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Abstract

The columnar-to-equiaxed transition (CET) in directional solidification of alloys is simulated using the phase-field method. The
method relies on the solution of a solute conservation equation and an equation for the propagation of the phase field on the scale
of the developing microstructure. A parametric study is performed to investigate the effects of the applied temperature gradient and pull-
ing speed, the seed spacing and nucleation undercooling for the equiaxed grains, and the crystalline anisotropy strength on the CET. The
results qualitatively agree with a previously developed analytical model of the CET. At relatively high pulling speeds, a mixed columnar–
equiaxed structure is found to be stable over a range of temperature gradients. Furthermore, the CET depends sensitively on the anisot-
ropy strength. The simulations also reveal the presence of primary spacing adjustments during purely columnar growth due to nucleation
of seeds, and deactivation of seeds by solutal interactions from nearby growing grains.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The columnar-to-equiaxed transition (CET) in the grain
structure of metal alloy castings has fascinated researchers
in the solidification area for more than 50 years [1]. The
CET is usually assumed to occur when the advance of
the columnar front is blocked by equiaxed grains that grow
in the constitutionally undercooled liquid ahead of the
columnar dendrites. Based on this idea, Hunt [2] developed
an analytical model that predicts the CET during direc-
tional solidification as a function of the applied tempera-
ture gradient, the solidification speed, and the nucleation
undercooling and number density of equiaxed grains. This
model has been extended and improved by several
researchers [3–5]. A simulation model that relies on the
solution of averaged conservation equations that are cou-
pled to nucleation and growth laws has been presented
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by Beckermann and co-workers [6,7]. More complex mod-
els have followed the nucleation and growth of each indi-
vidual grain (e.g., Refs. [8–12]). By predicting the size,
orientation, and shape of each grain, the location of the
CET in a casting can be inferred directly from the appear-
ance of the calculated grain structure. These studies rely on
the same type of dendrite tip growth models for the evolu-
tion of the grain envelopes as the previous modeling studies
[2–7]. A solute diffusion equation is not solved, and the
motion of the solid–liquid interface on a microscopic scale
is not resolved.

With recent advances in computational power, direct
microstructure simulation techniques hold some promise
for modeling the CET. Spittle and Brown [13], Nastac
[14], and Dong and Lee [15] have applied so-called cou-
pled cellular automaton finite difference (CA-FD) meth-
ods to simulate the CET in metal alloy castings. In this
class of methods, the solid–liquid interface is tracked
directly on the numerical grid and its motion is deter-
mined from the numerical solution of a solute diffusion
equation on a microscopic scale. Grain envelopes are
rights reserved.
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not considered and no use is made of separate dendrite tip
growth models. While the CA-FD methods produce real-
istic-looking dendritic growth patterns and have resulted
in much insight into the CET, some questions remain
regarding their accuracy. Independence of the results on
the numerical grid size is rarely demonstrated. Further-
more, the CA-FD techniques often rely on relatively arbi-
trary rules for incorporating the effects of crystallographic
orientation while propagating the solid–liquid interface.
For example, in the most recent and advanced study using
a CA-FD technique [15], the strength of the surface
energy anisotropy is not even specified. It is now well
accepted that dendritic growth of crystalline materials
depends very sensitively on the surface energy anisotropy
[16,17].

The phase-field method has also become a popular tech-
nique for the direct numerical simulation of microstructure
evolution in solidification [18]. However, progress in model-
ing solidification of alloys using the phase-field method has
been relatively slow. The first fully quantitative phase-field
model that allows for unequal solute diffusivities in the
liquid and solid was only developed in 2001 [19]. This model
has been extended by Ramirez et al. [20] to account for cou-
pled heat and solute diffusion and by Echebarria et al. [21]
to directional alloy solidification with an applied tempera-
ture gradient. Recently, Ramirez and Beckermann [22]
used this phase-field model to study free dendritic growth
of alloy dendrites. These studies clearly demonstrate that
the phase-field method allows for accurate and fully grid-
independent simulations of alloy solidification on the scale
of the microstructure.

The objective of the present study is to perform direct
numerical simulations, in two spatial dimensions, of the
CET in alloy solidification using the phase-field model of
Refs. [20,21]. The phase-field model equations are briefly
summarized in the next section. The numerical procedures
are explained in Section 3. Section 4 presents the results
of numerous simulations where the CET is studied as a
function of the applied temperature gradient and pulling
speed, the equiaxed grain nucleation undercooling and
number density, and the crystalline anisotropy. In addi-
tion, the results are compared to the original CET model
of Hunt [2]. The conclusions of the study are summarized
in Section 5.

2. Phase-field model

The phase-field model employed here allows for the sim-
ulation of microstructural patterns during the solidification
of dilute binary alloys. It has been derived and extensively
validated by Ramirez et al. [20] and Echebarria et al. [21].
The model neglects the solute diffusivity in the solid, and all
material properties are assumed constant. It reduces to the
sharp interface equations in a thin interface limit where the
width of the diffuse interface is smaller than the radius of
curvature of the interface but larger than the real width
of a solid–liquid interface, and when kinetic effects are neg-
ligible. The anti-trapping current concept of Karma [19] is
applied to recover local equilibrium at the interface and
eliminate interface stretching and surface diffusion effects
that arise when the solute diffusivities are unequal in the
solid and liquid.

Let / represent the phase field, where / = 1 in the bulk
solid phase and / = � 1 in the bulk liquid phase. The
phase field varies smoothly between these bulk values
within the diffuse interface region. The anisotropic and
dimensionless forms of the phase-field and species equa-
tions, for a vanishing kinetic effect, are given in two-dimen-
sional form, respectively, by [20,21]
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where n̂ ¼ � ~r/= ~r/
��� ��� is the unit vector normal to the

interface, asðn̂Þ ¼ 1þ e cosð4/Þ is a function that describes
the surface energy anisotropy, / = arctan(oy//ox/) is the
angle between the direction normal to the interface and
the horizontal axis, e is a dimensionless parameter that
characterizes the anisotropy strength, k is the partition
coefficient, x and y are the spatial coordinates, and t is
time. In the present study, the crystal axes are always
aligned with the coordinate axes. The anti-trapping current
~jat is given by [19]
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which is non-zero only inside the diffuse interface region.
The time and length scales used to non-dimensionalize

equations (1) and (2) are s0 ¼ ðd2
0=DÞa2k

3=a2
1 and W 0 ¼

d0k=a1, which represent a relaxation time and a measure
of the interface width, respectively. Here, d0 is the chemical
capillary length and D is the solute diffusivity in the liquid
phase. The dimensionless solute diffusivity is given by
~D ¼ Ds0=W 2

0 and k is a dimensionless coupling parameter,
which is chosen as k ¼ ~D=a2 to simulate kinetics-free
growth (a1 = 0.8839, a2 = 0.6267) [23]. The coupling con-
stant k is the only free parameter and the results should
be independent of k when they are converged. Decreasing
k corresponds to decreasing the diffuse interface width,
since k = a1W0/d0.
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Fig. 1. Schematic of the computational domain used in the numerical
simulations of the CET in directional solidification; the temperature
gradient G is translated in the x-direction with a constant speed Vp.
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Fig. 2. Schematic of the sinusoidal perturbation applied to a planar front
in the Mullins–Sekerka instability test case.
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The dimensionless solute concentration is given by

U ¼
2Ck=C1

1þk�ð1�kÞ/

� �
� 1

1� k
; ð4Þ

where C is a ‘‘mixture’’ concentration (in wt.%) that varies
smoothly within the diffuse interface, between the values of
the concentration in the bulk liquid and solid phases, and
C1 is the initial alloy concentration far from the solidifica-
tion front.

In the present simulations of directional solidification, the
temperature is imposed and given by a linear profile that
translates across the domain in the x-direction. In dimen-
sional terms, the temperature distribution T(x, t) is given by

T ¼ T 0 þ Gðx� V ptÞ; ð5Þ
where T0 is a reference temperature, G is the imposed ther-
mal gradient, and Vp is the imposed (‘‘pulling’’) speed with
which the profile is translated across the domain. The
dimensionless temperature h in Eq. (1) is defined as

h ¼ T � T sðC1Þ
DT 0

; ð6Þ

where DT0 = Tl(C1) � Ts(C1) = |m|C1(1 � k)/k is the
equilibrium freezing temperature range corresponding to
C1, Tl(C1) and Ts(C1) are the liquidus and solidus tem-
peratures, respectively, corresponding to C1, and m is
the slope of the liquidus line in the equilibrium phase dia-
gram. Note that the freezing range also relates the chemical
capillary length to the commonly used Gibbs–Thomson
coefficient C through C = d0DT0.

3. Computational procedures and validation

The governing equations were solved numerically using
the same discretization scheme as in Ramirez et al. [20].
Unless otherwise noted, the grid spacing used in the finite
difference scheme was equal to Dx/W0 = 0.8. A schematic
of the computational domain used in the present direc-
tional solidification simulations is shown in Fig. 1. The
simulations were initialized with a thin solid layer along
the left domain wall (at x = 0). The solid–liquid interface
was initialized as planar except for a small perturbation
with an amplitude that satisfies d�W0. The reference
temperature T0 in Eq. (5), which is nothing but the initial
temperature of the left domain wall, was chosen to be equal
to or slightly below Ts(C1). The initial value for the dimen-
sionless concentration U was taken as �1 (C = C1), except
in the validation study presented next. The length of the
computational domain in the x-direction was chosen long
enough that the temperature at the right domain wall is
always greater than Tl(C1), and that the solute concentra-
tion is undisturbed by solidification and uniformly equal to
C1. Zero-flux boundary conditions for the phase-field and
solute conservation equations were applied at all domain
walls. Full advantage was taken of symmetry in the solidi-
fication pattern when choosing the height of the computa-
tional domain in the y-direction.
The model and the numerical implementation were val-
idated extensively through comparisons with analytical
solutions and other available benchmark results. The
reader is referred to Ref. [20] for details of these studies.
Here, only the results of one validation study are presented.
The validation study is adopted from Echebarria et al. [21]
and involves the well-known Mullins–Sekerka instability
[24] in the directional solidification of a dilute binary alloy.
Fig. 2 shows a schematic of the physical system considered.
A sinusoidal perturbation of wavelength kf (or wave num-
ber Q = 2p/kf) is applied to a planar solidification front.
The concentration field U is initialized according to the
analytical solution for steady state, directional alloy solidi-
fication with a planar front [25]; accordingly, the initial sol-
ute concentration in the liquid decays exponentially away
from the interface. The properties used in the simulations
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correspond to impure succinonitrile and are summarized in
Table 1. The simulation parameters are also provided in
Table 1; the thermal and solutal diffusion lengths are
defined, respectively, as lT = DT0/G and lD = 2D/Vp. For
a given wave number, the computed phase-field contours
are used to measure the amplitude 2d of the growing pertur-
bation as a function of time. The amplitude growth rate _d is
then determined by fitting the amplitudes to an exponential
curve, as explained in Ref. [21]. The dimensionless growth
rate is defined as v ¼ ð _ds0=W 0Þ=ðd=W 0Þ. Fig. 3(a) shows
how the amplitude growth rate varies with the dimension-
less interface width, W0/d0 = k/a1, in the phase-field model.
These calculations are for a relatively large dimensionless
wave number of QlD = 87.3. It can be seen that the growth
rate approaches the theoretical value from the Mullins–
Sekerka analysis [24] as the interface width is decreased.
The phase-field model results can be considered converged
for W0/d0 less than about 10. A comparison of computed
growth rates with the analytically obtained Mullins–
Sekerka stability spectrum is shown in Fig. 3(b). Overall,
the growth rates obtained from the phase-field simulations
agree well with the theoretical values, despite the use of a
relatively large interface width of W0/d0 = 18.05. The
agreement improves with decreasing wave number. Addi-
tional results in Ref. [21] indicate that a smaller grid spac-
ing Dx/W0 than the one used here (0.8) produces only
slightly more accurate results.

In the simulations of the CET presented in the next sec-
tion, an interface width of W0/d0 = 11.3, corresponding to
k = 10, is utilized. Based on Fig. 3 and additional numeri-
cal tests not presented here, this value for k is small enough
to provide results that are reasonably independent of the
interface width. Using an interface width that is even smal-
ler is difficult due to escalating computational times [20,21].
Other details of the CET simulations are described next.
First, a columnar structure is allowed to evolve from the
perturbed planar solidification front with which the simula-
tions are initialized (see above). The simulations are contin-
ued until the columnar structure reaches a steady growth
regime where the temperature of the tips Tt (see Fig. 1)
reaches a constant value. At that time, small seeds for the
nucleation of equiaxed grains are introduced into the com-
putational domain at certain locations ahead of the colum-
nar front, as illustrated in Fig. 1. The seeds can be thought
Table 1
Parameters and properties for the impure succinonitrile alloy simulations
[21]

|m|C1, shift in the melting point (K) 2
D, diffusion coefficient (lm2/s) 1000
C, Gibbs–Thomson coefficient (K lm) 6.48 · 10�2

Vp, pulling speed (lm/s) 32
G, thermal gradient (K/cm) 140
d0, chemical capillary length (lm) 1.3 · 10�2

lT, thermal length (lm) 333
lD, diffusion length (lm) 62.5
e, anisotropy 0.007
k, partition coefficient 0.3
of as grain refiner particles of a certain size. The term
nucleation is used here loosely and simply denotes the ini-
tiation of the growth of a grain; in the presence of inocu-
lant particles, the onset of free growth is actually not
nucleation controlled [26,27]. The seeds are characterized
by a regular spacing ds (see Fig. 1) and a certain nucleation
undercooling DTn = Tl(C1) � Tn. In two dimensions, the
spacing is related to the seed number density by ns ¼ d�2

s .
If the local constitutional undercooling in the melt
DT = Tl(C) � T at the location of a seed reaches DTn, an
equiaxed crystal is allowed to grow there. Note that the
local constitutional undercooling in the melt DT is mea-
sured relative to the liquidus temperature corresponding
to the local solute concentration, i.e., Tl(C), not Tl(C1).
The simulations are then continued until the new grain
structure reaches a steady growth regime.

In order to avoid the need for a very long computational
domain for large simulation times, the following moving-
domain technique was implemented. When the temperature



Table 3
Conditions for the simulations of the CET, and final grain structure
obtained

Case G (K/cm) Vp (lm/s) e (%) ds (lm) DTn (K) Structure

1 140 3000 1 9.7 8 Equiaxed
2 140 · 10 3000 1 9.7 8 Equiaxed
3 140 · 20 3000 1 9.7 8 Equiaxed
4 140 · 40 3000 1 9.7 8 Equiaxed
5 140 · 50 3000 1 9.7 8 Equiaxed
6 140 · 60 3000 1 9.7 8 Columnar
7 140 · 70 3000 1 9.7 8 Columnar
8 140 · 150 3000 1 9.7 8 Columnar
9 140 · 50 6000 1 9.7 8 Equiaxed

10 140 · 70 6000 1 9.7 8 Equiaxed
11 140 · 150 6000 1 9.7 8 Mixed
12 140 · 280 6000 1 9.7 8 Columnar
13 140 · 50 10,000 1 9.7 8 Equiaxed
14 140 · 110 10,000 1 9.7 8 Mixed
15 140 · 150 10,000 1 9.7 8 Mixed
16 140 · 280 10,000 1 9.7 8 Mixed
17 140 · 400 10,000 1 9.7 8 Mixed
18 140 1000 1 9.7 8 Columnar
19 140 1500 1 9.7 8 Equiaxed
20 140 · 50 1500 1 9.7 8 Columnar
21 140 · 50 2500 1 9.7 8 Columnar
22 140 · 50 3500 1 9.7 8 Equiaxed
23 140 · 50 4500 1 9.7 8 Equiaxed
24 140 · 40 3000 1 19.4 8 Equiaxed
25 140 · 40 3000 1 38.8 8 Columnar
26 140 · 60 3000 1 9.7 7 Equiaxed
27 140 · 40 3000 0.5 9.7 8 Equiaxed
28 140 · 40 3000 1.2 9.7 8 Columnar
29 140 · 40 3000 3 9.7 8 Columnar
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of the left domain wall (at x = 0) reaches a certain cut-off
temperature Tc (see Fig. 1), all fields are shifted by one grid
point to the right. In other words, one line of grid points is
removed at the left side, and one line of grid points is added
on the right side. This shifting of grid points takes place at
time intervals equal to Dx/Vp. The values for / and U on the
grid points that are removed on the left side (and, hence,
correspond to the temperature Tc) are stored in a computer
file for later plotting. The new grid points that are added on
the right side are assigned values of / = � 1 (liquid) and
U = � 1 (C = C1). The value of the cut-off temperature
Tc is chosen to correspond to a location well behind the
columnar tips where the melt is no longer undercooled.
Comparisons were performed of simulations with and with-
out the moving-domain technique to verify that the value
chosen for Tc is sufficiently low to eliminate any dependency
of the predicted solidification pattern on Tc. The values
chosen for Tc are provided in the next section together with
the results of each simulation. With the moving-domain
technique, and fully exploiting symmetry in the y-direction,
the number of grid points used in a simulation of the CET
was typically equal to 2000 · 151.

4. Results and discussion

The CET simulations presented in the following corre-
spond to an Al–3 wt.% Cu alloy whose properties are sum-
marized in Table 2. A total of 29 simulations were
performed where the temperature gradient G, the pulling
speed Vp, the equiaxed seed spacing ds, the nucleation und-
ercooling DTn, and the crystalline anisotropy strength e
were varied. The conditions for each simulation case are
provided in Table 3.

4.1. Steady columnar growth

Before discussing the CET, it is useful to examine in
detail the predictions for steady columnar growth. Recall
that in all simulations, the columnar structure is allowed
to reach a steady growth stage before (equiaxed grain)
seeds are introduced into the computational domain.

Fig. 4 shows an example of computed phase field and sol-
ute concentration fields when the columnar structure has
reached a steady growth stage. The simulation corresponds
to Case 4 in Table 3. The columnar dendrite can be seen to
have grown several secondary branches behind the primary
tip. A thin solute concentration boundary layer exists in the
Table 2
Parameters and properties for the Al–3 wt.% Cu alloy simulations

m, liquidus slope [25] (K/wt.%) �2.6
C1, alloy composition (wt.%) 3
D, liquid diffusion coefficient [25] (lm2/s) 3000
C, Gibbs–Thomson coefficient [25] (K lm) 0.24
d0, chemical capillary length (lm) 5 · 10�3

e, anisotropy [28] 0.01
k, partition coefficient [25] 0.14

Fig. 4. Close-up of calculated dimensionless concentration (a) and
constitutional undercooling (b) fields for Case 4 during steady columnar
growth, before the nucleation of equiaxed grains.
liquid along the primary tip contour. In this boundary
layer, the concentration decreases exponentially to C1
(U = � 1). The concentrations in the solid indicate the pres-
ence of a complex microsegregation pattern. The solute
concentrations in the liquid, as shown in Fig. 4(a), can be
converted into a constitutional undercooling, defined as
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DT = Tl(C) � T, where Tl(C) is the equilibrium liquidus
temperature corresponding to the computed local solute
concentration in the melt, C, and T is the local temperature.
The result is shown in Fig. 4(b). Far ahead of the dendrite,
the undercooling varies in a linear fashion in accordance
with the imposed temperature field, since the solute concen-
tration is uniformly at C1, and Tl is therefore constant. At
the right domain boundary, the undercooling has almost
vanished. The undercooling is also close to zero at the
solid–liquid interface, since it is in equilibrium (other than
for the local curvature undercooling, which is not taken into
account when calculating Tl). Relatively small undercoo-
lings exist as well in the melt between the secondary dendrite
branches behind the primary tip. The largest undercoolings
are present just ahead of the solute concentration boundary
layer along the primary tip contour. It is in these regions of
large undercooling where the equiaxed grains will nucleate
first. Interestingly, the maximum undercooling is not
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observed directly ahead of the primary tip on the central
columnar dendrite axis, but on the symmetry line between
columnar branches (i.e., at the upper and lower domain
boundaries). This was also noted by Dong and Lee [15].

The variations of the solute concentrations and the solid
fraction during steady columnar growth are further inves-
tigated in Fig. 5. The results in this figure correspond to
Case 7 in Table 3. Fig. 5(a) shows that in this case the
steady columnar solidification pattern consists of cells of
a certain spacing. The variation of the computed solute
concentration along a vertical line (x = 54 lm) near the cell
tips (Cut A in Fig. 5(a)) is plotted in Fig. 5(c). The concen-
tration in the liquid decays exponentially away from the
solid–liquid interface, with a minimum at the symmetry
line between the cells. In the solid, the concentrations are
much lower (since the partition coefficient is equal to
0.14) and relatively uniform. The values for the average
concentrations in the liquid Cl and solid Cs are also indi-
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Fig. 6. Variation of the constitutional undercooling during steady
columnar growth in front of the dendrite tips (a) and along the centerline
between the columnar branches (b) for different applied temperature
gradients (Vp = 3000 lm/s, ds = 9.7 lm, and e = 0.01).
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cated in Fig. 5(c). These values were obtained by averaging
the calculated concentrations separately in the liquid and
solid along the vertical line corresponding to Cut A. By
performing this averaging for all grid lines along the direc-
tion of the imposed temperature gradient, a smooth varia-
tion of the average liquid and solid concentrations with x
can be obtained, as shown in Fig. 5(b). The same averaging
procedure was applied to the phase field /, and the result-
ing variation of the solid fraction fs with x is also plotted
in Fig. 5(b). Additionally, Fig. 5(b) includes the varia-
tion of the average mixture concentration, defined as
C ¼ ð1� fsÞCl þ fsCs. It can be seen that the solid fraction
increases steeply with distance behind the cell tips; once the
solid fraction reaches about 0.7, the fs variation is much
more gradual, as expected from the deep liquid grooves
in Fig. 5(a). The average liquid concentration decreases
with increasing x in accordance with the linear variation
of the liquidus concentration C�l ðT Þ, except near the cell
tips. There, Cl decreases more steeply in accordance with
the liquid concentration fields already discussed in connec-
tion with Fig. 4(a), and Cl reaches C1 about 5 lm ahead of
the cell tips. The area between the C�l ðT Þ and Cl lines in
Fig. 5(b) indicates the region where the melt is, on the aver-
age, constitutionally undercooled, i.e., Cl < C�l ðT Þ; this
region extends from about 2.3 lm behind the tips to about
10 lm in front of the tips. Note that the average mixture
concentration C is not everywhere equal to C1
(=3 wt.%). This can be explained by the fact that C must
be equal to Cl ahead of the tips (fs = 0), where Cl shows
the steep decrease mentioned above. Since the C variation
with x must be continuous, C must increase already behind
the tips. Solute is nonetheless conserved in the simulations:
the additional solute present near the tips (i.e., where
C > C1) originates from an initial transient not shown in
Fig. 5. Finally, the calculated variation of the average
liquid concentration with solid fraction from the phase-
field simulation is compared with the Scheil equation,
Cl ¼ C�l ðT Þ ¼ C1ð1� fsÞk�1, in Fig. 5(d). As expected, the
general trend in the two ClðfsÞ curves is the same. Due to
the solute gradients in the liquid near the tips, the phase-
field results show higher average liquid concentrations for
small solid fractions. Note that in the Al–Cu system, the
eutectic does not form until the solute concentration in
the liquid reaches about 33.1 wt.%.

The variation of the constitutional undercooling in the
liquid during steady columnar growth is further explored
in Fig. 6. Here, the undercooling is plotted along a newly
defined z-coordinate, which is in the same direction as
the x-coordinate but has its origin at the x-position of the
columnar tips, as shown in the insets. Fig. 6(a) shows the
variation of the undercooling along the central columnar
dendrite axis, and Fig. 6(b) that along the symmetry line
between two columnar branches. Results are included for
six different imposed thermal gradients G, corresponding
to Cases 1 and 3–7 in Table 3. It can be seen from
Fig. 6(a) that the maximum undercooling in the liquid
along the central dendrite axis depends only weakly on
the thermal gradient and varies between about 7 and 8 K
for the cases considered here. If the nucleation undercool-
ing DTn were greater than 8 K, no equiaxed grains could
form directly ahead of the primary tips; for DTn = 7 K,
on the other hand, nucleation would take place regardless
of the thermal gradient. As shown in Fig. 6(b), the maxi-
mum undercooling along the symmetry line between
columnar branches is generally larger than in Fig. 6(a)
and varies between about 7 and 10 K depending on the
thermal gradient; also, the location of the maximum und-
ercooling can be at negative z-positions, behind the colum-
nar tips. Note from Fig. 6 that the magnitude and location
of the maximum undercooling vary with the temperature
gradient in a non-monotonic fashion. As the temperature
gradient is increased from Case 1, the maximum underco-
oling first increases (Cases 3–5) and then decreases (Cases
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6 and 7) below the Case 1 value. Overall, Fig. 6 indicates
that the formation of equiaxed grains in the present simu-
lations will depend not only on the magnitude of the nucle-
ation undercooling, but also on the thermal gradient and
the position of the seeds within the columnar array.

4.2. CET

After steady columnar growth is achieved in a simula-
tion, a regular pattern of seeds is introduced into the com-
putational domain ahead of the columnar tips, as described
in Section 3. The seeds are allowed to grow into equiaxed
grains if the local constitutional undercooling in the melt
at the location of a seed reaches the specified nucleation
undercooling. Then, the simulations are continued until a
new steady growth stage is reached. Based on the appear-
ance of the grain structure at this new steady state, a deter-
mination can be made as to whether a CET occurs. The
final grain structures obtained for each of the 29 simula-
tions are summarized in Table 3.

Plots of the computed grain structures (i.e., contours of
the phase field) are provided in Figs. 7–12 for most of the
present simulation cases. These figures all follow the same
format, but require some explanation. The plots are
divided into two rectangular boxes. The left side of the left
box shows the phase-field contours during the initial tran-
sient, until the left side of the simulation domain reaches
the cut-off temperature Tc (see Section 3). The right side
of the left box shows the phase-field contours at a constant
temperature, corresponding to Tc. In other words, the
region on the plots where Tc is equal to a constant value
should not be interpreted as the structure of the mushy
zone at a certain instant of time, but as the structure that
is viewed by an observer who is traveling at the pulling
speed and is always located at the point where the temper-
ature is equal to Tc. The right box shows the phase-field
contours in the simulation domain at the instant of time
a simulation is stopped. Hence, it does represent the grain
structure for a stationary observer and allows for an exam-
ination of the growth pattern during the final steady
growth stage, long after the seeds are introduced. Note that
the seeds are indicated in the plots as small filled circles,
regardless of whether equiaxed grains originate from them
or not.

Fig. 7 shows the grain structures for Cases 1–8, where
the applied temperature gradient G is varied from 140 K/
cm to 21,000 (= 140 · 150) K/cm. All other simulation
parameters, including the pulling speed, are held constant
(see Table 3). It can immediately be seen that the final grain
structure is equiaxed for temperature gradients below and
including 140 · 50 K/cm (Cases 1–5), and columnar for
G P 140 · 60 K/cm (Cases 6–8). Hence, the CET occurs
at a well-defined temperature gradient between 140 · 50
and 140 · 60 K/cm. Several additional observations can
be made. The equiaxed growth patterns in Cases 1–5
change considerably with the applied temperature gradient.
For the lowest temperature gradient (Case 1), the equiaxed
grains are quite elongated and feature no secondary
branches. Only one out of seven seeds evolves into an equi-
axed grain. The melt at the location of the inactive seeds
never reaches the specified nucleation undercooling, due
to solute rejection from equiaxed grains growing nearby.
The rendering of seeds (i.e., grain refiner particles) as inac-
tive by solutal interactions with growing grains, for the case
of directional solidification, has also been noted by
Quested and Greer [27]. For Case 5, one out three seeds
nucleates, and the equiaxed grains have numerous side
branches and are less elongated. Furthermore, it can be
seen that the first row of equiaxed grains is almost able
to continue to grow past the second row of equiaxed
grains, without being blocked. Just a slight increase in
the temperature gradient, to that of Case 6, allows the first
row of equiaxed grains to continue to grow along with the
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original columnar branches, resulting in a fully columnar
structure at steady state. Case 6 is interesting because even
though the first row of seeds nucleates, the structure
remains columnar. Hence, the nucleation simply serves to
adjust the columnar spacing. Both primary spacings in
Case 6, before and after the introduction of the seeds, are
stable; i.e., no matter how long the simulation is continued,
no other equiaxed grains will nucleate and the primary
spacing is constant. This indicates that, as expected, the
columnar spacing affects the undercooling pattern in the
melt. At the two highest temperature gradients, Cases 7
and 8, the columnar spacing is even finer than in Case 6,
and none of the seeds ever nucleate. The fine spacing sim-
ply evolves from the initial interface instability.

The effect of the pulling speed Vp on the CET is explored
in Fig. 8. Computed grain structures are shown for six
cases (Cases 20, 21, 5, 22, 23, and 9) where the pulling
speed is increased gradually from 1.5 to 6.0 mm/s, while
the temperature gradient and all other parameters are held
constant. It can be seen that the CET occurs between a
pulling speed of 2.5 mm/s (Case 21) and 3.0 mm/s (Case
5). Considerable changes in the growth pattern with pulling
speed can be observed for both the columnar and the equi-
axed cases. As expected, the spacing of the columnar
branches decreases with increasing pulling speed (Cases
20 and 21), with the spacing adjustment occurring through
nucleation of new columnar grains right after introduction
of the seeds. The equiaxed grain structures also change
with pulling speed (Cases 5, 22, 23, and 9). With increasing
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pulling speed, the equiaxed grains become more globular,
since less time is available to grow secondary branches.
Also, the number density of equiaxed grains increases with
increasing pulling speed, because more of the seeds nucle-
ate. In fact, for the two highest pulling speeds (Cases 23
and 9), all of the seeds that were introduced into the simu-
lation evolve into equiaxed grains. This can be explained by
the growth rates of the equiaxed grains increasing with
increasing pulling speed. An increased dendrite growth rate
causes, in turn, a higher melt undercooling and shorter sol-
ute diffusion length in the liquid surrounding the equiaxed
grains. Hence, nucleation of seeds is less likely to be
impeded by solutal interactions from growing grains
nearby. For lower pulling speeds, on the other hand, the
solute diffusion lengths are so large that many of the seeds
never reach the specified nucleation undercooling [27].

Another interesting effect can be observed at relatively
high pulling rates. Fig. 9 illustrates the occurrence of a
CET for a pulling speed of 6.0 mm/s. Three grain struc-
tures are shown, corresponding to temperature gradients
of 9.80, 21, and 39.2 · 103 K/m (Cases 10–12). The final
grain structure at the lowest temperature gradient (Case
10) is equiaxed. At the highest temperature gradient (Case
12), a fine columnar structure is obtained. However, at the
intermediate temperature gradient (Case 11), a ‘‘mixed’’
structure is found to be present at steady state. This struc-
ture is called mixed, because some of the original columnar
branches continue to grow between the equiaxed grains.
Even though every seed forms an equiaxed grain, the equi-
axed grains do not completely block the columnar growth.
The columnar branches that remain between the equiaxed
grains grow in a wavy manner that conforms to the stag-
gered arrangement of the seeds. Hence, for this pulling
speed, the CET can be said to occur over a range of tem-
perature gradients, varying by about a factor of two. In
fact, for an even higher pulling speed of 10 mm/s (Cases
13–17), a mixed grain structure was obtained for tempera-
ture gradients varying by at least a factor of four. As
already shown in Fig. 7 (for Vp = 3.0 mm/s), at lower pull-
ing speeds the transition occurs at a sharp and well-defined
temperature gradient and no mixed structures exist.

The effect of the spacing of the seeds for the nucleation
of equiaxed grains on the CET is investigated in Fig. 10.
The results of three simulations are shown in this figure
corresponding to ds = 9.7, 19.4, and 38.8 lm (Cases 4, 24,
and 25, respectively), with all other parameters held con-
stant. It can be seen that the transition from equiaxed to
columnar growth occurs between Cases 24 and 25. For
large seed spacings, columnar growth is favored, since the
equiaxed grains are not close enough to each other to block
the columnar front. Note from Case 25 that nucleation of
the first row of seeds serves to adjust the columnar spacing;
however, none of the subsequent seeds nucleate and the
structure is indeed columnar at steady state. Comparing
the results for Cases 4 and 24, it can be seen that the seed
spacing has a strong effect on the equiaxed grain structure,
even though the pulling speed and the temperature gradient
are not changed. A larger seed spacing results in fewer
equiaxed grains; thus, the grains can grow larger and also
become more elongated in the direction of the applied tem-
perature gradient. Note that a reduction in the seed spacing
by a factor of two implies an increase in the number density
of seeds by a factor of four (recall that ns ¼ d�2

s ). However,
it can be seen from Fig. 10 that there are only twice as
many equiaxed grains per unit area in Case 4 as in Case
24. This is because equiaxed grains nucleate only from
every second seed in Case 4, while each seed nucleates in
Case 24.

Fig. 11 shows a CET due to a change in the nucleation
undercooling for equiaxed grains DTn from 8 K (Case 6) to
7 K (Case 26). For the temperature gradient (i.e.,
140 · 60 K/cm) and other conditions corresponding to
Cases 6 and 26, Fig. 6 shows that during steady columnar
growth the maximum melt undercooling is between 7 and
8 K, both in front of (Fig. 6(a)) and between (Fig. 6(b))
the columnar tips. Since the nucleation undercooling of
8 K in Case 6 is higher than the maximum constitutional
undercooling of the melt, no equiaxed grains can nucleate
and the structure remains columnar. For the nucleation
undercooling of 7 K (Case 26), the seeds can become active
and the structure becomes equiaxed.

Finally, the effect of the crystalline anisotropy strength e
on the CET is explored in Fig. 12. Results are shown for
e = 0.5%, 1.0%, 1.2%, and 3%, corresponding to Cases
27, 4, 28, and 29, respectively. It can immediately be seen
that for the two lower anisotropies the final grain structure
is equiaxed, whereas it is columnar for the two higher
anisotropies. Hence, the CET occurs sharply at an anisot-
ropy somewhere between 1% and 1.2%. This effect has not
been observed before and is not taken into account in any
previous model of the CET. Variations in the anisotropy
strength cause changes in the melt undercooling pattern
during steady columnar growth. For example, a compari-
son of Cases 27 and 28 shows that an increase in the
anisotropy strength from 0.5% to 1.2% results in a
decrease in the steady columnar branch spacing by a factor
of four. Also, with increasing anisotropy the dendrite tips
become more pointed. All of these changes in the colum-



Fig. 13. CET map for directional solidification of an Al–3 wt.% Cu alloy;
the symbols denote the phase-field simulation results for Cases 1–23; the
solid line represents a two-dimensional version of Hunt’s analytical model
[2] (DTn = 8 K, n = 1010 m�2, and e = 0.01).

010.=
K/cm40140 ×=GK1906.Tc =

0120.=
K/cm40140 ×=GK5906.Tc =

0050.=
K/cm40140 ×=GK8904.Tc =

030.=
K/cm40140 ×=GK4908.Tc =

#29

(d)

#27

(a)

#28

(c)

#4

(b)

Fig. 12. Effect of the anisotropy strength e on the CET for
G = 140 · 40 K/cm, Vp = 3000 lm/s, DTn = 8 K, and ds = 9.7 lm.

A. Badillo, C. Beckermann / Acta Materialia 54 (2006) 2015–2026 2025
nar growth pattern with anisotropy strength cause differ-
ent melt undercooling patterns, which in turn affect the
nucleation of equiaxed grains at the columnar front. While
the crystalline anisotropy is a material property that can-
not be independently varied in an experiment, it is none-
theless interesting to see how sensitive the CET is to this
property.

4.3. Grain structure transition map

The results for the first 23 simulation cases in Table 3 are
plotted on a pulling speed Vp versus temperature gradient
G map in Fig. 13. These 23 cases all correspond to
DTn = 8 K, ds = 9.7 lm, and e = 1%. Equiaxed, columnar,
and mixed grain structures are indicated as different sym-
bols on the map. It can be seen that equiaxed growth gen-
erally occurs for high pulling speeds and low temperature
gradients. Conversely, columnar growth is generally
favored for low pulling speeds as well as for high tempera-
ture gradients. Mixed grain structures are observed at high
pulling speeds and high thermal gradients.

The present results can be better understood by compar-
ing them with Hunt’s analytical model for the CET [2]. A
two-dimensional version of this model can be written as

G ¼ 0:666n1=2DT t 1� DT n

DT t

� �3
" #

; ð7Þ
where DTt = Tl(C1) � Tt is the undercooling of the den-
drite tips measured relative to the liquidus temperature cor-
responding to the initial alloy composition (C1), and n is
the number of equiaxed grains per unit area. Equiaxed
(columnar) growth occurs if the temperature gradient is
less than (above) the value given by Eq. (7). Eq. (7) differs
from the original three-dimensional model [2] in two as-
pects: (1) the three-dimensional version is based on the
number of equiaxed grains per unit volume and, thus, in-
cludes n1/3 instead of n1/2; and (2) the pre-factor, which is
based on a number of geometrical considerations [2], is
equal to 0.617 in the three-dimensional version, instead
of 0.666. The derivation of the two-dimensional version is
not presented here due to space limitations.

In the derivation of Hunt’s model [2], the tip underco-
oling is assumed to be given as a function of the applied
pulling speed by a relation of the form DT t / V 1=2

p , where
the constant of proportionality is a function of material
properties only. For the present two-dimensional simula-
tions, such a relation can be obtained by ‘‘measuring’’
the temperature of the dendrite tips as a function of
the imposed pulling speed during the steady columnar
growth regime with which the simulations are always
started. However, it was soon realized that the tip tem-
perature: (i) also depends on the applied temperature
gradient, and (ii) is not exactly proportional to V 1=2

p even
for a constant temperature gradient. This is well known
from more sophisticated dendrite tip growth models
[25]. Nonetheless, as a first approximation, the following
fit was obtained from the results of the present
simulations:

DT t ¼ 216V 1=2
p ; ð8Þ
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where the constant of proportionality has units of
K(s/m)1/2. Again, this relation is very approximate and
becomes highly inaccurate for low temperature gradients.

The curve given by Eqs. (7) and (8) is included on the
Vp � G map in Fig. 13. As another rough approximation,
the number density of equiaxed grains was taken equal to
the seed density in the simulations, i.e., n ¼ ns ¼ d�2

s ¼
1:06� 1010 m�2. As was noted in the previous sub-section,
not all seeds evolve into equiaxed grains when a CET
occurs. Despite all of these approximations, the curve cor-
responding to Hunt’s model can be seen to reasonably well
separate the equiaxed and columnar grain structures
obtained in the present phase-field simulations. Attempts
(not shown here) to incorporate an improved dendrite tip
growth model or to use different values for the number den-
sity of equiaxed grains in Hunt’s model did not result in
consistently better agreement. The comparison in Fig. 13
should only be viewed as an attempt to better understand
the present predictions relative to Hunt’s model. The
approximate agreement indicates that the dependence of
the CET on the temperature gradient and the pulling speed
observed in the present simulations can be well explained
by the physical considerations inherent in Hunt’s model.
In particular, the simulation results are in agreement with
the different regimes that can be identified on the map: at
low G, the CET occurs at a constant Vp; at high G, the line
separating the two grain structures has a slope of unity on
the log–log plot. Obviously, the mixed grain structures
obtained in the simulations for high pulling speeds are
not predicted by Hunt’s model. These mixed grain struc-
tures can be thought of as smearing out the transition at
high Vp.

5. Conclusions

Fully resolved, direct microstructure simulations of the
CET in directional solidification of an Al–3 wt.% Cu alloy
have been performed using a recently developed phase-field
model. The results illustrate the full complexities of the sol-
ute concentration fields and solidification morphologies
that are possible. The effects of the applied temperature
gradient and pulling speed, the equiaxed seed spacing and
nucleation undercooling, and the crystalline anisotropy
strength on the CET are investigated in a parametric study.
The dependence of the CET on the temperature gradient
and pulling speed, found from the phase-field simulations,
qualitatively agrees with the analytical CET model of Hunt
[2]. More exact comparisons are not possible because the
dendrite tip growth and equiaxed grain nucleation phe-
nomena are more complex in the phase-field simulations
than can easily be captured by an analytical model. Addi-
tional findings from the phase-field simulations include a
mixed columnar–equiaxed structure at high pulling speeds
and a strong dependence of the CET on the anisotropy
strength. The present simulations also reveal a number of
other interesting phenomena related to purely columnar
and equiaxed growth under an applied temperature gradi-
ent. For example, solutal interactions from growing equi-
axed grains can render a large fraction of seeds inactive
(as already noted in Ref. [27]). The columnar branch spac-
ing depends not only on the temperature gradient and the
pulling speed, but also on the anisotropy strength; further-
more, a spacing adjustment can occur through initiation of
seeds that develop into new columnar grains. Some of these
phenomena deserve more detailed research attention.

There are several obvious advances that need to be made
before the present microstructure simulations can be com-
pared to experimental results. The simulations need to be
extended to three dimensions and arbitrary crystallo-
graphic orientations. In addition, the effects of melt con-
vection and the movement of seed particles and small
equiaxed grains due to gravity should be accounted for.
While it is possible to construct a more comprehensive
phase-field model that includes these effects, numerical sim-
ulations on the scale of typical experiments will have to
await the availability of more powerful computers.
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