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a b s t r a c t

A phase-field model is presented for gas bubble growth and flow in a supersaturated liquid inside a Hele–
Shaw cell. The flows in the gas and liquid are solved using a two-phase diffuse interface model that
accounts for surface tension, interfacial mass transfer, and density and viscosity differences between
the phases. This model is coupled with a phase-field equation for interface motion and a diffuse interface
conservation equation for gas species transport. The model is first validated for a planar gas layer and a
spherical bubble growing in a supersaturated liquid. It is shown that the results converge to the solution
of the corresponding sharp interface model in the thin-interface limit. The model capabilities are demon-
strated in several examples involving the growth and flow of multiple bubbles, including bubble coars-
ening and coalescence.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Gas bubble growth in a liquid is an important phenomenon in
materials processing, biological systems, oil recovery, and other
applications. The liquid can become supersaturated in a gas species
due to a drop in pressure or temperature. Pre-existing or newly
nucleated bubbles then grow by diffusion of the gas species in
the liquid towards the bubble interface. The large density differ-
ence between the liquid and the gas induces an expansion flow
in the liquid during bubble growth. The growth of a single station-
ary spherical gas bubble has been investigated in detail [1–4]. In
reality, the bubble shape during growth is not always spherical,
especially if the bubble interacts with a solid boundary or moves
in a viscous liquid. Furthermore, pinch-off and coalescence of mul-
tiple bubbles can cause interface topology changes. The motion of
multiple bubbles in a liquid has been simulated using a variety of
models and numerical methods (see, for example, [5–8]). However,
no studies have been identified in the literature where the growth
and flow of gas bubbles, including interface topology changes, is
simulated simultaneously.

Two-phase flows featuring topology transitions and other inter-
face singularities have become an area of increasing research inter-
est over the last decade [9–14]. In such flows, multiple length and
time scales emerge, and capillary stresses cannot be neglected. For
the nano-scale phenomena introduced by interface singularities,
conventional sharp interface models fail to work [10,11]. Diffuse
interface approaches have been proposed to overcome these diffi-
culties [9,12–18]. In diffuse interface models, the interface is

viewed as a region of finite extent over which the properties vary
smoothly from one phase to the other. The main objective of the
present study is to present and test a diffuse interface model for
the growth and flow of gas bubbles in a liquid. A diffuse interface
model for such a system has not been developed previously.

All thermodynamically derived diffuse interface models for
fluid flow [9,12–14,17] assume the existence of a single velocity
and pressure at any point inside the diffuse interface between
two phases. Moreover, single thermo-physical properties (e.g.,
density and viscosity) are assumed to exist and their variation
across the diffuse interface is postulated in some ad hoc manner.
For large differences in these properties between the phases, such
diffuse interface models can give results that are dependent on the
choice of the interface width [16] and the way the property varia-
tions are specified [17]. Based on an ensemble averaging approach,
Sun and Beckermann [16] developed a so-called two-phase diffuse
interface model for flow. As opposed to thermodynamically de-
rived diffuse interface models, the two phases are assumed to
coexist inside the diffuse interface with different properties, veloc-
ities, and pressures. The phase interactions are modeled explicitly
through the inclusion of interfacial forces in the momentum equa-
tions for each phase. Capillary stresses inside the diffuse interface
are included in the model as well. One unique feature of the model
is that for simple shear flows, the results are independent of the
diffuse interface width. This allows for the use of artificially large
interface widths in numerical simulations and, hence, significantly
improves computational efficiency.

In the present study, the two-phase diffuse interface model of
Ref. [16] is applied to simulate the flow of the gas and liquid phases
during bubble growth inside a Hele–Shaw cell. Compared to a full
Navier–Stokes formulation, the Hele–Shaw approximation allows
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for two-dimensional simulations to be performed at a much re-
duced computational cost. A two-phase diffuse interface Hele–Shaw
model was recently applied by the present authors to simulate flows
where the two phases have a large contrast in the density and viscos-
ity [19]. This model is extended here to include interfacial mass
transfer due to bubble growth. During bubble growth, the gas–liquid
interface is assumed to be in equilibrium and the dissolved gas con-
centration on the liquid side of the interface is related to the gas
pressure by Sieverts’ law. The present study focuses on bubbles of
a diatomic gas in a liquid metal (in particular, Al–H), although the
model is easily modified for other gas–liquid combinations. Sieverts’
law is valid for dissociative dissolution, when diatomic gases such as
O2, N2, or H2 enter metals (M) to form M–O, M–N, or M–H bonds
[20,21]. The phase-field equation is derived using a thin-interface
approach [22,23]. It reduces to the Gibbs–Thomson condition for a
sharp gas–liquid interface when the diffuse interface width is still fi-
nite, while eliminating interface kinetic effects. The phase-field
equation is valid in the presence of flow and density changes of
the gas. The diffuse interface species conservation equation ac-
counts for diffusion and advection of the gas species in the liquid.
It includes an anti-trapping current analogous to that developed
by Karma [22] for unequal diffusivities in the phases. The resulting
model allows for quantitative simulation of bubble growth and flow
in a numerically efficient manner.

The governing equations are presented in Section 2. In Section
3, the model is tested by applying it to two simple problems that
allow for detailed convergence studies and a comparison with an
analytical solution. More complex examples demonstrating the
utility of the present model, including coarsening of multiple bub-
bles in a liquid and bubble growth and flow with interface topology
changes, are presented in Section 4. The conclusions are summa-
rized in Section 5.

2. Governing equations

In this section, the two-phase diffuse interface model for bubble
growth and flow in a Hele–Shaw cell is presented. First, the tradi-

tional sharp interface formulation of the problem is stated. Then,
the diffuse interface model for two-phase flows of the present
authors [16,19] is extended to include bubble growth and mass
transfer. A phase-field equation for the evolution of the gas–liquid
interface is constructed in a similar fashion as the quantitative
phase-field model of Karma [22] for isothermal alloy solidification.
Finally, a conservation equation is presented for the advection-dif-
fusion of the gas species, including an anti-trapping current analo-
gous to that of Karma [22].

2.1. Sharp interface description

Consider bubbles of a diatomic gas (i.e., H2) surrounded by a li-
quid metal (i.e., Al) inside a Hele–Shaw cell. The liquid is a binary
mixture with the (nonvolatile) metal (Al) as the solvent and the gas
species (H) as the solute. The system is taken as isothermal and the
mass diffusivity of the gas species in the liquid is assumed to be
constant. Equilibrium at the gas–liquid interface is governed by
Sieverts’ law.

The liquid surrounding the bubbles is assumed to be an incom-
pressible Newtonian fluid with constant viscosity and density.
Gravitational effects are neglected (i.e., the Hele–Shaw cell is hor-
izontal). Initially, the liquid is assumed to be at rest, having a uni-
form solute concentration C1 and pressure pref. The Hele–Shaw cell
has a gap of width b that is much smaller than the cell length or
width, L (i.e., b� L). Assuming a parabolic velocity profile in the
gap direction, the sharp interface description of this problem is gi-
ven by:

Liquid

r � ul ¼ 0 ðcontinuityÞ ð1Þ

ul ¼ �
b2

12ll
rpl ðmomentumÞ ð2Þ

oCl

ot
þ ul � rCl ¼ Dr2Cl ðspeciesÞ ð3Þ

Nomenclature

a1, a2 constants in the phase-field model
b gap width in the Hele–Shaw cell
C concentration
D mass diffusivityeD dimensionless mass diffusivity
d0 capillary length
Ks equilibrium constant in Sieverts’ law
L length of the Hele–Shaw cell
n unit normal vector
p pressure
R gas constant
rq density ratio
rl viscosity ratio
T temperature
t time
U dimensionless concentration
u velocity vector
ui interface velocity vector
V interface velocity
W measure of diffuse interface width
x space coordinate

Greek symbols
d width of planar gas layer
e measure of diffuse interface width

/ phase field
C mass transfer rate per unit volume
j mean interface curvature
k coupling constant
l viscosity
q density
r surface tension
s dimensionless time

Superscripts
0 dimensionless
0 reference

Subscripts
eq equilibrium
g gas
i interface
k phase k
l liquid
n interface normal direction
ref reference
0 reference
1 far field
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Gas

oqg

ot
þr � ðqgugÞ ¼ 0 ðcontinuityÞ ð4Þ

ug ¼ �
b2

12lg
rpg ðmomentumÞ ð5Þ

pg ¼ qgRT ðideal gas lawÞ ð6Þ

Interface

kqðu� uiÞ � nk ¼ 0 ðcontinuityÞ ð7Þ
pg � pl ¼ rj ðmomentumÞ ð8Þ
kqCðu� uiÞ � n� qDrC � nk ¼ 0 ðspeciesÞ ð9Þ

Cl;i ¼ CeqðT;pgÞ 1þ rj
qlRT

� �
ðGibbs—ThomsonÞ ð10Þ

The various symbols are defined in the Nomenclature. The symbol
k k denotes a jump across the interface of a function f as kfk = fg � fl.
A species conservation equation for the gas phase is not needed,
since the bubbles are assumed to consist of a single component,
i.e., Cg = 1. The last term in the Gibbs–Thomson equation, Eq. (10),
accounts for the effect of interface curvature on the equilibrium
concentration in the liquid at the gas–liquid interface [20,21]. The
equilibrium concentration for a planar interface is obtained from
Sieverts’ law

Ceq ¼ Ks

ffiffiffiffiffiffiffiffi
pg

pref

s
ð11Þ

where the reference pressure is taken as atmospheric pressure. For
hydrogen in liquid aluminum, the equilibrium constant, Ks, is given
by [21]

Ks ¼ 8:9� 10�5 � 10�
2760

T þ2:796 ð12Þ

2.2. Diffuse interface description

2.2.1. Continuity and momentum equations
The diffuse interface continuity and momentum equations are

obtained from the two-phase model of Sun and Beckermann [16].
For Hele–Shaw flows, the equations in Ref. [16] are averaged across
the gap width, b, and scaled under the assumption that b� L [19].
The resulting continuity equation for phase k is given by [19]

o/kqk

ot
þr � ð/kqkukÞ ¼ Ck ð13Þ

where k = g, l. The liquid density is assumed to be constant, whereas
the density of the gas is calculated from the ideal gas law, Eq. (6).
The phase-field variable, / = /g = 1 � /l, can be interpreted as a vol-
ume fraction. It varies in a hyperbolic tangent fashion across the dif-
fuse interface of thickness 6e [16,19] and takes on constant values of
/ = 1 and / = 0 inside the gas and liquid phases, respectively. The
interfacial mass fluxes due to bubble growth, Ck, are balanced
according to

Cg ¼ �Cl ð14Þ

The diffuse interface version of the momentum equation for phase k
is given by [19]

uk ¼ �
b2

12lk
rpk þ reð1� /kÞr

r2/k

/kð1� /kÞ

 !" #
ð15Þ

The second term inside the square brackets of Eq. (15) is the capil-
lary stress gradient in phase k and is non-zero only inside the dif-
fuse interface. The derivation and a detailed examination of this
term can be found in Refs. [16,19]. Finally, the diffuse interface ver-
sion of the interfacial momentum balance is given by [19]

pg � pl ¼ �re
r2/

/ð1� /Þ ð16Þ

The above continuity and momentum equations are valid in the en-
tire domain, regardless of the phase present. They are solved using a
procedure similar to that in Ref. [19]. The equations are combined
and re-written in terms of a mixture density q = qg/ + ql(1 � /), a
mixture velocity u ¼ ½qg/ug þ qlð1� /Þul�=q, a slip velocity
Du = ug � ul, and a mixture pressure p = pg/ + pl(1 � /). Then, the
mixture continuity and momentum equations are combined to
form a Poisson equation for the mixture pressure, which can be
solved numerically using a standard finite-difference method [19].
Before solving the continuity and momentum equations, they are
non-dimensionalized using the length and time scales introduced
in the next section.

2.2.2. Phase-field equation
The phase-field equation for bubble growth and motion is de-

rived using the thin-interface method explained in Ref. [18] and
is similar to the one for binary alloy solidification in Refs. [22–
24]. The final result is given in dimensionless form by

C 0g � C 0l
� �

C0g ¼ r02/� 2/ð1� /Þð1� 2/Þ

þ 8k C0l � K 0sðTÞ
ffiffiffiffiffi
p0g

q� �
/2ð1� /Þ2 ð17Þ

In Eq. (17), the interfacial mass transfer rate due to bubble growth,
C0g, is obtained from the continuity equation for the gas phase, Eq.
(13) with k = g. In dimensionless form, it can be written as

C0g ¼
oðrq/Þ

ot0
þ r0 � ðrq/u0gÞ ð18Þ

where u0g ¼ ugs0=W is the dimensionless gas velocity and rq = qg/ql

is the (variable) density ratio. The dimensionless concentrations are
defined as C0l ¼ Cl=C0

eq and C 0g ¼ Cg=C0
eq (recall that Cg = 1), where

C0
eq ¼ CeqðT0; prefÞ ¼ KsðT0Þ is the equilibrium concentration for a

planar interface at the system reference temperature T0. The dimen-
sionless equilibrium coefficient is given by K 0s ¼ Ks=C0

eq and the
dimensionless gas pressure by p0g ¼ pg=pref . Note that by using Eq.
(18) for the interfacial mass transfer rate, C0g, the phase-field equa-
tion is valid in the presence of flow and density changes of the gas.

The length and time scales used to non-dimensionalize the

phase-field equation are W ¼
ffiffiffi
2
p

e and s0 ¼ d2
0=D

� �
a2k

3=a2
1, respec-

tively. The capillary length is given by d0 = r/(qlRT0) and the cou-
pling constant between the phase field and the concentration field
is given by k = a1W/d0. Following the thin-interface analyses in Refs.

[22–25], a1 ¼ 5= 4
ffiffiffi
2
p� �

for the present choice of functions. In order

to model kinetics-free bubble growth, a2 = D0/k, where the dimen-
sionless diffusivity is given by D0 = Ds0/W2. The coupling constant
k is the only free parameter and the results should be independent
of k when they are converged. Decreasing k corresponds to decreas-
ing the diffuse interface width. When simulations are performed for
different values of k, the time and length scales vary with k. There-
fore, the results must be converted back to physical units before
comparing them. It is emphasized again that this relatively complex
prescription stems directly from the thin-interface analysis devel-
oped previously for binary alloy solidification [22–24], and the read-
er is referred to these references for a detailed derivation of the
phase-field equation.

2.2.3. Species equation
The diffuse interface version of the conservation equation for

the gas species is derived using the two-phase averaging method
described in Sun and Beckermann [16]. It has been shown
[15,24,26] that the species equation derived using the two-phase

Y. Sun, C. Beckermann / International Journal of Heat and Mass Transfer 53 (2010) 2969–2978 2971
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averaging method is identical to the one derived from a variational
formulation [22,24]. The dimensionless form of the diffuse inter-
face species equation is given by

ð1� /Þ oC0l
ot0
þ ð1� /Þu0l � r0C 0l

¼ r0 � D0ð1� /Þr0C 0l �
1ffiffiffi
2
p C0g � C 0l

� �
C0g
r0/
jr0/j

� �
� C 0g � C 0l
� �

C0g

ð19Þ

The second term in the square parenthesis on the right-hand-side of
Eq. (19) is the so-called anti-trapping current due to Karma [22].
The anti-trapping current does not arise from averaging, but is
introduced to recover local equilibrium at the gas–liquid interface
and eliminate spurious effects that arise for a finite interface width
when the diffusivities are unequal in the gas and liquid. Eq. (19) is
similar to the species equation used in phase-field modeling of alloy
solidification [22,24], but the effects of liquid and gas flow are taken
into account. The gas velocity comes into Eq. (19) through the term
involving C0g [see Eq. (18)]. The above species equation is valid
regardless of the phase present (i.e., even in the limit of / ? 1),
and is solved over the entire domain.

3. Model validation

The present phase-field model is first validated for two rela-
tively simple problems. In the first problem, the model is compared
to an analytical sharp interface solution for a planar gas layer
growing into a supersaturated liquid under purely diffusive condi-
tions. The second problem involves the growth of a spherical bub-
ble in a supersaturated, infinite liquid and includes the flow in the
liquid due to the density difference between the gas and the liquid.
This problem is used to demonstrate convergence of the results
with respect to the diffuse interface width. It is important to note
that the flow part of the present model, excluding interfacial mass
transfer, was already validated in Ref. [19]. In particular, it is dem-
onstrated in that reference that the present two-phase approach
shows good convergence properties with respect to the diffuse
interface width, even for large property (density and viscosity)
contrasts between the phases.

3.1. Growth of a planar gas layer in a supersaturated liquid

Consider the propagation of a planar gas–liquid front in a super-
saturated liquid of initial hydrogen concentration C1. As illustrated
in Fig. 1, the gas layer has a thickness of d(t) and the gas–liquid inter-
face moves along the x-axis due to diffusion of hydrogen through the
liquid toward the interface. The entire system is at a uniform tem-
perature equal to T0. The effect of the expansion flow in the liquid
on the growth of the gas layer is neglected, which is a reasonable
assumption for small density ratios and/or low interface velocities.
The pressure is assumed constant at pref, which is equal to atmo-
spheric pressure. The sharp interface description of this problem
consists of the following diffusion equation inside the liquid:

oC
ot
¼ D

o2C
ox2 for x P d ð20Þ

and the following boundary conditions at the gas–liquid interface:

ð1� CeqÞV ¼ D
oC
ox

				
l

at x ¼ d ð21Þ

C ¼ Ceq at x ¼ d ð22Þ
C ¼ C1 at x!1 ð23Þ

where V is the normal velocity of the gas–liquid interface. The initial
condition is given by

C ¼ C1 for t ¼ 0 and x P d ð24Þ

Defining a dimensionless supersaturation as U = (Cl � Ceq)/(1 � Ceq),
Eqs. (20)–(24) can be re-written as

oU
ot
¼ D

o2U
ox2 for x P d ð25Þ

V ¼ D
oU
ox

				
l

at x ¼ d ð26Þ

U ¼ 0 at x ¼ d ð27Þ
U ¼ U1 ðU1 > 0Þ at x!1 ð28Þ
U ¼ U1 for t ¼ 0 and x P d ð29Þ

The exact solution to this problem is time-dependent and is given
by

U ¼ U1erf
x� d

2
ffiffiffiffiffiffi
Dt
p

� �
ð30Þ

V ¼ U1

ffiffiffiffiffiffi
D
pt

r
ð31Þ

d ¼ 2U1

ffiffiffiffiffiffi
Dt
p

r
ð32Þ

where erf(x) is the error function.
The phase-field and diffuse interface species equations for this

problem can be obtained by simplifying Eqs. (17) and (19). In terms
of the dimensionless concentration U, the result is given by

ð1� UÞ o/
ot0
¼ o2/

ox02
� 2/ð1� /Þð1� 2/Þ þ 8k/2ð1� /Þ2U ð33Þ

oU
ot0
¼ o

ox0
D0ð1� /Þ oU

ox0
þ 1ffiffiffi

2
p ð1� UÞ o/

ot0

� �
� o

ot0
½/ð1� UÞ� ð34Þ

sincer0//|r0/| = �1 for the present problem. Eqs. (33) and (34) are
solved numerically using a standard second-order explicit finite-
difference method. The results are converted back to physical units
using the properties listed in Table 1.

Fig. 2 shows the predicted gas–liquid interface velocity, Vd0/D,
as a function of the coupling constant, k, at a dimensionless time
of Dt=d2

0 ¼ 20;535, for U1 = 0.1. Recall that decreasing k corre-
sponds to decreasing the diffuse interface width, since k = a1W/
d0. The results in this figure are for a grid spacing of Dx/W = 0.4
and a time step of Dt/s0 = 0.008. It can be seen that the results from
the phase-field model converge to the exact solution for k 6 4. Un-
less otherwise noted, k = 4 is used in the following. The conver-

liquid solution 

( )tδ

∞C

eqC

x

gC

V

gas 

Fig. 1. Growth of a gas layer in a supersaturated liquid.
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gence of the results with respect to the grid spacing, Dx/W, is
examined in Fig. 3 (again for U1 = 0.1 at Dt=d2

0 ¼ 20;535). The
phase-field model results agree well with the analytical solution
for all Dx/W 6 1. In order to ensure good accuracy, a value of Dx/
W = 0.4 is used in all subsequent phase-field simulations.

Transient solutions of the phase-field model are presented in
Fig. 4. Fig. 4a shows the evolution of the dimensionless supersatu-
ration, U, in the liquid, every 20,000 time steps, for U1 = 0.1. As ex-
pected, the diffusion boundary layer ahead of the gas–liquid
interface becomes thicker as time progresses. The predicted time

evolution of the interface velocity is compared to the exact solu-
tion in Fig. 4b. The results match very well and show the expected
decrease with square root of time.

3.2. Growth of a spherical bubble

Consider the growth of a single hydrogen bubble into an essen-
tially infinite, supersaturated aluminum melt with an initial hydro-
gen concentration equal to C1, as illustrated in Fig. 5. The system is
at a constant and uniform temperature equal to T0. Initially, a small
spherical bubble is assumed to be present at the center of the sim-
ulation domain. At the boundaries of the simulation domain, the
pressure is fixed at atmospheric pressure (pref) and the phase-field
and concentration field have a zero gradient.

This problem is solved using the full diffuse interface model of
Section 2.2 and the parameters and properties in Table 1. Flow is
induced during bubble growth due to the large density difference
between the gas and the liquid. However, due to the symmetry
of the problem, there should be no flow inside of the bubble. None-
theless, the continuity and momentum equations are solved every-
where, including inside of the bubble. This provides for a check
that the velocities in the gas phase are calculated correctly and that
there are no spurious currents. The ideal gas law is used to calcu-

Table 1
Parameters and properties used in the simulations of hydrogen gas bubble growth in
a supersaturated aluminum melt.

Parameter Symbol Value

Initial hydrogen equilibrium concentration C0
eq

5 � 10�5 wt%

Far-field hydrogen concentration C1 6 � 10�5 wt%
Hydrogen diffusion coefficient D 3 � 10�7 m2/s
Initial gas–liquid density ratio r0

q 0.00001

Gas–liquid viscosity ratio rl 0.01
Chemical capillary length d0 1.14 � 10�3 lm
Liquid density ql 2390 kg/m3

Liquid viscosity ll 4.5 � 10�3 N/(m2 s)
Surface tension r 0.8 N/m

λ

V
d 0/

D

0 2 4 6 8 10 12
0

0.0001

0.0002

0.0003

0.0004

0.0005

exact

phase-field 

0.4=Wx

no flow

Δ

Fig. 2. Convergence of the interface velocity with respect to the diffuse interface
coupling constant k for growth of a planar gas layer in a supersaturated liquid

Dt=d2
0 ¼ 20;535

� �
.

V
d 0/

D

0 0.2 0.4 0.6 0.8 1
0

0.0001

0.0002

0.0003

0.0004

0.0005

exact

phase-field 

008. 00τt

WΔ

0=β
4=λ

no flow

x

Fig. 3. Convergence of the interface velocity with respect to the grid spacing for

growth of a planar gas layer in a supersaturated liquid Dt=d2
0 ¼ 20;535

� �
.

t/τ0

V
d 0/

D

0 200 400 600 800
0

0.002

0.004

0.006

0.008

phase-field
exact

4=λ 0=β
0.1

0.1

=∞U

x/W

U

0 100 200 300 400

0

0.02

0.04

0.06

0.08

0.1

4=λ 0=β
=∞U

t increases 

a

b

Fig. 4. Phase-field simulation of the growth of a planar gas layer into a supersat-
urated liquid: (a) evolution of the dimensionless supersaturation profile, every
20,000 time steps; and (b) comparison of the variation of the calculated interface
velocity with the exact solution.
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late the gas density as a function of temperature (which is constant
at T0) and the instantaneous gas pressure, pg. Note that for a sta-
tionary, spherical bubble, the gas pressure is uniform, but not con-

stant, because the curvature of the gas–liquid interface decreases
as the bubble grows. The initial density ratio in Table 1, r0

q, is ob-
tained by evaluating the gas density at T0 and pref.

The Hele–Shaw flow equations are solved using a conjugate-
gradient pressure Poisson solver on a uniform mesh, as described
in Ref. [19]. The phase-field and species equations are solved using
an explicit Euler scheme. A fourth-order accurate CENO scheme is
used for the advection terms in the phase-field and concentration
equations [18]. Numerical tests revealed that it is sufficient to cal-
culate the flow only every 10 time steps of the phase-field and con-
centration calculations.

Fig. 6 shows the predicted evolution of the bubble radius for two
initial supersaturations: C1=C0

eq ¼ 1:1 and 1:2. The simulations give
a spherical bubble shape at all times during growth. The radius in-
creases approximately in a square-root-of-time fashion. As ex-
pected, the bubble grows faster for a higher initial supersaturation.
Fig. 7 shows the calculated velocity vectors and scaled concentration

field in the liquid Cl=C0
eq

� �
at an intermediate time for the case with

C1=C0
eq ¼ 1:2. Due to the density difference between the gas and the

liquid, the liquid moves away from the gas–liquid interface as the

2H

HAl −

∞C

x

( )geq pfC ~

y

p = const. 
sym. in C and φ

p = const.
sym. in C and φ

p = const. 
sym. in C and φ

p = const. 
sym. in C and φ

Fig. 5. Growth of a hydrogen bubble in a supersaturated Al–H melt.
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bubble grows and expands (Fig. 7a). The magnitude of the liquid
velocity decreases with increasing distance from the gas–liquid
interface. No spurious velocities are predicted inside of the bubble.
The liquid concentration, Cl, is equal to the equilibrium value, C0

eq,
at the gas–liquid interface and increases to the initial concentration,
C1, for away from the bubble (Fig. 7b). At this time, the concentra-
tion boundary layer around the bubble has not yet reached the
boundaries of the simulation domain. Its thickness is of the same or-
der as the instantaneous bubble radius.

Fig. 8 demonstrates the convergence of the predicted dimen-
sionless gas–liquid interface velocity, Vd0/D, with respect to k

C1=C0
eq ¼ 1:2;Dt=d2

0 ¼ 5134
� �

. For k 6 4, the results converge to a

value of Vd0/D = 0.0068. For larger diffuse interface widths, the re-
sults become increasingly inaccurate. However, in Fig. 8 the solu-
tion does not deteriorate as fast with increasing k as observed
previously in Fig. 2. Nonetheless, a value of k = 4 is recommended
in a general situation.

Fig. 9. Simulation of coarsening of hydrogen bubbles in an aluminum melt without flow. The black lines are the / = 0.5 phase-field contour and the colors indicate the
hydrogen concentration in the liquid. The initial gas volume fraction is 5.5%. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this paper.)
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4. Examples

In this section, the diffuse interface model presented in Section
2 is applied to simulate the growth and dynamics of multiple bub-
bles in a supersaturated liquid inside a Hele–Shaw cell, including
bubble coarsening and coalescence, with and without bubble mo-
tion. The simulations presented in this section should only be
viewed as examples to illustrate some of the capabilities of the
present model.

4.1. Bubble coarsening without flow

Coarsening of a dispersion of particles exists in many phase
transformation and precipitation processes [27]. The phase-field
method has been used to simulate coarsening of a solid–liquid
mixture of a binary alloy due to pure diffusion [26,28] and with
convection [26]. These studies did not use the thin-interface anal-
ysis and the anti-trapping current. In this section, the coarsening of
multiple bubbles is simulated using the quantitative phase-field
model of Section 2.2.

The present two-dimensional simulation is performed for
coarsening of hydrogen bubbles in an isothermal aluminum melt
in the absence of flow. As shown in Fig. 9a, the simulation is initial-
ized by randomly placing a number of gas bubbles of different size
inside a square domain. The initial bubble volume fraction in the
system is equal to 5.5%. The initial hydrogen concentration in the
liquid is set to a uniform value of Cl=C0

eq ¼ 1:2, which is slightly
above the supersaturation due to the initial mean curvature of
the bubbles. Thus, there is a small increase in the total bubble vol-
ume during coarsening. No-flux conditions are applied on all
boundaries of the system.

Fig. 9 shows the predicted evolution of the bubbles with time.
The color scale indicates the dimensionless gas concentration in
the liquid, Cl=C0

eq. It can be seen that the number of bubbles de-
creases while the average bubble size increases. The large bubbles
grow, while the small ones shrink and eventually disappear. Since
the hydrogen concentration in the liquid at the gas–liquid interface
is a function of the interface curvature, Eq. (10), the larger (smaller)
bubbles have a lower (higher) interfacial hydrogen concentration
than the smaller (larger) bubbles. Thus, hydrogen is transported
by diffusion through the liquid from the smaller bubbles to the lar-
ger bubbles. In other words, the larger bubbles are a sink of hydro-
gen, whereas the smaller bubbles are a source. This can be clearly
seen in Fig. 9 from the species concentration fields around each
bubble. At intermediate times, a complex concentration field
develops in the liquid. With increasing time, the concentration gra-
dients in the liquid decrease and the coarsening process slows
down. Comparing Fig. 9a and Fig. 9f, it can be seen that the average
hydrogen concentration in the liquid decreases during coarsening.
Due to the low initial bubble volume fraction, no bubble coales-
cence occurs and the bubbles remain almost spherical. Overall, this
simulation demonstrates that the phase-field method easily han-
dles complex interfacial structures and curvature effects.

4.2. Bubble growth and coalescence with and without flow in the gas

Now consider the concurrent growth of two hydrogen bubbles
in a supersaturated aluminum melt. Simulations are performed
for the same boundary and initial conditions as for the single bub-
ble case discussed in Section 3.2, except that two small bubbles are
placed initially near the center of the domain. The initial center-to-
center distance between the two bubbles is taken to be equal to
30W.

In the first set of simulations, the gas velocity is set to zero (by
assigning a very large viscosity to the gas phase) and only the li-

quid is allowed to flow. The assumption of a stationary gas phase
is, of course, unphysical, but allows for bubble coalescence to oc-
cur. Fig. 10 shows the results of two different simulations: the ini-
tial bubbles have the same size, i.e., R1 = R2 = 10W (Fig. 10a), and
the initial bubble sizes are different, i.e., R1 = 7W and R2 = 14W
(Fig. 10b). The predicted evolution of the gas–liquid interface is de-
picted every 2000 time steps. The liquid velocity field is only
shown for the last time step. In both cases, the bubbles grow
non-spherically, since the hydrogen concentration boundary layers
between the two bubbles overlap. Due to diffusion of hydrogen to-
wards both bubbles, the hydrogen concentration in the liquid be-
tween the two bubbles quickly reaches values that are lower
than elsewhere around the bubbles. Therefore, the growth rate in
the region where the two bubbles face each other is reduced and
the bubbles take on a deformed shape. Eventually, the two bubbles
coalesce. The neck that forms between the two bubbles continues
to increase in thickness. Again, these simulations are unphysical,
since in reality the flow in the gas phase would quickly equalize
the pressure in the bubble after coalescence, but they do demon-
strate that interface topology changes are easily handled by the
present phase-field method. A simulation with flow in the gas
phase is presented below.

Fig. 10. Simulations of growth of two, closely spaced hydrogen bubbles in a
supersaturated aluminum melt without flow in the gas: (a) equal-sized and (b)
unequal-sized initial bubbles. The predicted interface contours are shown every
2000 time steps, while the velocity vectors are for the last time step only.
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Fig. 11 shows the predicted hydrogen concentration, Cl=C0
eq,

contours in the liquid corresponding to the case of Fig. 10b at
two different times: before and shortly after coalescence. Before
bubble coalescence (Fig. 11a), the curvature of the gas–liquid inter-
face is positive everywhere. Therefore, the dimensionless hydrogen
concentration at the interface, as well as everywhere else in the li-
quid, is greater than unity. After coalescence (Fig. 11b), the neck
between the two bubbles has a negative curvature. Consequently,
the dimensionless hydrogen concentration in the liquid near the
neck is below unity.

The results of a simulation of the concurrent growth of two bub-
bles where the flow is calculated in both the liquid and the gas are
shown in Fig. 12. This simulation is otherwise identical to the one
in Fig. 10a, where the gas is assumed to be stationary. It can be
seen that the bubbles remain almost spherical during growth, as
opposed to the highly deformed bubble shapes that can be ob-
served in Fig. 10a. This can be explained by the flow inside of a
bubble quickly equalizing the gas pressure, such that the equilib-
rium spherical shape is approached. However, the two bubbles
are not stationary inside of the liquid. The two bubbles move away

from each other during growth, which can be observed in Fig. 12 by
noting that the centers of the (almost spherical) bubbles translate
in the x-direction. This effect can be attributed to the expansion
flow in the liquid. The expansion flows from the two bubbles meet
at the center of the simulation domain, where the velocity is al-
ways zero. This creates an asymmetry in the velocity field relative
to the center of each bubble, with the majority of the expansion
flow being directed away from the center of the simulation do-
main. By continuity, this flow is not only present in the liquid,
but also in the gas phase. Note that inertia and liquid–gas friction
effects play no role in Hele–Shaw flows. Due to this movement of
the two bubbles away from each other, the bubbles will not
coalesce.

The above results demonstrate that the present diffuse interface
model is well suited for situations that involve bubble growth with
interface topology changes, such as bubble coalescence. It also
works well for two-phase flows that involve surface tension and
large density and viscosity contrasts between the two phases. As
reviewed in Section 1, previous modeling studies have not ac-
counted for all of these effects simultaneously.

5. Conclusion

A diffuse interface model has been presented for the simulation
of gas bubble growth and flow in a liquid. The model is applied to
the hydrogen–aluminum system. The flows in the gas and liquid
phases are calculated using a previously developed two-phase
model for flows with surface tension, and large density and viscos-
ity differences between the phases [16]. The Hele–Shaw approxi-
mation is used to simplify the governing equations for the flow
[19]. The phase-field equation models kinetics-free interface mo-
tion due to supersaturation of the gas species, curvature, and gas
flow. The species conservation equation accounts for advection
and diffusion of the gas species in the liquid, and includes an
anti-trapping current that is analogous to the one developed for al-
loy solidification [22,24]. The resulting model converges to the
standard sharp interface formulation in the so-called thin-interface
limit [22,23], which allows for quantitative numerical simulations
to be performed using diffuse interface widths that are of the order
of the capillary length (instead of W ? 0). The model is validated
through a comparison with an available sharp interface solution
involving growth of a gas layer in a supersaturated liquid. Conver-
gence of the present model with respect to both the diffuse inter-
face width and the grid spacing is demonstrated for cases involving
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Fig. 11. Predicted dimensionless hydrogen concentration contours for growth of two hydrogen bubbles in a supersaturated aluminum melt: (a) before coalescence and (b)
after coalescence.

Fig. 12. Simulation of the growth of two equal-sized hydrogen bubbles in an
isothermal, supersaturated aluminum melt with flow in the liquid and inside the
bubbles. The predicted interface contours are shown every 2000 time steps, while
the velocity vectors are for the last time step only.
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a planar and a curved interface. The model capabilities are demon-
strated by performing simulations of the coarsening, coalescence,
growth and flow of multiple bubbles.
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