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The convective transport and gravitational settling of unattached equiaxed grains and dendrite 
fragments can cause macrosegregation and influence the structure of the equiaxed zone in a 
variety of solidification arrangements. An understanding of how the highly nonspherical ge- 
ometry of the dendrite influences its settling and transport characteristics is needed to determine 
the motion of unattached dendrites and predict structure and segregation in castings. The em- 
pirical results of  previous works have been used to develop a FORTRAN 77 computer program 
to calculate the settling velocity of various dendritic shapes and a number of other parameters 
of interest, such as the volume and surface area of the dendrite. Required inputs to the code 
are the physical properties of the system and some simple geometric parameters of the dendrite 
being considered, such as the average radius of the primary arm. The predicted settling velocities 
were on average within -+5 pct of those measured for model dendrites and were consistent and 
in good agreement with three other experimental investigations. Future development of the code 
will attempt to overcome many of its present limitations by including particle-particle inter- 
actions and the effects of tertiary arms, for example. 

I. INTRODUCTION 

IT has been shown that the settling (or floating) of 
dendrites and equiaxed grains can cause severe macro- 
segregation in metal castings ~1-41 and that the formation 
of free, unattached grains and their movement is critical 
to the formation and structure of the equiaxed zone in a 
variety of solidification arrangements, t5-8~ An under- 
standing of the settling characteristics of dendritic grains 
is needed to understand and predict this type of segre- 
gation and the development of the equiaxed zone. At- 
tempts have been made to use Stokes' law to assist in 
the analysis of dendrite settling processes, t8,9,~~ How- 
ever, since dendrites are highly nonspherical, the use of 
Stokes' law has yielded only rough estimates of  dendrite 
velocities. 

In a recent experimental study by Zakhem et  a l . ,  t~l~ 

the effects of shape on the settling rate of model den- 
drites were examined. In this study, the low Reynolds 
number drag and settling speed ratio of equiaxed den- 
dritic grains and dendrite fragments were determined. 
Plastic dendrite models patterned after the shapes of real 
dendrites observed in metallic alloys and metal analogs 
were constructed and tested in a large Stokes' flow fa- 
cility. The size, shape, and density of these were varied 
so that the drag and terminal velocities of 34 different 
models undergoing free fall along their axis of symmetry 
were measured. It was concluded in this work that the 
interdendritic liquid of settling grains is effectively im- 
mobilized, and thus, the added surface area of secondary 
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dendrite arms does not significantly add to the drag coef- 
ficient of the particle. 

Ahuja e t  a l .  t121 advanced this work through use of a 
conceptual envelope which (1) surrounds the dendrite, 
(2) is defined as a porous particle, and (3) is used to 
determine an effective density and sphericity for the par- 
ticle. Figure 1 shows a typical shape of an equiaxed den- 
drite and two possible envelopes, one idealized. The 
nonspherical envelope contains both the solid dendrite 
and the interdendritic liquid. The fluid flow around the 
dendrite is mainly controlled by the nonspherical shape 
of the dendrite envelope, while the fluid flow through 
the dendrite is determined by the porosity and perme- 
ability of the dendrite. These two flows affect the drag 
force experienced by the dendrite and hence its settling 
velocity. In Ahuja e t  a l . ,  t~2] relevant dimensionless pa- 
rameters useful in quantifying the effects of the shape 
and porosity of dendrites on settling velocity were iden- 
tified. In the present work, a model for the drag coef- 
ficient for a single dendrite (equiaxed and uniaxial) 
settling in an infinite medium is further developed. The 
experimental data of Zakhem e t  a l .  t~u is reanalyzed in 
view of the proposed model, and the results of the model 
compared with experiments. 

These two articles tH'~2~ represent a significant ad- 
vancement in our ability to estimate the relative settling 
velocity of  dendritic shapes. However, computation of  
the relevant geometric parameters needed to use these 
findings is cumbersome. This article presents: (1) a 
FORTRAN 77 computer program written to overcome 
the difficulties encountered in dendrite settling analyses, 
(2) an estimate of corrections for wall and inertial ef- 
fects, and (3) a comparison of dendrite velocities mea- 
sured and predicted using the new code. Additional 
complexities, such as forced and natural convection, 
particle interactions, dendrite and liquid density gra- 
dients, and dendrite orientation, are not considered. 
Only dendrites having either primary or primary and sec- 
ondary arms are considered; the influence of tertiary 
arms has not been considered. 
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(a) (b) 

Fig. 1 - - ( a )  Idealized envelope around an equiaxed dendrite. (b) Den- 
drite envelope used in the code, 

II. CODE DEVELOPMENT 

Required inputs to the code are the dimensions of the 
dendrite and thermophysical properties of the alloy. The 
velocity of the settling dendrite, its Reynolds number, 
and other variables of interest, such as the dendrite vol- 
ume, surface area, and settling speed ratio, are calcu- 
lated. Stokes' law, corrected for geometric effects, wall 
blockage, and inertial effects, is used to estimate the 
dendrite terminal velocity, Uj, as shown in the following 
equation: 

2 ( r 2 g A p ] K S r  

: C - d - /  7 
[1] 

where g is the acceleration of gravity, Ap is the differ- 
ence in density between the envelope and liquid (Ap = 
e(P~o~a - P, qo~d), e is the solid volume fraction of the 
envelope), /~ is liquid viscosity, and K is a correction 
factor for wall and inertial effects. The envelope equiv- 
alent radius, r, is defined as the radius of a sphere of 
volume equal to that of the dendrite envelope. The set- 
tling speed ratio, KS~, is defined as 

Us 
KSe = - -  [2] 

G 

where Us is the Stokes settling velocity of the dendrite 
and (dr is the Stokes velocity of the reference sphere 
which is the envelope equivalent sphere. Note that the 
envelope equivalent sphere has the same volume and 
density as the envelope, and thus, an important input to 
the code is the number of secondary dendrite arms (and 
their radius) which is used to determine the solid fraction 
of the envelope and its density. A correction factor, K, 
to compensate for the effects of neighboring walls and 
inertial effects due to nonzero Reynolds numbers is de- 
fined as 

G 
K = - -  [31 

u~ 

The subscript e is used with the speed ratio, KS,., to re- 
mind the reader that the reference speed is that of the 
envelope equivalent sphere and not the Stokes velocity 
of the equivalent sphere of the dendrite. 

Ahuja et al. [L2] used the data of Zakhem et al. I~] to 

develop the following empirical relationship for the set- 
tling speed ratio for equiaxed dendrites: 

KSe = 1.26 logm (0 .~63)  

2/32 + 3(1 - tanh (/3)//3) 
• [4] 

2/32(1 - tanh (/3)//3) 

in which the envelope sphericity, qt, is the ratio of the 
surface area of the envelope equivalent sphere to that of 
the envelope, Ae, as described by 

4 ~-r 2 
I ,  - [ 5 ]  

A~ 

and /3 is the normalized radius sensitive to the perme- 
ability, K,, of the dendrite structure represented by 

r 
/3 - [6] 

The speed ratio KS~ is analogous to Ceg in Ahuja e t a / .  t~21 
The permeability is estimated using the Kozeny-Carman 
equation,~31 

(1 - e) 3 

Kv 5(A,JVJ [7] 

where Aj is the surface area of the dendrite, V~ is the 
volume of the envelope, and e is the solid volume 
fraction of the envelope. It should be noted that the 
numerical constants in Eq. [4] are slightly different 
from those in Reference 12 due to errors later corrected 
in Reference 1 1. Corrections to Zakhem et al. uu can be 
found in Reference 17. 

A similar relation among KSe, ~ ,  and/3 can be found 
using data from Zakhem et al. l~u for uniaxial dendrites 
(a single primary arm) as expressed by 

KS,. = 1.06 log~0 (0-~13)  

2/32 + 3(1 - tanh (/3)//3) 
x [8] 

2/32(1 - tanh (/3)//3) 

The first term (containing ~ )  in Eqs. [4] and [8] ac- 
counts for the nonspherical shape of the dendrite and en- 
velope and is calibrated using the settling data of 
dendrites without secondary arms from Zakhem e l  al. I~1] 
The second term (containing/3) in Eqs. [4] and [8] ac- 
counts for the effect of the permeability of the envelope 
and is based on the analytical work of Neal et al. 1~81 
where/3 is based on the envelope volume-equivalent ra- 
dius, r. 

III. DENDRITE ENVELOPE 

In an effort to develop a shape parameter consistent 
with changes in a speed ratio (KSe), the dendrite enve- 
lope was introduced. 1~21 One possibility of an appropriate 
envelope is shown in Figure l(a), formed by smoothly 
joining the tips of the primary and secondary arms. It 
has been shown that a similar, yet simplified, envelope 
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is effective at relating sphericity and permeability to set- 
tling speed ratio. I~2~ Three different envelopes were ex- 
amined in the development of this work and all yielded 
good results. The envelope shown in Figure 1 (b) yielded 
the best results and is used in the code for equiaxed den- 
drites with secondary arms. For uniaxial dendrites, an 
envelope consisting of two pyramids having a common 
base is used, the tips of the pyramids coinciding with 
the tip and base of the primary arm of the uniaxial den- 
drite. The envelope collapses to coincide with the pri- 
mary arms for dendrites with no secondary arms; thus, 
in this case, e = 1. The envelope used in this work 
(Figure l(b)) for equiaxed dendrites is different from the 
envelope used by Ahuja et al. t~21 and is more form fitting 
to the dendrite; thus, less liquid is contained in the en- 
velope, resulting in a greater solid volume fraction 
(higher e). The average angle between the primary arm 
and the tips of the secondary arms defines the pyramid 
angle, 0, and the tips of the secondary arms are at the 
corners of the pyramid. The secondary arm was formerly 
parallel to the side of the pyramid, t~21 The volume and 
surface area of the dendrite can be estimated using 
Appendix B of Zakhem et al. 1~'~71 The volumes and sur- 
face areas of the dendrite and envelope are then used to 
determine ~ ,  /3, and in turn KSe. 

The volume, Ve, and surface area, Ae, of the equiaxed 
dendrite envelope are determined by dividing the enve- 
lope into six pyramids having square bases and a center 
volume having six square surfaces (coinciding with the 
bases of the pyramids) and eight equilateral triangular 
surfaces and are equal to 

Ve = S2hl q- (5/6)s 3 [9a] 

~ /  $2 
Ae ~ (6V2)s  (hi) 2 + -- + (X/3)S 2 [10a] 

8 

where s = L tan 0/(1 +tan 0), h I = L / 2 ( l + t a n  0), L is 
the primary arm length, and 0 is the angle between the 
primary arm and a straight line connecting the tips of the 
secondary arms. 

For the envelope around a single primary arm with 
secondary arms, the envelope volume and surface area 
are 

2 h2 
V~ = 3 (b~ + b~) [9b] 

h2/ 
Ae = (2X//2)h b')2 + 2 + (b2)2 + [10b] 

where h = (Ltanq~)/(1 + tan q~/tan 0), bl  = L/(tan 0/  
tan q~ + 1), b 2 = L/(tan ~#/tan 0 + 1), and q~ is the angle 
between the primary arm and the tips of the secondary 
arms from the base of the uniaxial dendrite, t~91 

IV. WALL BLOCKAGE 
AND INERTIAL CORRECTION 

Estimates of wall blockage and inertial effects are 
needed, because the influence region associated with 
low Reynolds number flow is typically very large, and 

if very large grains are expected, higher velocities and 
nonzero Reynolds numbers can result in substantial in- 
ertial effects. Zakhem et al. t~l used the correction pro- 
cedures developed by Lasso and Weidman 114J to estimate 
wall blockage and inertial correction factors for model 
dendrites. These correction procedures were used to de- 
velop a generalized relation for determining wall and in- 
ertial correction estimates. Only advancements to 
procedures detailed in References 11 and 14 are dis- 
cussed here. These correction factors assume the particle 
to be settling along the centerline of a container with a 
circular or square cross section. A wall correction factor, 
K .... is estimated using the following Taylor series 
adapted to Table III of Wakiya: 1151 

K ,  = 1.0011 + 1.5395b + 1.8171b2 + 14.637b 3 

- 0.0021644f + 0.83207bf + 1.0405b~ 

+ 3.8916 x 10-4f 2 - 0.089787bf 2 

- 1.4334 x 10 5f3 [11] 

where f is the spheroid fineness ratio equal to L / w  and 
b is an intermediate blockage ratio equal to w / W .  The 
maximum height of the dendrite is L, w is the maximum 
dendrite width perpendicular to flow, and W is the char- 
acteristic width of the surroundings. If the surround- 
ings are square, W is equal to the length of the side plus 
10.6 p c t .  Ij41 This wall correction is used to determine a 
sphere blockage ratio, B, through use of the following 
equation adapted to Table I of Sutterby t~61 at Re = 0: 

B = 0 .471425(K, . -  1) - 0 .416166(K, . -  1) 2 

+ 0.258812(Kw- l )  3 [12] 

The equivalent Reynolds number, Re, of a sphere having 
the same drag as the test object is estimated through use 
of the following definition of Reynolds number and 
Stokes' law: 

ptdUe d3 ptApg 
Re = - -  [13] 

tx 181&ZKe 
where d = 2r, Ue is the velocity of the envelope equiv- 
alent sphere, and Ke is a wall and inertial correction fac- 
tor for the envelope equivalent sphere (K~ is found using 
an iteration process as described in Sutterby, ~6~ with 
B = d /W) .  The sphere blockage ratio, B from Eq. [12], 
and the equivalent Reynolds number, Re, are used in the 
following Taylor series adapted to Sutterby's 1161 Table I 
to give the combined inertial and wall correction factor, 
K, for the dendrite: 

K = 1 + 0.14334Re - 0.0011212Re ~- 

- 0.0091635Re 3 + 0.0025419Re 4 

- 0.00020383Re 5 + 1.5798B 

- 2.8517ReB + 1.3261Re2B - 0.200Re3B 

+ 0.0049145Re4B + 23.046B 2 + 8.8877ReB 2 

- 7.3132Re2B 2 + 1.1035Re3B 2 

- 266.09B 3 + 48.076ReB 3 

-- 3.0625Re2B 3 + 2025.9B 4 

- 122.36ReB ~ - 5942.7B 5 [14] 
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Table I. Measured NH4CI Equiaxed Dendrite 
Settling Rates, Urn, s'2~ and Calculated Settling Rates, Ua 

C d -  Um 
Dendrite U,,, U,t 

Width (10 2 m) (10--' m/s) (10-'- m/s) U,,, 

0.08 IsJ 0.16 0.161 0.006 
0.111sl 0.22 0.304 0.38 
0.212~ 1 1.06 0.06 

This gives an estimate of K defined in Eq. [31 and used 
in Eq. [1] to find the terminal velocity of the dendrite, 
Ud. The high order terms of Eq. [14] are needed because 
of the complexity of the relationship among K, Re, and 
B. At constant B, the relation between K and Re goes 
from a power law (Eq. [ 15]) at lower B values, to linear 
at intermediate B values, and finally to exponential at 
higher B values. 

V. E X A M I N A T I O N  OF C O D E  R E S U L T S  

Figure 2 shows the dendrite settling velocities calcu- 
lated and the model dendrite velocities measured by 
Zakhem et al. u ~I The average difference between the cal- 
culated and measured velocities is +-5 pct. This is con- 
sidered to be excellent agreement, especially since wall 
and inertial corrections in these cases sometimes ex- 
ceeded 20 pct and velocity is very sensitive to the den- 
sities of  the solid and liquid. For example, for the lower 
density dendrite models used in the study, a 2 pct error 
in solid density would result in a 30 pct error in Ap and 
settling velocity. 

In a previous study, evidence of dendrite settling in 
eutectic Pb-Sn was found. 141 By calculating velocities for 
Pb-Sn dendrites in a eutectic melt, we can determine if 
velocities predicted by the code are consistent with these 
previous findings. Several micrographs of the frag- 
mented dendritic structure 141 provide the geometric val- 
ues needed in the code. Cooling curves show that during 

o~,,q 
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10 

10 ~ 

10"1 

10 a 
10 -2 10-1 10 o 10 t 

Measured velocity 
Fig. 2--Dendrite settling velocity calculated by the code vs measured 
model dendrite settling velocity from Ref. 1 l, in units of 10 --~ m/s. 

"quench," solidification takes place over a span of ap- 
proximately 30 seconds (Ingot No. 6). A dendrite set- 
tling velocity of 8.8 x 10 -4 m / s  was determined, using 
the following conditions: Ap = 2.2 g /cc ,  /z = 2.1 x 
10 -3 kg /ms ,  primary arm length = 0.01 x 10 -2 m, arm 

--9 �9 �9 
diameter = 0.0018 x 10 - m, crucible &ameter = 1 x 
10 -2 m, and a simple equiaxed shape with no secondary 
arms. de Groh 's  t4/ Ingot No. 6 shows Pb dendrites dis- 
tributed throughout the bottom half of the 2.6 x 
10-2-m-tall sample. For a dendrite to settle from the top 
to the center of the ingot (or from the center to the bot- 
tom), a settling distance of 1.3 x 10 -2 m, an elapsed 
time of about 15 seconds (one half of the total solidifi- 
cation time) is required. This seems entirely feasible 
given the predicted velocity and shows the code to be 
consistent with these results in Pb-Sn. 

Jang and Hellawell tsl measured the NHaC1 equiaxed 
dendrite settling rates shown in Table I. The physical 
properties and geometric parameters of these settling 
dendrites can be drawn from Reference 8, thus allowing 
use of the code. Using a micrograph of a typical NHaC1 
dendrite (Figure 7(a) of Reference 8), the geometric pa- 
rameters were determined by proportioning the param- 
eters of the example dendrite. The proportionality, P, 
used was the ratio of the dendrite widths, P = W J W e ,  
where W,~ is the width of dendrite whose velocity was 
measured and W,, is that of the example dendrite (in 
Figure 7(a) of Reference 8). Table II shows the physical 
properties and geometric parameters used in the code. 
The agreement between the code and the measured ve- 
locities shown in Table 1 is considered excellent. The 
difference between the measured and calculated veloci- 
ties can be fully accounted for by particle-particle inter- 
actions and the uncertainties in the measured velocity 
and dendrite width. Since only one or two significant 
figures are given for the measured NH4CI dendrite ve- 
locities and widths tsl and no estimate of accuracy pre- 
sented, it is implied that accuracies are in the range of 
-+10 pct for both the velocities and widths. A 10 pct 
uncertainty in width alone translates to 20 pct uncer- 
tainty in velocity due to the r 2 term in Stokes' law. It 
should also be noted that the estimated accuracy of the 
dendrite dimensions determined from the micrograph is 
+-5 pct. 

Ahuja t2~ has recently measured NH4C1 equiaxed den- 
drite settling velocities. The dimensional parameters for 
a dendrite were determined and are listed in Table II. 
The difficulty with this data is that at the larger sizes 
studied, the resulting Reynolds numbers are quite high, 
in the range of 10 to 60. Correction factors used in the 
code are based on data up to Re = 4. For comparison 
purposes, Sutterby's t~61 correction factors were extrapo- 
lated to Re = 14 (the Reynolds number of the 2 • 
10 .3  m tall equiaxed dendrite listed in Tables I and II). 
The nonlinear data, at constant blockage ratio, were 
adapted to the simple power curve as expressed by 

K = 1 + 0.15 Re ~ [15] 

having a coefficient of determination tej] of 0.993. The 
estimated accuracy of the measured dendrite settling ve- 
locity of 1 x 10-'- m / s  listed in Table I is ---20 pct, 
based on the scatter of velocity measurements. The main 
cause of scatter in the measured velocities is believed to 
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Table II. Physical Properties of N H 4 C I - H 2 0 ,  Geometric Parameters from Micrograph of NH4CI 
Dendrite (Figure 7(a) of Reference 8), and of the Settling NH4CI Dendrites of References 8 and 20 

Dendrite Isl Dendrite Isl 
Physical  From Width = Width = 
Property M i c r o g r a p h  8 x 1 0 - 4 m  1.1 • 1 0 - 3 m  

Dendrite t2~ 
Width = 

2 x 10 -3 m 

3 
Psolid, kg/m 

3 
Pliquid, kg/m 
[tt], kg /m/s  
P 
P r i m a r y  a rm  l eng th  tip to t ip,  m 
radius, m 
e n v e l o p e  p y r a m i d  ang le ,  degrees 
Secondary arm number o f  sets (total  

pai rs)  
a v e r a g e  l eng th  tip to t ip,  m 
radius, m 

1.53 x 103 
1.08 • 103 

1.03 x 10 -3 

1 0 . 5 6 6  0 .778  N / A  
1.4 x 10 -3 8 .0  • 10 -4 1.1 • 10 3 2 • 10 3 
2 .2  • 10 -5 1.2 • 10 -5 1.7 • 10 5 3 .8  • 10 -5 

16 deg  16 d e g  16 deg  39 deg 

60 36 48 72 
1.6 x 10 -4 9 .0  • 10 -5 1.2 • 10 4 5 x 10 -4 
1.1 x 10 -5 6 .2  x 10 .6 8 . 6  • 10 -6 1.3 x 10 -5 

be due to variations in solid volume fraction within the 
dendrites. The accurate measure of  the dendrite dimen- 
sions (i .e. ,  secondary dendrite arm spacing and diame- 
ter) is also believed to be a major factor in limiting the 
accuracy of  code predictions. Another factor which may 
influence settling speed is off  axis tilting of  the free den- 
drite. Off axis settling is the subject of  a study presently 
under investigation by the authors. The 6 pct difference 
between the results o f  the code and the experiments is 
again considered excellent and is well within the uncer- 
tainties of  the experiments and the physical parameters 
used in the code. 

VI.  C O N C L U S I O N S  

A FORTRAN 77 computer program developed to cal- 
culate the velocity of  a settling dendrite in a quiescent 
bath yields a good estimate of  the volume, surface area, 
and velocity of  various dendritic shapes. The use of  the 
concept of  an envelope around the dendrite enables the 
calculation of  an effective sphericity. The use of  the em- 
pirical relationships determining velocity, sphericity, 
and envelope permeability appears valid, as do the wall 
and inertial correction factors presented. At this time, 
the code does not account for gradients in composition 
or density, particle-particle interactions, tertiary dendrite 
arms, or the possible influences of  off  axis (tilted) den- 
drite settling. These limitations may be overcome with 
further code development in conjunction with laboratory 
testing. A copy of  the current program may be obtained 
from de Groh. 
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