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Abstract

Experiments are conducted to measure the internal solid fraction evolution of equiaxed dendritic crystals that are freely growing and

settling in an undercooled melt using the transparent model alloy succinonitrile–acetone. The internal solid fraction is determined from

the measured settling speed and crystal envelope shape and size. Depending on the melt undercooling and acetone concentration, the

internal solid fraction is found to vary between 0.55 and 0.1. In all experiments, the internal solid fraction decreases continually during

settling. Based on heat and solute balances, a model is developed for predicting the internal solid fraction evolution under convective

conditions. Nusselt and Sherwood number correlations are obtained that allow for the calculation of the thermal and solutal boundary

layer thicknesses at the crystal envelope. The measured and predicted internal solid fraction evolutions are found to be in good

agreement.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In Part 1 of this study [1], dendrite tip growth of
equiaxed crystals settling in an undercooled melt was
investigated experimentally using the transparent model
alloy succinonitrile (SCN)–acetone. The results provide not
only for additional experimental validation of standard
dendritic growth theory [2–5], but also for increased insight
into the effect of flow on dendrite tip growth. In the present
paper (Part 2), the same experiments are used to explore
the development of the dendritic solid behind the tips,
internal to the crystal envelope. As discussed in more detail
below, the envelope of a dendritic crystal is defined as a
particular closed surface that connects the tips of all
actively growing branches (see Fig. 1). Hence, the evolution
of the size and shape of the envelope is solely governed by
dendrite tip growth. Knowledge of tip growth kinetics is,
however, not sufficient to fully characterize the growth of

an equiaxed crystal since the dendrite arms can have
different thicknesses and some (inactive) arms internal to
the envelope may not be growing at all. Therefore, it has
become customary to define an internal solid fraction, ei,
which is simply the solid volume divided by the envelope
volume, as an additional quantity to describe a dendritic
crystal [6–10]. Note that the internal solid fraction of
dendritic crystals should be distinguished from the regular
solid fraction in the mushy zone of solidifying alloys. Inside
mushy zones, the melt is usually not undercooled, and the
solid fraction can be determined from standard microse-
gregation models (e.g., Lever rule, Scheil equation). On the
other hand, the evolution of the internal solid fraction is
governed by heat and solute transport from the dendritic
crystal into the undercooled melt surrounding it. The
concept of an internal solid fraction has proven to be very
useful in the modeling of the grain structure formation in
the casting of metal alloys [9–11].
While several theoretical models for the internal solid

fraction evolution in dendritic growth into an undercooled
melt have been proposed [7,8,12,13], their direct experimental

ARTICLE IN PRESS

www.elsevier.com/locate/jcrysgro

0022-0248/$ - see front matter r 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.jcrysgro.2007.09.019

�Corresponding author. Tel.: +1319 335 5681; fax: +1 319 335 5669.

E-mail address: becker@engineering.uiowa.edu (C. Beckermann).



Author's personal copy

validation has been difficult. This is undoubtedly related to
the fact that the morphology of a dendritic crystal is
extremely complex, at a sub-millimeter scale, and constantly
changing. Li and Beckermann [14] estimated the solid volume
of dendritic crystals using images from the microgravity
experiments of Glicksman and coworkers involving pure
SCN [15]. These measurements were found to be in good
agreement with a simple model based on heat diffusion from
the crystal envelope into the uniformly undercooled melt. The
results indicate that at small times, but in the steady tip
growth regime, the internal solid fraction varies inversely with
time, t, according to �i�R=vtt, where R and vt are the
dendrite tip radius and velocity, respectively. The internal
solid fraction decreases initially, because a dendritic crystal
develops from a small solid seed with ei ¼ 1. At large times,
the internal solid fraction is predicted to reach a constant
value given by ei ¼ O, where O is the dimensionless melt
undercooling. All other validation efforts have been indirect.
Examples include measurement of the temperature recales-
cence associated with nucleation of equiaxed grains in
castings or measurement of the fraction of interdendritic
phases in fully solidified alloys (e.g., Refs. [6,7,12,16]).

The present experiments involving settling of equiaxed
dendritic crystals in an undercooled melt offer a unique
opportunity to study the evolution of the internal solid
fraction. By measuring the settling speed and the crystal
envelope shape and size, the internal solid fraction can
readily be determined. Considerable previous experimental
work has resulted in the availability of a correlation for the
drag coefficient of equiaxed dendrites [17]. Furthermore,
the solid and liquid densities of SCN–acetone alloys have
also been measured to a high degree of accuracy [18]. As
opposed to the investigation of Li and Beckermann [14]

involving microgravity data, the internal solid fraction in
the present experiments is likely to be affected by the flow
of the melt relative to the settling crystal. Thus, the primary
objective of the present study is to understand the effect of
melt flow on heat and solute transport from equiaxed
crystals growing in an undercooled melt. The measure-
ments are used to develop a model to predict the internal
solid fraction evolution in the presence of melt convection.
The only previous such model was not validated experi-
mentally [13]. All details of the experimental setup and
measurement procedures are described in Part 1 of this
study.

2. Measurement of internal solid fraction

The equiaxed crystal envelope geometry used in the
present study is the same as in de Groh III et al. [17] and is
illustrated in Fig. 1. It consists of six orthogonal square
pyramids that are joined together at their base. Thus, the
center volume has six square surfaces, coinciding with the
bases of the pyramids, and eight equilateral triangular
surfaces. The tips of the six pyramids coincide with the tips
of the six primary dendrite arms of an equiaxed crystal.
The distance from the tips of two opposing pyramids is
equal to twice the measured average primary dendrite arm
length, L̄ (see Fig. 12 in Part 1). The tips of the secondary
dendrite arms are located at the edges of the pyramids. The
pyramid angle, a, is defined as the angle between the
primary dendrite arm axis and a straight line connecting
the tips of the secondary arms. An average value of this
angle was measured from the images acquired for each
experiment and is listed in Table 1. The uncertainty in the
angle measurement was 751. It can be seen from Table 1
that in all experiments the average pyramid angle was
within two degrees of 311.
The length L̄ and angle a completely define the envelope

and allow for the calculation of its volume, Ve, and surface
area, Ae, according to Ref. [17]:

V e ¼ ðt
2
1t2 þ 5t31=6ÞL̄

3
¼ f 1L̄

3
(1)

and

Ae ¼ 6t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t22 þ t21=4

q
þ t21

ffiffiffi
3
p

� �
L̄
2
¼ f 2L̄

2
, (2)

where t1 ¼ tan a=ð1þ tan aÞ and t2 ¼ 1=½2ð1þ tan aÞ�. The
radius, re, of the envelope volume equivalent sphere (see
Fig. 1) is given by

re ¼ ½3f 1=ð4pÞ�
1=3L̄ ¼ f 3L̄. (3)

Note that the geometric factors f1, f2, and f3 are constant
for a given angle a; for example, for a ¼ 301, they are equal
to 0.0833, 1.30, and 0.271, respectively. If the envelope
were taken as a sphere of radius re ¼ L̄, the three factors
would be equal to 4p/3, 4p, and 1, respectively.
The measured envelope volume equivalent sphere

diameter, de ¼ 2re, is plotted as a function of time in
Fig. 2. Results are shown for each of the eight experiments
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Fig. 1. Schematic of the equiaxed crystal envelope geometry; the dashed

circle indicates the envelope volume equivalent sphere.
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summarized in Table 1. In all cases, the equivalent diameter
increases linearly with time. Thus, the equivalent envelope
growth velocity, given by ve ¼ dre=dt, is a constant during
an experiment. These velocities are also shown in Fig. 2
and listed in Table 1. The envelope growth velocity is
constant since the average primary dendrite tip growth
velocity, v̄t ¼ dL̄=dt, is constant in the present experiments,
as explained in Part 1.

Having defined the crystal envelope, the internal solid
fraction can be obtained from a force balance on the
settling crystal. Neglecting acceleration effects, a balance of
the drag and buoyancy forces on the crystal can be written
as

1

2
rlU

2 pd2
e

4

� �
CD

KSe
¼ gV sðrs � rlÞ, (4)

where rl and rs are liquid and solid densities, respectively,
U is the measured settling speed, g ( ¼ 9.81m2/s) is the
gravitational acceleration, and Vs is the solid volume. The
drag coefficient CD corresponds to that of a solid sphere of
diameter de and is calculated from a correlation developed
in Ref. [19] for small to intermediate Reynolds numbers:

CD ¼
24

Re
ð1þ 0:15Re0:687Þ, (5)

where the Reynolds number is defined as Re ¼ Ude=n and n
is the kinematic melt viscosity. As shown in Table 1, for the
range of settling speeds and envelope volume equivalent
sphere diameters measured in the present experiments, and
using the properties in Table 3 of Part 1, the Reynolds
number of the settling equiaxed crystals varied from 0.4
to 10. The equiaxed dendrite settling speed ratio, KSe, in
Eq. (4) is given by the following correlation developed by
de Groh III et al. [17] based on settling experiments
involving a range of scaled (such that the Reynolds
numbers are in the same range as in the present
experiments), but realistically shaped models of dendrites:

KSe ¼ 1:26 log10
c

0:163

� �
�

2b2 þ 3ð1� tanhðbÞ=bÞ

2b2ð1� tanhðbÞ=bÞ
, (6)

where c ¼ pd2
e=Ae is the envelope sphericity and b ¼

re=
ffiffiffiffiffiffi
Ke

p
is the ratio of the envelope radius to the square

root of the permeability of the dendritic structure inside

of the envelope. The first term on the right-hand side of
Eq. (6) accounts for the effect of the non-spherical shape of
the envelope on the drag. For a given angle a, the sphericity
is a constant (e.g., c ¼ 0:712 for a ¼ 301). The second term
accounts for the fact that the envelope is porous and melt
can flow through the internal dendritic structure. However,
based on an estimate of the permeability, bb10 and the
second term can be taken as equal to unity. The above
correlation was validated in Ref. [17] by comparing
measured and predicted settling speeds of equiaxed
dendritic crystals in a variety of transparent and metallic
alloys.
Introducing the internal solid fraction as �i ¼ V s=V e,

Eq. (4) can finally be re-written as:

�i ¼
3U2CD

4deKSeg

rl
rs � rl

� �
. (7)

This equation allows for the calculation of the internal
solid fraction from the settling speed, U, and the average
primary dendrite arm length (since de ¼ 2f 3L̄). These two
measured quantities are plotted as a function of time in
Figs. 3 and 12 in Part 1. All properties, including the
densities as a function of temperature and solute concen-
tration, are taken from Table 3 in Part 1. The internal solid
fractions obtained in this manner are shown as solid lines
in Fig. 3 for each of the eight experiments in Table 1. It can
be seen that the internal solid fraction generally ranges
from about 0.55 to 0.1. Higher internal solid fractions were
not observed because tracking of the crystals started only
when they had already grown a well-developed dendritic
structure. In all eight experiments, the internal solid
fraction decreases with time during settling. However, in
some experiments (e.g., 1, 2, and 8) the decrease is less than
0.05, while in others (e.g., 7) it is as high as 0.45. Referring
to the envelope diameters plotted in Fig. 2, it can be seen
that larger crystals (e.g., in experiments 3, 6, and 8) often
have a lower internal solid fraction than smaller crystals
(e.g., in experiment 7), but there is no direct correlation.
The internal solid fraction measurements shown in Fig. 3
are analyzed theoretically in the next section.
The estimated uncertainty in the internal solid fraction

from the above settling calculations is equal to about 15%.
Most of that uncertainty comes from the difficulty to

ARTICLE IN PRESS

Table 1

Experimental conditions and summary of envelope and settling variables

Exp. C0 (wt%) DT (K) Ui (mm/s) Uf (mm/s) a (deg) Ve (mm/s) Rei Ref

1 1.08 0.53 3.47 5.93 30 4.1 1.43 3.94

2 1.08 0.54 4.05 7.38 30 4.3 1.79 5.21

3 1.08 0.84 3.01 8.11 31 12.5 1.25 9.55

4 1.40 0.47 2.64 4.23 29 2.0 0.69 1.62

5 2.96 0.82 2.62 4.20 31 3.1 0.85 2.15

6 2.96 1.3 2.08 5.57 32 9.1 0.68 4.91

7 3.97 0.75 1.91 1.94 32 1.6 0.41 0.61

8 3.97 1.23 1.74 4.33 32 5.8 0.70 3.27

A. Badillo et al. / Journal of Crystal Growth 309 (2007) 216–224218
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accurately measure the average angle a between the
primary dendrite arm axis and a straight line connecting
the tips of the secondary branches. However, since a
constant value of a is taken for each experiment, and
variations in a between the experiments are small (see
Table 1), this uncertainty does not affect the general nature
of the internal solid fraction variations with time and the
differences between the values of the internal solid fraction
among the various experiments shown in Fig. 3. It should
also be noted that another choice for the envelope
geometry, for example one that is less form fitting, would

result in different values for the internal solid fraction.
Again, this does not affect the nature of the internal solid
fraction variations in Fig. 3.

3. Model development and comparison with experimental

results

In the following, a model is developed to predict the
internal solid fraction during settling of equiaxed dendritic
crystals in an undercooled melt. The model is based on heat
and solute balances. The measurements are used to develop
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a convection heat and mass transfer correlation for
equiaxed crystals. The model predictions are then com-
pared to the results presented in the previous section.

3.1. Heat and solute balances

The latent heat and solute rejected during the growth of
an equiaxed crystal are transported from the crystal
envelope into the undercooled melt, as illustrated in
Fig. 4. Hence, heat and solute balances can be written,

respectively, as

rsLf
dV s

dt
¼ Aekl

Tn � T0

dT
(8)

and

rsC
n

l ð1� kÞ
dV s

dt
¼ AerlDl

Cn

l � C0

dC
, (9)

where Lf is the latent heat of fusion, k is the partition
coefficient, kl is the liquid thermal conductivity, Dl is
the liquid mass diffusivity, and T0 and C0 are the constant
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far-field temperature and solute concentration of the
undercooled melt, respectively. The finely dispersed soli-
d–liquid mixture inside the crystal envelope is assumed to
be in equilibrium and at a temperature T* and liquid solute
concentration Cn

l . This temperature and solute concentra-
tion are assumed to be constant during the present settling
experiments. The thermal and solutal boundary layer
thicknesses, dT and dC, are also shown in Fig. 4. They
are defined such that the average heat and solute gradients
at the envelope surface are given by ðTn � T0Þ=dT and
ðCn

l � C0Þ=dC, respectively.
Eqs. (8) and (9) are rewritten as follows. Since

�i ¼ V s=V e, the solidification rate can be expanded as

dV s

dt
¼ �i

dV e

dt
þ V e

d�i
dt

. (10)

Eq. (10) states that the solid volume can change due to a
change in the envelope volume at a constant internal solid
fraction and due to a change in the internal solid fraction at
a constant envelope volume. The change in the envelope
volume can be expressed in terms of the equivalent
envelope growth velocity as

1

V e

dV e

dt
¼

3

re
ve. (11)

Recall that ne is constant in the present experiments (see
Fig. 2). The dimensionless thermal and solutal under-
coolings are defined, respectively, as

OT ¼
Tn � T0

Lf=cl
and OC ¼

Cn

l � C0

C�l ð1� kÞ
, (12)

where cl is the liquid specific heat. Introducing Eqs. (10)–
(12) into Eqs. (8) and (9), and taking rs � rl, the heat and
solute balances become finally

d�i
dt
¼

f 4al
dTre

OT �
3ve

re
�i (13)

and

d�i
dt
¼

f 4Dl

dCre
OC �

3ve

re
�i, (14)

where al ¼ kl=ðrlclÞ is the liquid thermal diffusivity and
f 4 ¼ f 2f 3=f 1. For the present envelope geometry with
a=301, f 4 ¼ 4:21; if the envelope were taken as a sphere of
radius re ¼ L̄, f 4 ¼ 3. A comparison of the above two
equations yields

OC

OT
¼ Le

dC
dT

, (15)

where Le is the Lewis number, given by Le ¼ al=Dl.
Eq. (15) must be valid at all times.
The dimensionless thermal and solutal undercoolings in

Eqs. (13) and (14) are not known a priori. Recognizing that
the total imposed melt undercooling, DT, is the sum of the
thermal and solutal undercoolings, the following additional
relation results (see Part 1):

DT ¼
Lf

cl
OT þ

kDT0OC

1� ð1� kÞOC
, (16)

where DT0 ¼ mC0ð1� 1=kÞ is the equilibrium freezing
temperature range, in which m is the liquidus slope. Given
expressions for dT and dC (see below), and using the
measured equivalent envelope radii and growth velocities,
re and ne (see Fig. 2), the set of equations given by Eqs. (13),
(14), and (16) is now closed and can be solved for the
internal solid fraction as a function of time, as well as for
the dimensionless thermal and solutal undercoolings
(which are constant). Instead of using the measured re
and ne, the equivalent envelope radius and growth velocity
could also be obtained from a theoretical prediction of the
dendrite tip growth velocity, since ve ¼ dre=dt ¼ f 3v̄t.
Recall from Part 1 that for the present settling experiments
the average dendrite tip growth velocity, v̄t, is accurately
predicted by the standard free dendritic growth theory for
alloys [2–5].

3.2. Quasi-steady growth

Before proceeding, it is useful to examine the solution of
the above set of equations in the long-time limit. The quasi-
steady growth regime is defined here as the limit where
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d�i=dt ¼ 0. Then, the heat and solute balances given by
Eqs. (13) and (14) can be solved directly for the internal
solid fraction to yield

�i ¼
f 4al
3vedT

OT ¼
f 4Dl

3vedC
OC. (17)

These two equations are generally valid in the quasi-
steady growth regime. However, they must be interpreted
carefully. If the boundary layer thicknesses were given by

dT ¼ ðf 4=3Þal=ve and dC ¼ ðf 4=3ÞDl=ve, (18)

Eq. (17) would yield that the internal solid fraction is equal
to the dimensionless undercoolings, i.e., �i ¼ OT ¼ OC.
Note that f 4=3 ¼ 1:4 for the present envelope geometry
with a ¼ 301, and f4/3 ¼ 1 for a spherical envelope. This is
essentially the result obtained by Rappaz and Thevoz [8],
Li and Beckermann [14], and others. Even though Eq. (18)
may be appealing from a theoretical point of view, since the
diffusion boundary layer thickness at a moving front is
commonly taken to be proportional to the ratio of the
diffusivity to the growth velocity, it is not generally valid,
even in the quasi-steady growth regime. This is explained in
more detail next.

The fact that the diffusion boundary layer thickness at a
moving front is proportional to the ratio of the diffusivity
to the growth velocity, as in Eq. (18), is only true in the
limit of large growth Péclet numbers. The thermal and
solutal envelope growth Péclet numbers are defined as
PeT ¼ vere=al and PeC ¼ vere=Dl, respectively [16]. On the
other hand, in the limit of small growth Péclet numbers, an
analytical solution of the diffusion equation around a
sphere reveals that the boundary layer thicknesses are given
by dT ¼ dC ¼ re, which is independent of the growth
velocity. According to Eq. (17), this would result in the
internal solid fraction continually decreasing as the
envelope radius increases during (quasi-steady) growth,
which contradicts the seemingly general statement that
�i ¼ OT ¼ OC ¼ const:. Based on the data in Table 1 and
Fig. 2, the thermal Péclet number in the present experi-
ments is always much less than unity, i.e. PeT51, while the
solutal Péclet number varies from about 0.35 to 15, with
the average being about unity. While an analytical solution
is available for the quasi-steady boundary layer thickness
that is valid for any growth Péclet number [16], it is still
only valid for a sphere growing in a purely diffusive
environment. In the present settling experiments, the
boundary layer thicknesses can be expected to strongly
depend on the melt velocity relative to the crystal,
especially since the flow Reynolds number can be as large
as 10 (see Table 1). Neither Eq. (18) nor the expression
dT ¼ dC ¼ re accounts for any convection effects. Convec-
tion effects can be dominant even if the growth Péclet
number is of the order of unity.

Based on this discussion, it must be concluded that the
boundary layer thickness in Eq. (17) can take any value,
depending on the nature of the heat and solute transport
from the crystal envelope into the undercooled melt, and

that �i ¼ OT ¼ OC is not generally valid. The presence of
the equivalent envelope growth velocity, ne, in Eq. (17)
simply indicates that the internal solid fraction is, as
expected, a function of how fast the envelope grows. It
does not reveal anything about the boundary layer
thicknesses. They must be obtained from separate rela-
tions. Eq. (18) should be used only if (i) the growth is quasi-
steady, (ii) the envelope growth Péclet numbers are large,
and (iii) the growth occurs in a purely diffusive environ-
ment (no flow). None of these conditions are satisfied in the
present experiments. The fact that the growth in the present
experiments is generally not in the quasi-steady regime can
be seen in Fig. 3 by noting some of the large measured
internal solid fraction variations with time during settling.

3.3. Determination of the thermal and solutal boundary

layer thicknesses

The thermal and solutal boundary layer thicknesses in
the present settling experiments are obtained from the
measured internal solid fractions in a trial-and-error
fashion, as explained below. It is assumed that the
boundary layer thicknesses do not depend on the envelope
growth velocity, ve, as may be expected in the diffusion
limit. This assumption is valid if the envelope growth Péclet
numbers are relatively small (see above) or if the heat and
solute transport from the settling equiaxed crystals is
dominated by convection effects. Additional justification is
provided below. With this assumption, the boundary layer
thicknesses can be expressed in terms of Nusselt and
Sherwood number correlations of the following form:

Nu ¼ de=dT ¼ cRe1=2Pr1=3; and

Sh ¼ de=dC ¼ cRe1=2Sc1=3, ð19Þ

where Pr ¼ n=al and Sc ¼ n=Dl ¼ Pr Le are the Prandtl
and Schmidt numbers, respectively, and c is a constant.
These kinds of relations are used extensively to correlate
heat and mass transfer data for forced convection from
bodies of arbitrary shape [20]. Due to the limited
availability of experimental data, the exponents on the
Reynolds, Prandtl, and Schmidt numbers are assumed to
be known. The exponent of 1

2 on Re has been found to work
well for small to intermediate Reynolds numbers, regard-
less of the shape of the body. The exponent of 1

3
on Pr and

Sc is only valid for those numbers that are equal to or
greater than unity, which is the case in the present
experiments (see Table 3 in Part 1), but not for liquid
metals. The constant c depends on the shape of the body,
but can be expected to be the same in all of the present
experiments, since the envelope sphericity is approximately
constant (see above). All of these constants can be expected
to be the same for both heat and solute transport. The
above correlations are not valid for Re! 0, which is
consistent with the assumption that the diffusion limit is
not important in the present experiments.
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The correlations given by Eq. (19) imply that

dC
dT
¼ Le�1=3. (20)

Note that substitution of Eq. (20) into Eq. (15) yields the
interesting result that OC=OT ¼ Le2=3. Eq. (19) also
indicates that the boundary layer thicknesses vary accord-
ing to dT�d1=2

e U�1=2 and dC�d1=2
e U�1=2. In the present

experiments, the equivalent envelope diameter increases
linearly with time, i.e. de�t (see Fig. 2). Furthermore, the
settling speed also increases linearly with time, i.e. U�t (see
Fig. 3 in Part 1). Therefore, the boundary layer thicknesses
can be assumed to be constant. The above relations then
allow for a relatively easy determination of the boundary
layer thickness from the measured internal solid fractions,
because for each experiment only one value needs to be
obtained. The following trial-and-error procedure was
adopted. Guessing a value for dC (or dT), the set of
equations provided in Section 3.1 [i.e., Eqs. (13), (14) and
(16)] and Eq. (20) were solved numerically using the
measured internal solid fraction from the settling calcula-
tions at t ¼ 0 as the initial condition. The internal solid
fraction was stepped in time until the conclusion of the
experiment (t � 80 s). The predicted internal solid fraction
at that time was then compared to the measured value from
the settling calculations at the same time. A new value for
the boundary layer thickness was guessed, and the above
steps were repeated, until the final internal solid fractions
agreed.

The thermal and solutal boundary layer thicknesses
obtained in this manner are listed for each experiment in
Table 2. Focusing on the solutal boundary layer thickness
(since dT=dC ¼ Le1=3 � 4:5), it can be seen that all dC are
within 20% of 0.24mm, except for experiment 7 where
dC ¼ 0:58mm. Considering that ne varies by more than a
factor of seven among the experiments, it is clear that an
expression of the form of Eq. (18), i.e. dC�Dl=ve, would not
work in correlating the measured boundary layer thick-
nesses. The reason that dC is so similar among most
experiments is related to dC�d1=2

e U�1=2; this product is not
only independent of time, but also of the same magnitude
in most experiments. A larger crystal has a thicker
boundary layer, but a larger crystal also settles faster,

which causes the boundary layer to become thinner. The
two effects approximately cancel each other in the same
manner for all crystals. The reason why dC is so different
for experiment 7 is not entirely clear, but could be related
to the fact that this crystal had the smallest envelope
diameters and growth velocity (see Table 1). For such a
small crystal, the present measurements become less
accurate. However, the crystal in experiment 4 was only
slightly larger, and its solutal boundary layer thickness is
close to 0.24mm.
Table 2 also lists the undercoolings resulting from the

solution of the governing set of equations, using the
measured boundary layer thicknesses. The dimensionless
thermal undercooling is generally much smaller than the
dimensionless solutal undercooling, since OT ¼

Le�2=3OC ¼ 0:05OC. However, this does not mean that
the thermal undercooling is negligibly small in the present
experiments. Converting the dimensionless undercoolings
to the dimensional undercoolings DTT and DTC in Kelvin,
Table 2 shows that, for the first three experiments with the
smallest solute concentration, the ratio DTT=DTC is as
high as 0.38. In other words, the thermal undercooling is a
significant fraction of the total imposed melt undercooling,
DT. This ratio reduces to about 0.11 for the last two
experiments with the largest solute concentration.
As the final step in the model development, the boundary

layer thicknesses obtained from the heat and solute
balances are used to determine a value for the constant c

in the Nusselt and Sherwood number correlations given by
Eq. (19). The measured solutal boundary layer thickness
and equivalent envelope diameter were substituted into
Sh ¼ de=dC to obtain a measured Sherwood number. As
above, the measured settling speed and de were substituted
into Re ¼ Ude=n to obtain a measured Reynolds number.
Fig. 5 shows a plot of the measured Sherwood versus
Reynolds number variations for each of the eight experi-
ments. As expected, they all follow the same trend, except
for experiment 7. The data in Fig. 5, weighed equally for
each experiment, were fit to the correlation given by
Eq. (19), resulting in c ¼ 0.312. The final correlation is
included in Fig. 5 as a thick solid line. It can be seen to
predict the measured Sherwood numbers to within better
than 20%, except for experiment 7. The value of the
constant c obtained in this manner is of a reasonable
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Table 2

Boundary layer thicknesses and undercoolings obtained from the convection model

Exp. C0 (wt%) DT (K) dT (mm) dC (mm) OT OC DTT (K) DTC (K) DTT/DTC

1 1.08 0.53 1.14 0.256 0.0063 0.126 0.145 0.384 0.38

2 1.08 0.54 0.912 0.204 0.0064 0.128 0.148 0.392 0.38

3 1.08 0.84 1.00 0.224 0.0095 0.190 0.219 0.619 0.35

4 1.40 0.47 0.974 0.218 0.0047 0.0939 0.109 0.361 0.30

5 2.96 0.82 1.15 0.258 0.0044 0.0886 0.103 0.716 0.14

6 2.96 1.3 1.05 0.235 0.0068 0.135 0.156 1.14 0.14

7 3.97 0.75 2.59 0.580 0.0032 0.0638 0.0739 0.675 0.11

8 3.97 1.23 1.30 0.290 0.0051 0.101 0.117 1.11 0.11
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magnitude when compared to such values in other
convection heat and mass transfer correlations found in
the literature [20].

3.4. Comparison of measured and predicted internal solid

fractions

The predicted internal solid fraction variations from the
present model, using the above convection correlations
with c ¼ 0.312, are compared to the measurements in Fig. 3
for all eight experiments. The measured initial internal
solid fraction from the settling calculations is used to start
the numerical integration of the governing equations.
Overall, good agreement can be observed over the entire
time period of the experiments. The final values of the
internal solid fraction do not agree perfectly, because the
convection correlation was used to calculate the boundary
layer thicknesses rather than the values listed in Table 2. As
expected from the previous discussion, the largest disagree-
ment occurs for experiment 7.

4. Conclusions

Measurements of the internal solid fraction evolution of
equiaxed dendritic SCN–acetone crystals that are settling
in an undercooled melt are performed. The experiments
cover a relatively large range of melt undercoolings and
solute concentrations. The internal solid fraction is
determined from the measured settling speed and the
measured size and shape of the crystal envelope. It
generally decreases during settling and ranges from about
0.55 to 0.1. Based on heat and solute balances, a model is
developed to predict the internal solid fraction evolution.

The convective heat and solute transport rates from the
envelope into the undercooled melt are characterized by
thermal and solutal boundary layer thicknesses. It is found
that during an experiment the boundary layer thicknesses
are constant, despite significant crystal size and settling
speed variations. By matching measured and predicted
final internal solid fractions, values for the boundary layer
thicknesses are determined and correlated. The resulting
Nusselt and Sherwood number correlations constitute the
main finding of this study. Using the correlations, the
measured internal solid fraction variations are predicted
well for all but one experiment.
Taken together, Parts 1 and 2 completely characterize

the growth of equiaxed dendritic crystals in the presence of
convection. The models presented in this study allow for
the calculation of the dendrite tip growth velocities, the
settling speed, and the internal solid fraction evolution.
However, care should be taken in applying the models to
conditions that are significantly different from the present
experiments, as already mentioned in Part 1. For example,
the Nusselt and Sherwood number correlations presented
in this paper would require some modification before they
can be applied to metal alloys. Nonetheless, the present
study contributes significantly to the development and
validation of models for the prediction of the grain
structure of metal alloy castings.
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Fig. 5. Variation of the measured Sherwood number with Reynolds

number (symbols connected by thin lines) and correlation representing the

best fit for all experiments (thick solid line).
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