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SUMMARY

A study is reported of double-diffusive convection in a Hele—Shaw cell. The system consists of two
horizontal fluid layers of different concentration destabilized by lateral heating/cooling. The governing
transport equations are solved using the flux-corrected transport algorithm, which is known to possess
the numerical properties of stability, accuracy, monotonicity, and conservation. Good agreement with
simultaneous experiments is obtained. Numerical simulations are performed for a wide range of stability
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phenomena associated with the interaction, breakdown, merging, and mixing of the fluid layers.

NOMENCLATURE
¢ specific heat (J kg K™Y
C  concentration (kg kg™ 1)
d  gap width (m)
D mass diffusivity (m*s %)
g gravitational acceleration (m s~ %)
K permeability (m?)
L length or height of enclosure (m)
Le Lewis number, see equation (5b)
N stability number, see equation (5¢)

Nu Nusselt number, see equation (8)

Ra Rayleigh number, see equation (5a)

s wall thickness (m)

¢ dimensionless time, ¢'uopsce/ [ L{pC)el

T temperature (K) )

u  dimensionless x-direction velocity, u'[uq
up  reference velocity, Ra ae/L (m™'s)

v dimensionless y-direction velocity, v’'[ug
W total width of Hele—Shaw cell (m)

x  dimensionless horizontal coordinate, x'[L
y  dimensionless vertical coordinate, y'[L

Greek symbols
oe  effective thermal diffusivity (m?/s)
Bc  coefficient of solutal expansion
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1 coefficient of thermal expansion (K™')
dimensionless temperature, (7~ 73)/(T1 — T>)
dynamic viscosity (Ns m™?)
density (kg m™*

thermal capacitance ratio, see equation (5d)

dimensionless concentration, (C— C1)[(Cy — Cy)

Y dimensionless stream function, ¥/ (Luo)

a3 E D

Subscripts
e effective
f fluid
m  mixing
w  wall

1 left wall
2 right wall

Superscripts
! dimensional value

1. INTRODUCTION

Double-diffusive natural convection involving the simultaneous interaction of heat and solute
occurs in many industrial and natural processes and displays a range of complex flow
structures. ' Recently, the formation of convecting layers has been observed in various crystal
growth systems®>? and during solidification of binary solutions.* These layers are solutally
well-mixed and separated by thin interfaces resulting in a steplike density distribution in the
vertical direction. Recirculating fluid motion within each layer is driven through side wall
heating/cooling. Owing to solute transport across the interfaces, the solute concentration
differences between the layers decrcase with time, the interfaces eventually become unstable
and the layers break down and merge.’

Several investigations have considered solutally stratified solutions, with a linear gradient,
destabilized by lateral heating (see, for example, Reference 6). The stability limits for incipient
layer formation have been established and the subsequent layer interaction and merging have
been studied (see Reference 7 and the references therein). Double-diffusive layer interaction
and merging has also been studied for a somewhat more simple system consisting of two
discrete layers of different concentration heated or cooled from the vertical walls of an
enclosure.® ™! These studies investigate both experimentally and numerically the transient
system behavior, including the lateral heat transfer and the interfacial species transfer.

The present study considers a similar system as that studied by Wirtz® and Bergman and
Ungan;'' however, the enclosure is a Hele—Shaw cell. A Hele—Shaw cell consists of a narrow
slot sandwiched between parallel walls. There exists a direct mathematical similarity between
two-dimensional flow in a porous medium and laminar flow in a Hele—Shaw cell.? For low
Reynolds numbers both flows are governed by Darcy’s law. Owing to the absence of
macroscopic inertia and viscous terms, Darcy’s law is much simpler than the full
Navier—Stokes equations. Although convection phenomena in porous media are generally
different from those in pure fluids, Griffiths'® found that the entire range of double-diffusive
fluid motions encountered in pure fluids (i.e. fingers and layers) is displayed. Since its walls
can be made transparent, the Hele—Shaw cell ":nds itself especially well as a laboratory
apparatus to study two-dimensional convection patterns. Because of the small thickness of the
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fluid layer between the walls, distortion of flow visualization images by the strong refractive
index gradients present in double-diffusive systems is minimized.

This study represents high-resolution numerical simulations of double-diffusive natural
convection in a Hele—Shaw cell together with some experimental validation. Generally,
double-diffusive convection is transient and characterized by very sharp species concentration
gradients at non-stationary interfaces ‘separating fluids of different concentration. This
represents a formidable challenge for most numerical techniques. Wirtz® utilized centered
difference operators to obtain stable and accurate predictions for a layered double-diffusive
system. However, this technique is limited to relatively small Rayleigh numbers and it is
questionable whether all double-diffusive flow phenomena were adequately resolved with the
17 x 17 grid used by Wirtz.? Heinrich'* used a finite element algorithm based on the penalty
function and Petrov—Galerkin concepts in simulating double-diffusive convection in an
initially linearly stratified system and obtained good agreement with experiments. Beckermann
and Viskanta* employed the control-volume formulation together with the power-law
scheme ' in their numerical simulation of double-diffusive convection in a solidifying binary
solution. While the flow structures were qualitatively predicted correctly, the results were
subject to considerable numerical diffusion. In the present work, the flux-corrected transport
(FCT) finite difference method'® is applied to the simulation of double-diffusive convection.
As noted by Gross et al.,'” the FCT method possesses four desirable numerical properties:
stability, accuracy, monotonicity and conservation,'®'®~* and greatly reduces numerical
diffusion.

2. GOVERNING EQUATIONS

The physical system considered is shown in Figure 1. The cell is square with walls of length
and height L. The width of the cell is W and the gap size is d. The horizontal top and bottom
walls are adiabatic, while the vertical sidewalls are isothermal. Initially, two hydrodynamically
stable fluid layers of equal height (L/2) and temperature (72 ) but different solute concentration
(C, and C;) are contained within the cell. At time 7=0, the left sidewall temperature is
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Figure 1. Schematic of the physical system
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suddenly raised to 7;. We assume that thermal equilibrium exists between the walls and the
fluid, Darcy’s law is applicable, the solution is dilute, the density is a linear function of
temperature and solute concentration, and the Boussinesq approximation applies whereby all
thermophysical properties are constant except the density in the buoyancy term in the
momentum equation.

The governing equations can be written in dimensionless form as

% 0% 9. . do

ot~ Tax” Nax W
%-?+£(u6)+(%(v€) :ég (g%gfg) )
02 oup) + 5‘—} (09) = —— @i‘ﬁ ¥ gjﬂ 3)

where
uzg% (42)
U:_% (4b)

All symbols are defined in the Nomenclature. Since the flow in the layers is thermally driven,
the velocity scale (Ra «.fL) is appropriate. The governing dimensionless parameters appearing
in the above equations are

>

pfgﬁT( -1 )K

Ra = Rayleigh number (5a)
ple

Le = a¢/D Lewis number (5b)
Bc(Cy — Cy) o

= stability number 5c

5 (Ts = To) y (5¢)

0= (pO):W thermal capacitance ratio (5d)

dpscs

Note that the Raleigh number contains the permeability and that the effective thermal
diffusivity, e, is given by kef (pc)e, where k. is the effective thermal conductivity and (pc)e

SO, TY 0 P S |

is the effective thermal capacitance. For a Hele—Shaw cell, the permeability and effective
properties can be calculated from: 12

K= Eﬁ; (68.)
ke = ksd| W+ k(1 — d| W) (6b)

(pC)e = peced| W+ puwcw (1 — d| W) (6¢)
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1 0<y<0-5
6=0, = , =0 for r=0 7
¢ {o 05<y<t’ ¥ o (7a)
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—=—=0, Yy=0 for y=0,1 (7b)
ay ay ¥ pe
=1, —Q—?«:: , Y=0 for x=10 (7¢)
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The average Nusselt numbers at the left and right side walls are given by

o0

Nuo,, = g 0 dy (8)
0 0X

x-0,1

3. NUMERICAL PROCEDURES

The transport equations (2) and (3) were solved numerically using the two- dlmensmnal FCT
scheme. All details of this method have been described by Book, '® Gross and Baer, ¥ Book
and Fry,?! Barr and Ashurst,?® and Baer and Gross'” and do not need to be repeated here.
In brief, antidiffusive fluxes are computed that reduce diffusive errors to sixth order. A two
time step approach is used in this explicit method in order to maintain second order time
accuracy. The stream function equation (1) is solved using the stabilized error vector
propagation (EVP) method described by Roache?? which is a direct method for the solution
of Poisson type equations. A detailed description of the computer implementations can be
found in the work of Baer and Gross.'® The application of FCT to high Rayleigh number
convection in a porous medium is summarized by Gross ef al., 17 together with some validation
of the method.

Considerable effort was spent to ensure time step and grid size independence in the present
application. All results reported in this paper are obtained using a Courant number of 02 and
a 101 x 101 uniform grid. Figure 2 shows a typical comparison of concentration profiles
obtained using different grid sizes. This figure also demonstrates the ability of the FCT method
to resolve steep concentration gradients accurately. Results using a finer grid are virtually
indistinguishable from those using the 101 x 101 grid. The same is true for smaller time steps.
The Nusselt numbers at steady state agree to within 0-2% with the results of Shiralkar et al. 23
for thermal natural convection in a vertical porous cavity (see also below). It should be noted
that preliminary calculations for Ra > 1000 (not reported here) appear to require a finer grid
than that used here.

The computations were performed on an IBM 3090-200E/VF supercomputer. The FCT
method lends itself to considerable vectorization and much of the computer time is spent using
the direct EVP solver. Each numerical simulation requires many thousand time steps to reach
steady state. A dimensionless time interval of unity represents about 500 numerical time steps
and requires approximately 600 sec of CPU time. The video was generated using the public-
domain NCSA Image software on a Macintosh Il computer.
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Figure 2. Comparison of concentration profiles obtained using different grids

4. EXPERIMENTAL TECHNIQUES

Experiments were formed in a Hele—Shaw cell having dimensions L = 51-3 mm, d=1-6 mm,
and s = 6-5 mm. The front and back walls consisted of pyrex glass plates. The glass plates were
held in place by thin spacers attached to the vertical sidewalls outside of the test section. These
spacers blocked some of the view of the test section, making the photographs of the experiment
(see Plate I) slightly non-square. The vertical sidewalls were made of multipass copper heat
exchangers, through which temperature-regulated water was circulated. Thermocouples
embedded near the surface of the heat exchangers indicated that the sidewalls were isothermal
to within + 0-1° C of the desired hot and cold wall temperatures. The top and bottom walls
consisted of low thermal conductivity phenolic sheet. Except when photographs were taken,
the whole apparatus was encased in 5 cm thick foam insulation. To reduce the thermal
interaction with the environment further, the mean cell temperature was exactly maintained at
room temperature.

The two layer system was established by carefully introducing pure water (C; = 0) above a
layer of KMnOy4 solution of concentration C,. The aqueous KMnO, solution was chosen
because it is clearly visible at very low concentrations. The interface between the two layers
(at y =1/2) was observed to be very sharp at the onset of the experiments. Prior to the start
of an experiment the test cell was held at a uniform temperature 7; by circulating water from
one constant temperature bath through both heat exchangers, while another bath was
preheated to 77. At the onset of an experiment, valves were switched to increase the
temperature impulsively of one of the heat exchangers to 7;. Owing to the thermal inertia of
the heat exchanger, it took about 30 sec for it to reach the desired temperature (for a total
experiment duration of more than three hours).

5. RESULTS AND DISCUSSION

Comparison of numerical and experimental results

Although a number of experiments were performed, the results of only one experiment are
reported here for the purpose of validating the numerical data. In this experiment, the
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temperature difference (77 — 72) was 5° C, while the concentration difference (Cy — Cy) was
0-165 wt% KMnOy4. The values of the governing dimensionless parameters are: Ra = 50-8,
Le=438-5, N=1-0, and o0 =4-11. There is an uncertainty of about 5% in the values of these
parameters, because of uncertainties in the values of the thermophysical properties, the
temperatures, and the initial concentration difference. It should be noted that the experiment
was repeated several times and the time associated with the mixing of the layers (see below)
was repeatable to within better than 5%.

Plate I shows representative photographs of the experiment (left panel) together with color
plots of numerically predicted concentration fields (right panel). Although quantitative
concentration measurements were not performed, the photographs clearly show the transient
evolution of the double-diffusive layers in the experiment. The location and shape of the
double-diffusive interface between the two layers are very sensitive to the system parameters
and the heat and mass transfer phenomena within the layers, and serve well as a tool for
validation. It can be seen that there is excellent agreement between the experimental and
numerical results before layer turnover and mixing (Plates I(a) and I(b)). The predicted layer
turnover time is equal to 290 min (#n = 200), while the experimental value is only 3 min higher.
Plate I(e) shows the results shortly after the onset of mixing (¢ = 202). Here, considerable
differences can be observed between the measured and predicted flow structures. This can be
attributed to the highly transient and chaotic nature of the mixing process. By repeating the
experiment several times, it was observed that slight differences in the onset of the interface
instabilities cause large variations in the flow structure at later times. In other words, the 3 min
difference in the layer turnover time makes comparison between the experimental and
numerical results difficult during the ensuing mixing process. However, the general system
behavior appeared to be always similar. Although the mixing process deserves further research
attention, the above comparisons established some confidence in the numerical results. A
detailed discussion of the various physical phenomena occurring in the present system is
provided in the following section.

Video

The video shows numerical simulations of three test cases corresponding to N=0-5, 1-0,
and 1+5 and Ra =500, Le =100 and o= 1-0. A thermal capacitance ratio of unity would be
difficult to achieve in an experiment; however, this value is chosen for simplicity. A Lewis
number of 100 is characteristic of many salt—water systems, and a Rayleigh number of 500 can
be considered intermediate. The Nusselt number for steady thermal natural convection in a
porous cavity (or Hele—Shaw cell) heated/cooled from the sides is approximately equal to 3:95
for Ra = 500.%* This study focuses on the basic heat and mass transfer phenomena for various
stability numbers. For each case, the video shows the transient evolution of the concentration
field, which is followed by the temperature and streamfunction fields. Each color represents
a certain value of the field variable, with the color palette and the dimensionless time ¢
provided below the cell. Experiments are not shown on the video because of their long
duration.

For N=0-5, the layers are very unstable. At the left wall, heated fluid rises up and lifts the
initially horizontal interface between the layers of different concentration. Because of the large
value of the Lewis number, the fluid retains its composition, while the temperature non-
uniformities propagate relatively quickly through the cell. Owing to solute transport across
the interface, the top layer fluid flowing along the interface attains a higher concentration.
However, no fluid appears directly to penetrate the interface between the layers of different
concentration and the interface retains its sharpness and smooth appearance until about ¢ = 9.
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The interface continues to stretch and deform as it turns and passes along the top wall. With
increasing distance from the left, hot wall, the temperature of the high concentration fluid
behind the interface gradually decreases. Eventually, this results in an unstable situation,
where fluid of a higher density overlies fluid of a lower density (and concentration Ci). Thus,
at about ¢ = 10 a so-called ‘double-diffusive finger’! forms through which high concentration
fluid flows downward through the fluid of concentration Ci. This time (fn) marks the
beginning of the layer turnover and mixing regime. Note that the finger has a mushroom-
shaped tip characteristic of buoyant plumes. Within a very short time several such fingers
develop as the thermal boundary layer at the left wall continually supplies high concentration
fluid to the top of the cell, at the expense of the bottom layer. Often, the fingers themselves
are unstable, break up into two or more plumes, and eventually mix with the fluid in the upper
layer. At about 7= 25, the bottom layer is virtually depleted of high concentration fluid and
the entire cell is filled with double-diffusive fingers of various shapes. After about /=30, the
streamfunction fields show a single, thermally driven recirculation cell. The remaining
concentration non-uniformities are advected in a clockwise fashion and produce some
unsteadiness mainly in the core of the recirculation cell (see also below). The simulation was
terminated at 7 = 65 when the fluid reaches an almost uniform concentration equal to 0-5. The
isotherms and streamlines are now identical with those predicted for the steady, two-
dimensional, natural thermal convection of a pure fluid in a porous cavity (or Hele—Shaw cell)
at Ra = 500.% ‘

The convection phenomena are somewhat different for N=1-0 and 1-5. Owing to the
higher value of the stability number, the thermal buoyancy forces are not able to cause the
rapid layer turnover and mixing observed in the N = 0-5 case. The interface between the fluid
layers remains tilted from the horizontal for a long time. Each layer contains a thermally
driven, clockwise rotating recirculation cell. For both N= 1-0, 15, the system reaches a
thermally quasi-steady regime at about ¢ = 60, at which time the temperature gradients at the
hot and cold walls are, on the average, equal (see also below). Again, the rapid diffusion of
heat relative to that of solute is characteristic of double-diffusive sysiems due to the large value
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Figure 3. Transient variation of concentrations at two specified points (Ra = 500, N=1-0, Le = 100, 0 = 1)
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of the Lewis number. During the thermally quasi-steady regime, the concentration and
streamfunction fields are fairly antisymmetric about the cell diagonal. The fluid motion in the
layers causes convection of solute across the interface; however, no fluid penetrates the
interface at the hot and cold walls. The resulting concentration non-uniformities are advected
with the flow in each fluid layer. As fluid of a higher (lower) concentration flows along the top
(bottom) wall, its temperature decreases (increases) and a succession of small double-diffusive
fingers or plumes develops (while the layers are still stable). This is further illustrated in Figure
3, where the temporal evolution of the concentrations at the points (x=0-5, y=1-0) and
(x=0-5, y=0-0) is plotted for N= 1-0. The fluctuations up to about 7= 230 are due to the
plumes passing by these points.

Owing to continued solute transfer across the interface, the concentration difference between
the layers and, hence, the stabilizing force of the system decreases and the interface becomes
more sloped. At about =230 for N=1-0 and 7 =430 for N=1-5, the interface in the centre
region of the cell is almost vertical. Note that the curves in Figure 3 are now more smooth.
Eventually, the interface is tilted such that some high concentration fluid overlies low
concentration fluid, which is conducive to the formation of double-diffusive fingers. Thust, at
t=273 for N=1-0and =470 for N=1-5 the interface at about the cell mid-point becomes
unstable and the layer turnover and mixing regime starts. As for N=0-5, the mixing process
is very vigorous and the streamfunction fields show the merging of the two recirculation cells
into a single one. The remaining concentration non-uniformities are advected in a clockwise
fashion within the cell. This can also be seen in Figure 3 (for N=1:0), where the two
concentrations plotted oscillate in a periodic fashion about 0-5. For all N tested, the
dimensionless frequency of these oscillations is equal to 3-51 x 1072; in other words, it takes
At=28-5 for the fluid to make a complete revolution in the cell. Since the flow is thermally
driven, this frequency is, of course, different for other Rayleigh numbers. At long times, the
oscillations diminish in amplitude because of continued mixing. As for N=0-5, the
temperature and streamfunction fields are characteristic of thermal natural convection of a
pure fluid at approximately A7 =60 after the onset of the layer turnover regime {(/m).

The time variation of the Nusselt numbers at the hot and cold walls is shown in Figure 4
for N=0-5, 1-0 and 1-5. Initially, the heat flux at the left wall rapidly decreases, while the
heat flux at the right wall increases from zero. For all N tested, the system reaches the
thermally quasi-steady regime at about ¢ =60, after which the two Nusselt number curves
coincide almost exactly. During the quasi-steady regime (except for N=0-5), the Nusselt
numbers decrease slightly and undergo small fluctuations. This can be attributed to the
changing tilt of the double-diffusive interface and the intermittent behavior of the
double-diffusive plumes. At the onset of mixing (¢ = fn), the Nusselt numbers increase sharply
and then oscillate about the steady state value with the same period as the concentrations
shown in Figure 3. The extrapolated steady state value for Nu is the same for all N and agrees
to within 0:-2% with the numerical result of Shiralkar er al.?* for Ra = 500. The sudden
increase in the Nusselt number is due to the two convection cells merging into a single one,
which advects the heat more effectively across the cavity. Note that the Nusselt numbers at the
hot and cold walls oscillate in phase. The amplitude of the oscillations slowly decreases with
time until a constant steady state value is reached.

6. CONCLUSIONS

The video of the present numerical simulations reveals a number of highly unsteady transport
phenomena that might have remained undetected without proper visualization (see for example
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Reference 9). The layer interaction, merging, and mixing as well as the transient behavior of
the lateral heat transfer are investigated in detail for a range of stability numbers. Overall, the
general system dynamics in the Hele—Shaw cell are similar to those observed in a cavity of
larger width (between the front and back walls). ""°~'* Obviously, quantitative comparisons are
not possible.

The flux-corrected transport algorithm appears to be well suited for the numerical simulation
of double-diffusive flows, as witnessed by the good agreement with experiment. However, the
chaotic mixing process after layer turnover deserves further research attention. Note that the
general form of the present heat and solute transport equations is the same as for applications
not involving a Hele—Shaw cell or a porous medium. It should be mentioned that preliminary
simulations at much higher Rayleigh numbers show significant small-scale instabilities at the
interface between the layers, indicating the need for a much finer grid than that used here.
Alternatively, one should develop a sub-grid ‘turbulence’ model for double-diffusive flows.

Finally, as already mentioned by Beckermann and Viskanta,*> the observed double-diffu-
sive transport phenomena have a profound influence on the chemical and structural
homogeneity of a solidifying alloy or crystal. Accurate numerical simulations of the
double-diffusive flows in the melt are needed for realistic predictions of potential non-
uniformities in the solid.
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(b)

(©)

Plate I (Beckermann ef al.). Comparison of experimental results (left panel) with predicted concentration fields (right panel)
for Ra=50.8, N=1.0, Le=438.5and 6 =4.11. (a) 1=50; (b) t=160; (¢) t=190; (d) r =199; (e) 1 =202
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Plate I (Beckermann er al.) continued



