
14. S.E. Battersby, R.F. Cochrane, and A.M. Mullis: J. Mater. Sci., 1999,
vol. 34, pp. 2049-56. a+ 5

X 2
F

X 2
0

a 1
1
X0

dX0

dt
f 2

m 1 1
[1]

15. D. Li, K. Eckler, and D.M. Herlach: Europhys. Lett., 1995, vol. 32,
pp. 223-27.

In Eq. [1],16. D. Li, K. Eckler, and D.M. Herlach: J. Cryst. Growth, 1996, vol. 160,
pp. 59-65.

17. D. Li, T. Volkmann, K. Eckler, and D.M. Herlach: J. Cryst. Growth, a 5
DtF

X 2
F

[2]
1995, vol. 152, pp. 101-04.

18. C.F. Lau and H.W. Kui: Acta Metall. Mater., 1991, vol. 39, pp. 323-27.
is the regular back-diffusion Fourier number, D is the diffu-19. C.F. Lau and H.W. Kui: Acta Metall. Mater., 1994, vol. 42, pp. 3811-16.
sivity (m/s2) in the solid, XF is the length of the microsegrega-
tion domain at the conclusion of solidification—usually
taken to be equal to half the final secondary arm spacing,
and tF is the local solidification time. The other terms inApproximate Models of
Eq. [1] are X0(t), the time-dependent length of the half arm

Microsegregation with Coarsening space; f, the solid fraction in the arm space; t 5 t/tF , the
normalized time; and m, the order of the polynomial used
to approximate the solid solute profile (m 5 2 to 2.5[2,4]).V. R. VOLLER and C. BECKERMANN
The first term on the right-hand side of Eq. [1] accounts for

Microsegregation refers to the processes of solute rejec- the back-diffusion and the second term accounts for the
tion and redistribution at the scale of the dendrite arm spaces coarsening-induced dilution of the liquid solute concentra-
in the mushy region of a solidifying alloy. A representative tion. An important observation from Eq. [1] is that, in the
geometry for a microsegregation analysis is the half-arm absence of back-diffusion, the effect of coarsening on micro-
spacing in a “platelike” morphology (Figure 1). Models of segregation is characterized by the diffusion parameter
microsegregation are based on a solute balance within this
domain. A recent review by Kraft and Chen[1] covers the ac 5
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range of available models. Common assumptions used in
modeling include a binary eutectic alloy; a fixed average Voller and Beckermann[4] show that, across a wide range of
composition, C0; equilibrium at the solid-liquid interface; a cooling conditions and for a coarsening law of the form
constant partition coefficient k ,1; and a straight liquidus X0 5 t1/3, this term takes a constant value of ac 5 0.1.
line in the phase diagram. Two key features of the solute The objective of the current work is to use the result in
balance that need to be included in a comprehensive model Eqs. [2] and [3] to extend the current integral-based micro-
are the following. segregation models to arrive at general integral approxima-

tions that can take full account of both back-diffusion and(1) The mass diffusion of the solute. Typically, the solute
coarsening.diffusion in the liquid is rapid, and, at each instant in

The starting points for the general model developmenttime, a uniform distribution of solute, Cl(t), can be
are the available analytical expressions for microsegregationassumed. In the solid, however, diffusion is much slower
in the presence of coarsening but absence of back-diffusion.and the solute balance needs to account for the so-called
Under this condition, when the solid growth is parabolic,“back-diffusion” of solute into the solid.
Voller and Beckermann[4] obtain the exact microsegrega-(2) Changes in morphology. As solidification proceeds, the
tion expressionarm spacing will coarsen. If the overall solute balance

is maintained in the half-arm domain, this feature will C1

C0
5

2n (1 2 f )(112n)k21

f 2n ef

0
f2n21 (1 2 f)2(112n)k df [4]dilute the solute in the liquid.

One class of microsegregation models involves expres- where n is the exponent in a coarsening model of the form[5]

sions that contain integrals. When coarsening is not
X0 5 t n [5]accounted for and the solid growth is parabolic, Wang and

Beckermann[2] obtain an integral expression that approxi- When the solidification is controlled by a constant cooling
mates the segregation ratio (C1/C0). At the opposite extreme, rate, Mortensen (Eq. [12] in Reference 3) obtains the
accounting for coarsening but neglecting back-diffusion, exact expression
analytical expressions can also be obtained. In the case of
a constant cooling rate, Mortensen[3] presents an analytical

f 5
1 1 n
1 2 k

C[1/(k21)]
1

(C1 2 C0)n eC1

C0
f[k/(12k) (f 2 C0)n df [6]integral expression for the solid fraction, f, and Voller and

Beckermann[4] present an analytical integral expression for
The microsegregation models in Eqs. [4] and [6] are analyti-the segregation ratio when solid growth is parabolic.
cal but only applicable in the limit of coarsening aloneIn recent work, Voller and Beckermann[4] show, analyti-
(i.e., there is no back-diffusion). A consequence of Eq. [3],cally, that coarsening can be included in a microsegregation
however, is that coarsening can be considered to be a back-model by using the enhanced diffusion parameter
diffusion-like microsegregation process characterized by the
enhanced diffusion term ac. This suggests that, with an
appropriate definition of the coarsening exponent n, Eqs.
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Equations [10] and [11] are approximate models for microse-
gregation in the absence of coarsening. Equation [10], which
has been presented in the literature previously,[2] is for the
case when the solidification in the arm space is controlled
by a parabolic growth. Equation [11] is for the case when
the solidification is controlled by a constant cooling rate;
this expression has not been previously presented. Taking
guidance from the main result of Voller and Beckermann,[4]

(Eq. [2]), these approximate models can be extended to the
general case that includes both back-diffusion and coarsen-
ing by replacing the Fourier number, a, by the diffusion
parameter

a+ 5
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[12]

In this way, the general version of the parabolic growth
model, obtained from Eq. [10], is

Cl
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[13]
Fig. 1—Microsegregation domain is half-secondary dendrite arm space in
a platelike morphology.
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f 5 t1/2 [7] where A 5 (m 1 1)[XF /X0]2. Because the time-averaged
behavior of the term [XF /X0]2 is not known analytically, thethen, with reference to Eq. [3],
parameter A is determined subsequently through a compari-
son with a full numerical solution of the microsegregationac 5
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[8]
problem. In the limit of no coarsening (n 5 0), Eq. [13]
reduces to the model proposed by Wang and Beckermann,[2]

This expression indicates that a coarsening-controlled micro-
and in the limit of coarsening alone (a 5 0), it reduces tosegregation process, with a coarsening exponent,
the analytical model presented by Voller and Beckermann.[4]

Integration by parts leads to the alternative form of Eq. [13]:n 5 (m 1 1)a [9]

is equivalent to a back-diffusion–controlled microsegrega- Cl

C0
5

(1 2 f )(112Aa12n)k21

f 2Aa12ntion process characterized by the Fourier number a. Using
Eq. [9] to replace n in Eq. [4] results in the following
approximate relationship: [ f (2Aa12n)(1 2 f )2(112Aa12n)k [14]
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This form is more suitable when the Fourier number, a, is
small. For example, in the limit of a → 0 and n 5 0, the
Scheil equation[2]This expression is identical to the parabolic growth microse-

gregation model developed by Wang and Beckermann (Eq.
[23] in Reference 2).

Cl
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Although in a solidification controlled by a constant cool-
ing rate the growth of the solid fraction is not parabolic, follows immediately from Eq. [14].
a parabolic growth may still be a reasonable “first cut” The general version of the constant cooling model,
approximation. In this way, following from the arguments obtained by substituting Eq. [12] into Eq. [11] is
presented previously, the use of Eq. [9] to replace the coars-
ening exponent, n, in Eq. [6] will result in a back-diffusion f 5

1 1 Ba 1 n
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[16]
only microsegregation model for a constant cooling rate.
The result of this action is the approximate expression
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where B accounts for the time-averaged behavior of the
product (m 1 1)[XF /X0]2. Note, in the limit of a 5 0, this
equation matches the analytical model presented by
Mortensen.[3]

Equation [13] or [14] and Eq. [16] are the key results in
this article. For a given solidification path (parabolic growth
or constant cooling), these models can be used to determine
the progress of the complete microsegregation process
including both back-diffusion and coarsening. This step,
however, requires an evaluation of the integrals in Eqs. [13],
[14], and [16] and the specification of the model parameters
A and B.

For the parabolic growth models, the integrals in Eqs.
[13] and [14] can be evaluated using a high-order numerical
integration scheme. In this work, a 24-point Gaussian quad-
rature is used. If the Fourier number is small (a , 0.2),
then Eq. [14] should be evaluated for microsegregation pre-
dictions. If the Fourier number is large (a . 1), then Eq.
[13] should be evaluated. Practice shows that, when the
Fourier number is small or large, a single application of the
24-point Gauss in the integration range [0, f ] is not of
sufficient accuracy. In these cases, it is recommended that
the integration domain be segmented (segments usually Fig. 2—Predicted eutectic fractions obtained with parabolic growth models.

The continuous lines are the approximate model predictions; the points areworks well) with a 24-point Gauss applied in each segment.
numerical predictions.In terms of finding the parameter A, a crude fitting exercise

(discussed subsequently) indicates that setting A 5 4.5 works
well across a wide range of conditions. Fortran programs
for the evaluation of Eq. [13], parbig.for, and Eq. [14],
parsmall.for, can be found on the web site http://www.ce.
umn.edu/voller/voller research/

The integral in the constant cooling model, Eq. [16], can
also be evaluated with a single application of a 24-point
Gaussian quatrature in the interval [C0, Cl]. Further, setting
the parameter B 5 3.8 works well across a wide range of
conditions. A Fortran program for the evaluation of Eq. [16],
conapp.for, can be found on the web site http://www.ce.
umn.edu/voller/voller research/

The proposed models, Eq. [13] or [14] and Eq. [16],
are tested by comparing their predictive performance with
complete numerical models of microsegregation. These
numerical models, which include both parabolic growth
(parb.for) and constant cooling rate (const.for) versions, are
fully reported elsewhere.[6] Appropriate Fortran 77 codes
are available on the web site http://www.ce.umn.edu/
voller/voller research/

The predictive measure used for comparison will be the
fraction of eutectic formed. The nominal concentration of
the alloy is C0 5 1 and the eutectic liquid concentration is
Ceut 5 5. Interest will focus on the variations of eutectic
fraction with Fourier number, a, and partition coefficient, Fig. 3—Predicted eutectic fractions obtained with constant cooling models.

The continuous lines are the approximate model predictions; the points arek. In all cases, a standard coarsening exponent of n 5 1/3
numerical predictions.will be used. [5] Note, when using the parabolic growth

models, iterations need to be used to find the eutectic
fraction.

Figure 2 compares eutectic predictions from the parabolic and provide a visual reference for the relative accuracy of
growth, Eq. [13] or [14], with predictions obtained from the the approximate expressions.
full numerical model. For practical values of the partition A similar comparison to those shown in Figure 2, but for
coefficient, k, agreement between the approximate and the constant cooling model (Eq. [16]), is shown in Figure
numerical solutions, over a wide range of Fourier numbers, 3. Once again the comparison between the approximate and
is very close. As a reference, eutectic predictions obtained full numerical models is excellent.
when coarsening is absent (n 5 0) and k 5 0.2 are added A potential weak feature of the proposed models could

be the choice of the fitting parameters A, in Eq. [13] or Eq.to the figure. These results indicate the effect of coarsening

3018—VOLUME 30A, NOVEMBER 1999 METALLURGICAL AND MATERIALS TRANSACTIONS A



(a) (b)

Fig. 4—The effect of the fitting parameters A and B: (a) A in the parabolic growth model and (b) B in the constant cooling model.

4. V.R. Voller and C. Beckermann: Metall. Mater. Trans. A, 1999, vol.[14], and B, in Eq. [16]. The reason that the optimum choice
30A, pp. 2183-89.of these values is not the same (A 5 4.5 and B 5 3.8)

5. D.H. Kirkwood: Mater. Sci. Eng., 1985, vol. 73, pp. L1-L4.
indicates the fact that the assumption of a parabolic solid 6. V.R. Voller: Int. J. Heat Mass Transfer, in press, 1999.
growth for the constant cooling case is reasonable but not
exact. Eutectic predictions, however, are reasonably insensi-
tive to the choices of A and B. Figure 4 compares predictions
obtained with the proposed models in which the parameters Tensile Properties of Duplex Metal-A and B have been increased and decreased by ,10 pct.
The results in this figure indicate very little change in the Coated SiC Fiber and Titanium
predictive ability of the approximate models when nonopti- Alloy Matrix Compositesmum values of A and B are used and also suggest that a
universal value of A 5 B 5 4 would be appropriate for

S.Q. GUO, Y. KAGAWA, A. FUKUSHIMA, andboth models.
C. FUJIWARAExact integral expressions for microsegregation in a coars-

ening microstructure in the absence of back-diffusion have SiC(SCS-6) fiber-reinforced titanium alloy matrix com-
been reported in the literature.[3,4] Recent work by Voller posites have a great potential for high-temperature aerospace
and Beckermann[4] indicates that coarsening can be modeled structural applications.[1,2,3] It is known that the interface
in a standard microsegregation model as a back-diffusion reaction between the outermost SCS coating and Ti alloy
process characterized by an enhanced diffusion parameter matrix takes place during the fabrication process, and the
ac (Eq. [3]). This result has been used to extend the analytical formed reaction layer consists of a nonstoichiometric carbide
coarsening microsegregation models to approximate expres- (TiC12x) and silicides (TixSiy).[4,5,6] The reaction layer is
sions that account for both coarsening and back-diffusion. brittle; however, this has only a slight effect on the quasi-
The resulting integral expressions, one for a solidification static tensile strength.[7,8] On the other hand, the effect of
controlled by a parabolic growth of solid (Eq. [13] or Eq. the reaction layer cracking on the fatigue damage evolution
[14]) and one for a solidification controlled by a constant is quite severe.[9,10,11] Such cracking under a cyclic fatigue
cooling rate (Eq. [16]), default to the appropriate limiting loading condition leads to debonding of the SCS coating
cases. In addition, across a wide range of practical condi- layer from the SiC fiber surface, which leads to a significant
tions, predictions obtained with the approximate models reduction in the fiber strength, because the debonding
compare closely with results from numerical models. increases stress concentration at the SiC fiber surface, which

originates from surface flaws of the fiber.[9,12] It was reported
that the tensile strength of the SiC(SCS-6) fiber becomes
about half of the original fiber strength after the debondingOne of the authors (CB) gratefully acknowledges partial
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