
the accuracy of the method can be found from Hong et al. 
(1994a), Hong and Rubinsky (1994), and Hong (1993). 

Conclusion 

A new technique for analyzing problems of heat transfer with 
phase transformation in multiple domains was described. The 
technique employs interactive MRI imaging, thermocouple 
measurements, and finite difference analysis. The paper illus
trates the ability of the technique to calculate the temperature 
distribution in multiple freezing domains that merge. MRI inter
active heat transfer analysis may become an important tool in 
the armamentarium of researchers in heat transfer. 

Acknowledgments 
This research was supported by NIH grant No. 

CA56898-03A1. 
ROl 

References 
Gilbert, J. C , Rubinsky, B., Roos, M. S., Wong, S. T. S., and Brennan, K. M., 

1993, "MRI Monitored Cryosurgery in the Rabbit Brain," Magnetic Resonance 
Imaging, Vol. 11, pp. 1155-1164. 

Hong, J. S., 1993, "Studies on the Use of Freezing for the Controlled Destruc
tion and Preservation of Biological Tissue," PhD Thesis, University of California 
at Berkeley, Dept of Mechanical Engineering. 

Hong, J. S., Wong, S„ Pease, G., and Rubinsky, B., 1994, "MR Imaging 
Assisted Temperature Calculations During Cryosurgery," Magnetic Resonance 
Imaging, Vol. 12, No. 6, pp. 1021-1031. 

Hong, J. S., and Rubinsky, B„ 1994, "MR Imaging Assisted Temperature 
Calculations in Multiple Domain Freezing Problems," Advances in Heat and 
Mass Transfer in Biological Systems, L. J. Hayes and B. Roemer, eds., ASME 
HTD-Vol. 288, pp. 17-24. 

Jaluria, Y., and Torrance, K. E., 1986, Computational Heat Transfer, Hemi
sphere Publishing Co., Washington DC. 

Kaufman, L., Crooks, L. E., and Margulis, A. R., 1983, Nuclear Magnetic 
Resonance Imaging in Medicine, Igaku-Shoin Ltd., New York. 

Keanini, R. G., and Rubinsky, B., 1992, "Optimization of Multiprobe Cryosur
gery," ASME JOURNAL OF HEAT TRANSFER, Vol. 114, pp. 796-810. 

Lunardini, V. J., 1981, Heat Transfer in Cold Climates, Litton Ed. Pub., Inc., 
New York. 

Pease, G. R„ Rubinsky, B., Wong, S. T. S„ Roos, M. S., Gilbert, J. C , and Arav, 
A., 1994, ' 'An Integrated Probe for Magnetic Resonance Imaging Monitored Skin 
Cryosurgery," ASME Journal of Biomechanical Engineering, in press. 

Rubinsky, B., Gilbert, J. C , Onik, G. M., Roos, M. S., Wong, S. T. S., and 
Brennan, K. M., 1993, "Monitoring Cryosurgery in the Brain and in the Prostate 
With Proton MRI," Cryobiology, Vol. 30, pp. 191-199. 

D = dimensionless capillary diffusion function = kr,{\ — 
k)[-dJ(s)/ds] 

f(s) = hindrance function = kruK 
F = dimensionless streamfunction, Eq. (15) 
g = gravity vector 
j = diffusive mass flux 

J(s) = capillary pressure function = j)c/[(e/K)U2a] 
k = relative permeability 

K = absolute permeability 

P = mixture pressure = pv — f„ \(dpjds)ds 
pc = capillary pressure = pv — pi 
q = heat flux 

Ra = two-phase Rayleigh number = Kg(p, — pv)xl(ylDc~) 
s = liquid saturation 

Sh = Sherwood number or dimensionless liquid mass flux 
at the wall = j„xlDc 

u = Darcian mixture velocity vector = p,u, + p„u„ 
u = Darcian velocity in x direction 
v = Darcian velocity in y direction 
x = Cartesian coordinate 
y = Cartesian coordinate 
e = porosity 
r\ = similarity variable, Eq. (15) 
\ = liquid relative mobility = kri(s)/[kr,(s) + vkrv(s)] 
p = viscosity 
v = kinematic viscosity = [kr,(s)lv, + kr„(s)/vu]~[ 

V — ratio of kinematic viscosities of the liquid to vapor 
= vilvv 

p = mixture density = pts + p„(l — s) 
pK = "kinetic" mixture density = pt\ + p„(l — \ ) 
a — interfacial tension 
\P = streamfunction of the two-phase mixture, Eq. (15) 

Subscripts 

dry - dryout 
I = liquid 
r = relative 
x = local 
v = vapor 

w = wall 
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1 Introduction 
Buoyancy-driven two-phase flow in a porous medium is en

countered in numerous important technological applications. 
Examples include boiling flow along an igneous intrusion in 
geothermal reservoirs and condensing flow adjacent to a cold 
surface in heat pipes and porous insulation materials. Recently, 
condensing flow has received particular attention, because the 
flow in the two-phase region, which results from the capillary 
force, is believed to exert a significant effect on film condensa
tion heat transfer (Plumb, 1984; Shekarriz and Plumb, 1986; 
Majumdar and Tien, 1990; Plumb et al., 1990; Chung et al., 
1992). An analogous effect can be expected for film boiling in 
porous media, although no study has been conducted. 

Prior work (Plumb, 1984; Shekarriz and Plumb, 1986; Ma
jumdar and Tien, 1990) has shown that the two-phase flow 
within the above context exhibits features similar to boundary-
layer flow of single-phase fluids (Schlichting, 1968). Based 
on the separate flow model, these theoretical studies, however, 
neglect the vapor flow in order to render the problem analyti
cally tractable. More specifically, the vapor phase is assumed 
to remain at a constant pressure; a two-phase flow problem is 
thus essentially reduced to the consideration of the liquid phase 
flow only. This approach, known as the unsaturated flow theory, 
is widely applied in hydrology (Morel-Seytoux, 1973), and the 
corresponding assumption is called the Richards approximation. 
While the theory has been shown to be a good approximation 
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Fig. 1 Schematics of the physical problems and coordinate systems 

in many hydrological situations, doubts remain regarding its 
validity in two-phase flow with phase change. 

The goal of the present paper is twofold. First, based on a 
newly developed two-phase mixture model (Wang and Becker-
mann, 1993 a), we perform a two-phase boundary layer analysis 
for buoyancy-driven two-phase (both condensing and boiling) 
flow in porous media, wherein only classical boundary layer 
approximations (Schlichting, 1968) are employed. A parallel 
theory for pressure-driven boiling flow has been presented by 
Wang and Beckermann (1993b). Second, using the present full 
two-phase solution, we quantitatively examine the validity of 
the unsaturated flow theory for buoyancy-driven condensing 
flow, so as to reveal the capillary effect on film condensation 
(or boiling) heat transfer in porous media more accurately. 

2 Boundary Layer Analysis 
Both boiling and condensing flows are dealt with in the pres

ent paper, as shown in Figs. 1(a) and 1(b). In each case, a 
two-phase zone where the liquid and vapor phases can coexist 
appears adjacent to the vertical wall. As the heat transfer at the 
wall is gradually enhanced, the liquid saturation at the wall 
approaches its respective limiting value, namely zero for boiling 
and unity for condensation. If the heat flux further exceeds this 
threshold point, a pure vapor or liquid film forms at the wall. 
A complete problem then involves multiple regions consisting 
of a single-phase film on the wall and the adjacent two-phase 
zone. The analysis in this paper focuses solely on the two-phase 
flow without a single-phase film covering the wall, followed by 
a brief discussion on its extension to a multiregion problem. 

Like in all previous theoretical work, use is made of common 
assumptions, such as constant thermophysical properties, an 
isothermal two-phase zone, and the Darcian flow regime for 
both phases. However, simultaneous two-phase flow is consid
ered in the following analysis, and hence the two-phase charac
teristics of the problem are fully retained. 

2.1 Two-Phase Boundary Layer Equations. The pres
ent analysis is based on the two-phase mixture model recently 
proposed by the present authors (Wang and Beckermann, 
1993a). The model is a mathematically equivalent but reformu
lated version of the classical separate flow model. The central 
idea underlying the approach is to view the two-phase system 
similar to a binary chemical mixture. Hence, a two-phase flow 
can uniquely be described by a mass-averaged mixture velocity, 
u, and a diffusive flux, j , which is defined as the difference 
between the mixture velocity and an individual phase velocity, 
U/ or u„. It has been shown in Wang and Beckermann (1993a) 
that the diffusive mass flux, j , defined as 

j = pja, - kpu = -[p„uv - (1 - \ ) p u ] (1) 

is given by 

j = -D(S)Vs+f(s)^£g (2) 

where D(s) and/(i") are the capillary diffusion coefficient and 
hindrance function, respectively, as defined in the Nomencla
ture. Throughout this paper, symbols without a subscript are 
reserved for mixture variables, while the subscripts v and / 
denote variables of the vapor and liquid phases, respectively. 
It can be seen from Eq. (2) that the diffusive mass flux is 
due to a combination of capillary diffusion and gravity-induced 
migration. 

A set of boundary-layer equations has been derived by Wang 
and Beckermann (1993b) for the two-phase mixture motion. In 
the Cartesian coordinate systems shown in Fig. 1, the mixture 
mass conservation, mixture Darcy's law, and liquid mass con
servation equations can be written as 

d(pu) djpv) 

dx 
0 

pu = — ± pKg 
V \ OX 

dy 

K (dp 

ds 

ds ds 
u — + v — 

ox dy 
d_ 

dy 
D 

dy 

KAp dj^di 

vv ds dx 

(3) 

(4) 

(5) 

where the mixture transport properties all depend on the local 
concentration (liquid saturation), s, and are defined in the no
menclature. The plus and minus signs in Eqs. (4) and (5) 
correspond to boiling and condensing flows, respectively. The 
pressure gradient in Eq. (4) is identical to the hydrostatic pres
sure gradient in purely buoyancy-driven flow. The reader is 
referred to Wang and Beckermann (1993a, b) for a detailed 
account of the two-phase mixture model as well as its boundary-
layer simplified version. Here it is worth noting that Eqs. ( 3 ) -
(5) strongly resemble the boundary-layer equations for single-

phase binary mixture flow and transport in porous media. 
The boundary conditions for Eqs. ( 3 ) - ( 5 ) are 

at x = 0, u = 0 and s 

at y = 0, 

1 boiling flow 

0 condensing flow 

0 and s 

and 

when y -* °° u = 0 and s 
1 boiling flow 

0 condensing flow 

(6) 

(7) 

(8) 

where s„ is the constant liquid saturation at the wall, with sw = 
1 representing the marginal condition for a pure liquid film to 
appear on the wall in the condensing case, and sw = 0 corre
sponding to the dryout condition in the boiling case. The more 
general case of a saturation that varies along the wall has been 
examined by Chung et al. (1992). The present use of a uniform 
wall saturation enables a similarity solution to be obtained and 
a direct comparison with the results of Majumdar and Tien 
(1990) (see below). 

Finally, the basic transport functions kr,(s), krv(s), and J(s) 
must be provided to determine the mixture mean transport prop
erties (see Nomenclature). The following relative permeabili
ties and capillary pressure function are assumed in the present 
study: 

and 

j(s) = 1.417(1 - s) 

trv = (i -sy 

2.120(1 - s)2 + 1.263(1 - s)2 

(9) 

(10) 

where the irreducible liquid saturation has been taken to be zero 
for simplicity. This set of constitutive relations has been used 
in several previous studies (Shekarriz and Plumb, 1986; Ma-

Journal of Heat Transfer NOVEMBER 1995, Vol. 117 / 1083 

Downloaded 21 May 2009 to 128.255.19.162. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



jumdar and Tien, 1990; Wang and Beckermann, 1993b). Al
though more accurate relations may be found in the literature, 
the present choice allows for a direct comparison with the results 
of the previous studies. 

2.2 Comparisons With Unsaturated Flow Theory. The 
unsaturated flow theory is valid in the limiting case where the 
vapor pressure can be assumed to be constant. Its parametric 
range can be revealed by a simple order-of-magnitude analysis. 
By application of the modified Darcy's law for two-phase flow, 
and taking the relative permeabilities to be of the order of unity, 
the ratio of the pressure drops across the two-phase zone can 
be approximated by 

Ap, 
AW, 
p,v, 

Vy . PlVl 

Vt p„U„ 
( I D 

Noting that the normal mixture velocity vanishes at the wall 
[ Eq. (7) ] , the normal mass fluxes of the liquid and vapor phases 
can be assumed to be of the same order of magnitude (but 
opposite in sign). Then, Eq. (11) reduces to 

Ap„ 
Ap, 

1/Z7 (12) 

where V is the ratio of the kinematic viscosities of the liquid to 
vapor. It can then be concluded that, for Apv to be negligibly 
small compared to Ap,, as required in the unsaturated flow 
theory, V must approach infinity. In practice, however, V can 
be very small (e.g., V = 0.01466 for a water-steam system at 
atmospheric pressure). This points out the possibility that the 
vapor phase may significantly retard the movement of the liquid 
phase, so that a full two-phase model must be adopted. Indeed, 
the most recent work by Chung et al. (1992) has realized this 
need and attempted to account for the vapor flow. 

In the limiting case where V -> °°, it can be shown that 

(13) 

Then, the governing equation for condensing flow, Eq. (5), 
reduces to 

d\ _ 

ds 
= O(Z7^1)-*0; D/Dc^kr,(s)[-J'(s)]; 

1 df 1 dkr, 

vv ds v, ds 

Dc—\krl(s)[-J'(s)] — c dy 1 dy 
KAp dkri ds 

ds dx v, 
0 (14) 

This is exactly the key equation solved by Majumdar and Tien 
(1990) in their analysis using the unsaturated flow theory. 
Hence, the foregoing order-of-magnitude analysis is substanti
ated. 

2.3 Similarity Solution. Equations ( 3 ) - ( 5 ) along with 
their boundary conditions admit a similarity solution by virtue 
of the following similarity variables: 

77 = ^ Rai'2 ; * = DcRa\l2F(77) and s = s(r]) (15) 
x 

where the local two-phase Rayleigh number, Rav, is defined in 
the nomenclature, and \P is a streamfunction of the two-phase 
mixture such that pu — d^f/dy and pv = —d^/dx. This simi
larity transformation reduces Eqs. (3) - (5) to the following set 
of ordinary differential equations: 

F' = 
vkrv boiling flow 

kr, condensing flow 

. _e ,. , 1 d\ ,_, , 1 df 
(Ds')' + Fs' = ± -V — T)s' 

2 ds 2 ds 

(16) 

(17) 

The corresponding boundary conditions are 

at 77 = 0, F = 0 and ^ = sn (18) 

1 boiling flow • 
when 77 -> 00 F' = 0 and s = •{ (19) 

0 condensing flow 

In the equations above the prime denotes the derivative with 
respect to 77. 

Equations (16) and (17) along with their boundary condi
tions (18) and (19) were numerically solved by the Gear stiff 
method (IMSL, 1991) combined with a shooting procedure 
for s'(0). The singularity at 77 = 0, when the wall saturation 
approaches zero in the boiling case and unity in the condensing 
case, was treated in the same manner as in Wang and Becker
mann (1993b). The present numerical procedures were vali
dated by comparing the saturation profile obtained for the lim
iting case V -> o° with that of Majumdar and Tien (1990), and 
excellent agreement was achieved. 

The two-phase Sherwood number, defined again in the No
menclature, stands for the dimensionless phase change rate at 
the wall. By the definition of the diffusive mass flux, Eq. (2) , 
and using the similarity transformation, one can obtain 

Sh^/Rai ~D(sn,)s'(0) (20) 

The Sherwood number is also a direct measure of the heat flux 
imposed at the wall, such that 

qwx 

hfsDc 

-Shv = D(sw)s' (0)Ra.J/: (21) 

where q„, denotes the wall heat flux. Integration of the equation 
above yields the average heat flux over the entire wall: 

<?,,X 
hfgDc 

2D(s„,)s'(0)Ra[r- (22) 

which can be used to estimate the dryout heat flux in the boiling 
case when sw = 0. In the condensing case, on the other hand, the 
liquid mass flux as calculated from the Sherwood number will 
reflect the capillary effect on film condensation heat transfer. 

Having found the mixture velocity field from the similarity 
solution, the individual phase velocities can be calculated from 
Eq. (1) combined with Eq. (2). An important characteristic of 
the phase velocity fields can readily be inferred from the govern
ing equations, Eqs. (16) and (17), by substituting the definition 
of the hindrance function given in the nomenclature. This leads 
to 

[Ds' -j(r]F' - F)\]' = 0, boiling flow (23) 

[Ds' + | ( 1 - \)(r]F' - F)]' = 0, condensing flow (24) 

Since the terms in parentheses actually represent the transverse 
components of the liquid and vapor velocities in boiling and 
condensing flows, respectively, one can conclude that the liquid 
(vapor) flow is exactly one-dimensional in the direction normal 
to the wall in boiling (condensing) flow. Physically, this is due 
to the fact that there is no driving force for liquid (vapor) 
motion in the longitudinal direction in the respective situation. 
For example, in boiling flow, the liquid momentum equation in 
the x direction reads 

KkH ( dp, 
u,= — - Pig 

p, \ox 

(25) 

where the bracket on the right-hand side remains constant along 
the y direction, as implied by the boundary-layer approxima
tions, and moreover is zero as y -> 00. Hence, the axial liquid 
velocity, u,, is zero everywhere. 
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Fig. 2 Numerical results of two-phase boundary-layer boiling flow: (a) liquid saturation profiles for various 
wall saturations; (b) dimensionless phase change rate at the wall (Sh,/RaJ /2) as a function of wall saturations; 
(c) liquid flow field u,* for s„ = 0 and Ra t = 50; and (d) corresponding vapor flow field u ; / p . Here u* is the 
normalized velocity, u* = u/{KApg/p,), and the dashed line denotes the two-phase boundary layer edge. 

3 Results and Discussion 
Numerical results are presented below separately for boiling 

and condensing flows. Inspection of the similarity equations 
reveals that the solution depends only on the viscosity ratio, v, 
and the wall liquid saturation, sw. Although the density differ
ence between the two phases also has a substantial influence 
on the behavior of these types of flow, it does not enter the 
present similarity solution because of the definition of the mix
ture streamfunction, Vp. 

3.1 Boiling Flow. Illustrative calculations for boiling 
flow are performed for a water-steam system at atmospheric 
pressure. Hence, the value of V is fixed at 0.01466. Focus is 
placed on examining the effect of the wall liquid saturation 
(i.e., the wall heat flux) on two-phase flow behaviors as well 
as determining the dryout heat flux for boiling along a vertical 
plate in a porous medium. 

Figure 2(a) shows the liquid saturation profiles with the wall 
saturation as the curve parameter. It can be noted that these 

profiles are complex in shape and possess several points of 
inflection, contrasting with the simple concentration profile in 
single-phase mass transfer problems. This feature results from 
the fact that the mean transport properties of a two-phase mix
ture are highly nonlinear and exhibit maxima at certain liquid 
saturations. The second distinctive feature of the saturation pro
files shown in Fig. 2(a) is the sharp edges of two-phase bound
ary layers for all wall liquid saturations, since the capillary 
diffusion coefficient becomes extremely small. 

The quantity ShJRal'2 is shown in Fig. 2(b) as a function 
of the wall liquid saturation. It is noted that it increases as the 
wall saturation decreases and finally converges to a value of 
1.358 X 10~3 for the dryout condition (sw = 0) . Hence, the 
dryout heat flux is given by 

hfgDc 
(26) 
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or 

q*ry = 2.716 X 10 -3 »/S° 

L2 
(pi - Pv)gK (27) 

This result together with those obtained in a previous study on 
pressure-driven flow (Wang and Beckermann, 1993b) represent 
the useful bounds for boundary-layer boiling flows. 

The axial mixture velocity, pu (i.e., F'), can readily be 
evaluated from the saturation profiles via Eq. (16). Figures 
2(c) and 2(d) instead depict the liquid and vapor phase velocity 
fields, respectively, in a typical two-phase boundary layer when 
sw — 0 and RaL = 50. The dashed line in these plots represents 
the edge of the boundary layer. The vapor moves primarily 
vertically due to the large density difference between liquid and 
vapor. The liquid is laterally entrained into the boundary layer, 
as indicated theoretically by Eq. (23). It is noteworthy that the 
entrainment is due to buoyancy-induced flow near the wall in 
the present problem, while the corresponding lateral motion in 
pressure-driven flow is caused by viscous displacement (Wang 
and Beckermann, 1993b). 

3.2 Condensing Flow. The main objective of this subsec
tion is to compare the present full two-phase solution with the 
approximate solution obtained by Majumdar and Tien (1990) 

using the unsaturated flow theory. The wall liquid saturation is 
chosen as unity (i.e., the marginal condition for a liquid film to 
appear). Hence, the viscosity ratio becomes the sole parameter. 
Figure 3(a) shows the liquid saturation profiles for different 
values of the viscosity ratio along with the curve obtained using 
the unsaturated flow theory (Majumdar and Tien, 1990). The 
latter is independent of the viscosity ratio V. It can be seen that 
the curves indeed approach the limiting case represented by 
the unsaturated flow theory. However, the value of V for the 
unsaturated flow theory to hold is surprisingly large, i.e., V = 
107. Obviously, for all common fluids, this condition cannot 
be satisfied, indicating that the unsaturated flow theory is ques
tionable when applied to the condensation problem under con
sideration. In fact, for a water-steam system at atmospheric 
pressure (V = 0.01466), the saturation profile from the two-
phase model greatly deviates from that predicted by the unsatu
rated flow theory. 

As mentioned earlier, the capillary effect on condensation 
heat transfer is reflected by the liquid mass flux at the wall, j w , 
or Shr/Raj'2 in a dimensionless form. Figure 3(b) depicts the 
influence of V on Sh^/Ra]'2. It is clearly seen that the unsatu
rated flow theory greatly overpredicts the dimensionless liquid 
mass flux, with Sh^/Ra]'2 = 0.288, while the present two-phase 
model gives a value of only 4.35 X 10~3. This 66-fold differ-

f 0.4 

Unsaturated flow theory (Majumdar & Tien, 1990) 
Two-phase model (this work) 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Similarity variable, T| 

(a) 
-*-= 2.096e-0l 

10' 10" 10° 

viscosity ratio v 

(b) 

- * = 3 900e-03 

(c) liquid velocity u. (d) vapor velocity uj p 

Fig. 3 Numerical results of two-phase boundary-layer condensing flow: (a) saturation profiles for various 
viscosity ratios (v = v-,/vv) and comparison with the unsaturated flow theory (Majumdar and Tien, 1990); 
(b) dimensionless liquid mass flux at the wall (Shx/RaJ'2) as a function of the viscosity ratio; (c) liquid flow 
field u,* for s „ = 1, RaL = 50, and v = 0.01466; and (d) corresponding vapor flow field utlp. Here u* is the 
normalized velocity, u* = u/(KApg7/u,,), and the dashed line denotes the two-phase boundary layer edge. 
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ence suggests that the previous theoretical investigations based 
on the unsaturated flow theory (Plumb, 1984; Shekarriz and 
Plumb, 1986; Majumdar and Tien, 1990) have exaggerated the 
effect of the capillary force on condensation heat transfer in 
porous media. The overprediction results from the neglect of 
the vapor flow that is actually very strong due to the low vapor 
density. 

Figures 3(c) and 3(d) displays the liquid and vapor flow 
fields in the two-phase boundary layer corresponding to a wall 
saturation of unity. The dashed line in these plots again denotes 
the edge of the boundary layer. Also note the large difference 
in the velocity scale given at the top of the figures. The liquid 
flow is essentially confined to a region very near to the wall 
where the vapor condenses into the liquid. As a result of its 
large density, the liquid moves primarily downward (however, 
the normal liquid velocity is not zero). The axial liquid velocity 
quickly diminishes with the normal distance, because it is pro
portional to the cubic of the liquid saturation, which furthermore 
has an extremely steep profile [see Fig. 3 (a ) ] . Figure 3(d) 
shows that the vapor is only laterally entrained into the two-
phase boundary layer, confirming the theoretical outcome of 
Eq. (24). 

The present result agrees well with the assumption of Chung 
et al. (1992) regarding one-dimensional vapor flow. However, 
it should be kept in mind that the result is a consequence of the 
present analysis. Therefore, the theoretical framework itself is 
not subject to modifications in general situations where two-
dimensional vapor flow is present, for example, in combined 
buoyancy- and pressure-driven two-phase flow. 

Unfortunately, the available condensation experiments 
(White and Tien, 1987; Chung et al , 1992) appear to be inap
propriate for validation of the present model. As pointed out 
by Kaviany (1991), the measured liquid film thicknesses in 
these experiments are of the same order as the bead diameters, 
causing a continuum treatment like the Darcy's formulation 
to break down. Furthermore, the experiments seem to be not 
representative of the capillary effect on condensation heat trans
fer. Indeed, as indicated by Plumb (1990), the physical models 
of Cheng (1981) and Chung et al. (1992) produce very similar 
results for the condensation rate under these experimental condi
tions, even though the latter is much more sophisticated and 
includes many non-Darcian effects as well as the capillary ef
fect. 

3.3 Combined Single- and Two-Phase Flow. Beyond 
the marginal condition where either sw = 0 in boiling flow or 
s„ = 1 in condensing flow, a single-phase film appears on the 
wall in addition to the two-phase zone. In this case, the two-
phase analysis needs to be extended to incorporate the single-
phase flow within the film, and the latter can readily be dealt 
with, as done in many previous studies. The two-phase analysis 
is still valid except that the phase interface becomes permeable. 
As a result, the normal mixture velocity, v, is no longer zero as 
in Eq. (7), but must be obtained from the coupling between 
the single- and two-phase flows. Such an extension is not per
formed here for brevity. 

4 Conclusions 
Complementing a previous investigation on pressure-driven 

flow (Wang and Beckermann, 1993b), the present study analyt

ically explores buoyancy-driven two-phase flow along a vertical 
plate in a capillary porous medium. Full two-phase similarity 
solutions were obtained for both boiling and condensing flows. 
Illustrative numerical results were presented for the liquid satu
ration profile, the flow fields of the two phases within the two-
phase boundary layer, and the phase-change rate at the wall. 
The dryout heat flux in boiling flow was correlated with the 
fluid thermophysical properties and porous medium parameters. 
Experimental verification of these results is, however, neces
sary. For condensing flow, the present work improves previous 
approximate solutions based on the unsaturated flow theory, 
and further indicates that the theory is questionable for condens
ing flow. Accurate modeling of the capillary effect on film 
condensation heat transfer appears to require a full two-phase 
treatment. Further experimental work should also concentrate 
on this effect. 

A comparison of the boiling and condensing boundary layer 
flows, as shown in Figs. 2(c, d) and 3(c\ d), indicates that 
the boiling boundary layer is normally wider than the one in 
condensing flow, and that a two-phase crossflow pattern is rep
resentative of both boiling and condensing buoyancy-driven 
flows. 
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