood by inspecting the cases
with the same heating strength (say, @, = 2.0Y and Ra = 8.5, 25, and 85. At a low
Rayleigh number (Ra = 8.5, case 2), the energy input at the bottom is dissipated
purely by conduction through the liquid region; thereby, a large two-phase zone
forms. As Ra increases (Ra = 25, case 12), unicelivlar natural convection is
induced by boiling, and the heat is more effectively transferred to the top
boundary, so that the range of the two-phase zone is reduced. This 15 shown in
Figures 12a and 12b. When Ra finally increases to 85 {case 8), thermal convection
in the liquid region is so strong that the two-phase region completely vanishes.

The effect of @, has been discussed earlier when comparing Figures 4-0.

The next parameler of interest is the aspect ratio of the domain, A. The
effect of this parameter is illustrated by comparing Figure 6 (4 = 1.0, case 6) and
Figure 13 (A4 = 0.5, case 7). The values of the other dimensionless groups in these
figures are identical {i.c., Ra = 60 and @, = 4.0). The case with 4 = 0.5 is
caleulated using a 42 x 82 grid. It is interesting to note that the flow inside the
rectangular domain intensifies and the two-phase zone is accordingly reduced in
S1Z¢€.

In closing, it should be pointed out that the CPU time for a typical run
possessing strong multidimensional effects and using the 42 X 42 grid is about 40 s
on a DN10,000 workstation,

CONCLUSIONS

A numerical application of the newly developed two-phase mixture model [5]
has been provided for boiling with natural convection in a horizontal porous layer
heated from below. A fixed grid solution methodology has been developed based
on the new model, and a flexible and convenient means of solving complex coupied
single- and two-phase flows with phase change in capiliary porous media has been
estabiished within the framework of the well-estabiished control-volume-based
finite difference scheme. Unlike previous numerical procedures, the present one
eliminates the need to explicitly track moving interfaces that are internal to the
domain and to prescribe complex compatibility conditions at these interfaces. It is
also shown that the complex problem under consideration can be reduced to &
level of computational effort generally associated with the solution of strongly
coupled and nonlinear single-phase problems.

The numerical results have been compared with a number of experimental
investigations, and good agreement is achieved. Four different flow patterns that
have previously been observed in experiments have been successfully predicted.
They are (1) conductive liquid layer before and after the onset of boiling, (2)
conductive liquid layer before the onset of boiling but convective liquid layer after
the onset of boiling, (3) convective liquid layer before and after the onset of
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{a) (b)

Fipure 12. Steady state sclution for case 12 (Ra = 25, O, = 2.6, and 4 = 1} («) isotherms and
isoliguid saturation lines and (b) streamlines.

boiling, and (4) convective liquid layer at low heat fluxes but conductive liquid layer
at high heat fluxes in the presence of bailing. The numerical results also illustrate
the effects of major parameters such as Rayleigh number, dimensionless botiom
heat flux, and aspect ratio.

APPENDIEX: ANALYTICAL MODEL FCR STEADY
ONE-DIMENSIONAL PROBLEMS

Under steady state conditions, the mixture velocity vanishes, as is evident
from the continuity equation. Thus the energy equation, Eq. (10), valid in both the
single- and two-phase regions, reduces to

Khph,,
+ V- ._........u
I

L
v- (mVH fls
g

g] =0 {AD)

v

Liquid Region

In the liquid region, the second term in Eq. (A1) drops out, and the
one-dimensional heat conduction equation is recovered, which gives the following
linear temperature profile:

g 1o Loy A2)
T, 1-1/0, (
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Figure 13. Steady state solution for case 7 (Ra = 60, O, = 4.0, and A4 = 0.5
(a} isotherms and isoliquid saturation lines and (5) streamiines.

where Y is the dimensioniess coordinate in the vertical direction and the phase
change interface is located at ¥ = 1/0Q,,. Obviously, for a two-phase region to
exist, the dimensionless heat flux ), must be greater than unity,

Two-Phase Region

Integrating Eq. (A1) once and rewriting the resultant equation in terms of the
liquid saturation yields the foilowing dimensionless first-order differential equation
for the liquid saturation:

ds dY

rl [3Y

dJ(s)y ds i Z
Lec(m (s ):~+(15)R32¢:%(r+“2—} (A3)
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Its corresponding boundary condition is, at Y =1 — 1/0, (phase-change inter-
face),

s=148 {A4)

The liquid saturation profile along the height can therefore be obtained by solving
Eq. {A3) subject to Eq. (A4}, using the standard fourth-order Runge-Kutta method.

10.

12.

16.

7.
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