
1. Introduction

Recently, X-ray imaging techniques have emerged as an
ideal tool for observing solidification microstructure evolu-
tion in metal alloys.1–11) These methods provide the oppor-
tunity to monitor the development of the microstructure in
real time and in situ. They can be used to obtain spatio-tem-
porally resolved measurements of growth morphologies,
solid fraction distributions, solute concentration fields, and
melt flow patterns. The number of X-ray imaging studies
reported in the solidification literature has increased
steadily over the last decade, but until now no attempt has
been made to simulate the actual microstructure evolution
observed in such experiments.

Dendrites are the most common growth form observed
during solidification of metal alloys. Dendritic growth is
governed by an intricate interplay between diffusion of heat
and solute, capillarity, and thermophysical properties,
which combine to span a wide range of length and time
scales.12,13) Due to this complexity, analytical theories are
limited to a single isolated dendrite tip growing into an infi-
nite undercooled melt.12,14) However, significant advances
have been made to numerically simulate dendritic growth.
The most commonly used computational models are the

cellular-automaton (CA) technique15,16) and the phase-field
(PF) method.17–19)

To directly simulate the microstructures observed in 
X-ray imaging experiments, a three-dimensional PF model
would require excessive computational resources. The orig-
inal CA model by Gandin and Rappaz15,16) could be used to
simulate the growth of multiple dendrites on the scale of
the experiments, but it does not resolve the solute concen-
tration field between the dendrites. The modified CA tech-
nique by Zhu and Hong20) appears to offer a compromise
between these two models, but suffers from an inconsistent
calculation of the solid fraction directly from the dendrite
tip growth rate instead of from an interfacial solute balance.
Another compromise is provided by the so-called meso-
scopic modelling approach originally developed by Stein-
bach et al.21,22) This model combines a meso-scale numeri-
cal solution of the relevant transport equations with a
micro-scale analytical solution for dendrite tip growth.
Since the original mesoscopic model was limited to den-
dritic growth of a pure substance, it is extended here to 
solidification of a binary alloy with a prescribed tempera-
ture field. The extended mesoscopic model is used in the
present study to simulate previously performed X-ray imag-
ing experiments involving directional solidification of
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Al–Cu alloys.

2. Model and Governing Equations

The present model for dendritic solidification of a binary
alloy combines an analytical description of dendrite tip
growth with a numerical solution of a volume-averaged
solute conservation equation. The temperature field is pre-
scribed, and melt convection and solid movement are neg-
lected. Central to the model is the definition of a virtual
grain (or dendrite) envelope. As illustrated in Fig. 1, the
grain envelope is a smooth surface that connects all actively
growing dendrite tips. Thus, the normal propagation veloc-
ity at any point on the envelope is given by the local den-
drite tip growth velocity and the angle of the growing den-
drite arm with respect to the envelope normal. The melt on
the envelope surface as well as inside of the grain envelope
is assumed to be well-mixed and in equilibrium with the 
adjacent solid. The actual structure of the dendritic solid 
inside of the envelope is not resolved in the model; instead,
a local solid volume fraction, gs, is defined that gives the
volume of solid per unit volume of solid plus liquid at a
point, in an ensemble- or volume-averaged sense. The
extra-dendritic liquid outside of the grain envelope is gener-
ally undercooled. The solute concentration field, Cl, in the
extra-dendritic liquid is obtained from a numerical solution
of the solute conservation equation. Hence, the solutal 
interactions between the growing grains are fully resolved.
Overall, the model thus consists of a solute conservation
equation and an envelope propagation algorithm.

The volume-averaged solute conservation equation is
given by

.........(1)

where gl�1�gs is the liquid volume fraction, t is time, Dl is
the solute diffusivity in the liquid, and k the equilibrium
partition coefficient. In Eq. (1), the solid and liquid densi-
ties are assumed to be equal and constant, the liquid solute
diffusivity is assumed to be constant, and solute diffusion in
the solid is neglected. The latter assumption implies that
d(gsCs)�kCldgs, where Cs is the volume-averaged solute
concentration of the solid.

Equation (1) is valid everywhere in the domain, both 
inside of the grain envelope and in the extra-dendritic liq-
uid. Outside of the envelope, gl�1 and Eq. (1) becomes a
standard transient diffusion equation that is solved for Cl.
Inside of the envelope, the liquid is assumed to be in equi-
librium with the solid, such that Cl is given by the liquidus
concentration, Cl

*, i.e.,

..............(2)

where T is the prescribed temperature, Tliq is the liquidus
temperature of the alloy, C0 is the initial solute concentra-
tion of the alloy, and m is the slope of the liquidus line. Tliq,
m, and k are obtained from the equilibrium phase diagram
of the binary alloy under consideration. With Cl known as a
function of T, Eq. (1) is solved inside of the envelope for
the liquid fraction, gl. Note that without the first term on the
right-hand side (i.e., the diffusion term), Eq. (1) is nothing

but the differential form of the Scheil equation. However, in
the presence of undercooled extra-dendritic liquid, the dif-
fusion term is non-zero at the envelope surface. Hence, the
liquid fraction is affected by solute diffusion from the enve-
lope into the extra-dendritic liquid and is not just equal to
the Scheil value.

Next, the envelope propagation algorithm is described.
As mentioned previously, the envelope evolves due to
growth of dendrite tips. The local dendrite tip growth veloc-
ity, v, is obtained as a function of the local melt undercool-
ing across a so-called stagnant film. As illustrated in Fig. 1,
the stagnant film is bounded on one side by the grain enve-
lope and on the other side by a confocal envelope. The stag-
nant film is of a constant width, d f . The dimensionless melt
undercooling, W sf , across the stagnant film is given by

............................(3)

where Cce is the local liquid solute concentration on the sur-
face of the confocal envelope. For the concentrated alloys
considered in the present study, thermal undercooling can
safely be neglected. Curvature undercooling and kinetic 
effects are negligibly small as well. The local solute con-
centration on the confocal envelope is known from the solu-
tion of Eq. (1) in the extra-dendritic liquid, which can ex-
pressed as

.................................(4)

Knowing the melt undercooling across the stagnant film, a
dendrite tip growth Péclet number, Pe, is obtained from the
modified Ivantsov solution of Cantor and Vogel23)

...(5)

where E1 is the exponential integral function and R is the
dendrite tip radius. The Péclet number is defined as
Pe�vR/(2Dl) and, thus, contains the desired dendrite tip
growth velocity, v. The final unknown is the dendrite tip 
radius, and it is obtained from the LGK14) model according to

......................(6)

where G is the Gibbs–Thomson coefficient and s*�(2p)�2

is a stability constant.24) Equations (5) and (6) provide an
implicit relation for the dendrite tip growth velocity as a
function of the melt undercooling across the stagnant film,
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Fig. 1. Illustration of the grain envelope, the stagnant film and
the confocal envelope.21)



i.e., v(W sf). An explicit version of this relation was found by
curve fitting. In a simulation of dendritic growth, the den-
drite tip growth velocity will vary along the grain envelope,
because the melt undercooling across the stagnant film is
generally not uniform.

With the local dendrite tip growth velocity at any point
on the envelope known, the normal envelope propagation
velocity is determined from

..............................(7)

As illustrated in Fig. 1, n is the exterior normal to the en-
velope and q is the angle between n and the growth axis of
the nearest dendrite arm. In a simulation, each grain is
seeded with a specific crystallographic orientation. Assum-
ing that the primary and secondary dendrite arms grow at
right angles to each other, the direction of the growth axis
of the dendrite arms can then be determined. The calcula-
tion of n is explained below.

In order to propagate the envelope on a fixed numerical
mesh, the sharp interface tracking method recently devel-
oped by Sun and Beckermann25) is employed. In this
method, an indicator function, j , is introduced that varies
smoothly in a hyperbolic tangent fashion from �1 to �1
across the interface. An interface is represented by a con-
tour of j . The indicator function is advected with the nor-
mal envelope velocity using the following propagation
equation

...........................................(8)

where W is a measure of the width of the hyperbolic tan-
gent profile across the interface. While the left-hand-side of
Eq. (8) advects any function normal to its contour, the
right-hand-side maintains the hyperbolic tangent j profile
across the interface. The distance over which j changes
from 0.9 to �0.9 is constant and given by 3√�2W. As shown
in Fig. 2, the grain envelope is taken to be the j�0.9 con-
tour, while the confocal envelope is represented by the j�0
contour. Thus, the width of the stagnant film is related to W
by 3√�2W�2d f. Finally, the envelope normal vector is given
by n��∇j /|∇j |.

Before the above mesoscopic model can be solved, the
width of the stagnant film, d f, needs to be specified. In fact,
d f is the only adjustable parameter, and the results should
ultimately be independent of d f, since it is not a physical
quantity. The choice of d f is discussed in detail in Stein-
bach et al.21,22) Since the micro-scale solute concentration
field in the liquid adjacent to individual dendrite tips is not
resolved by the solution of the volume-averaged solute con-
servation equation, d f must generally be larger than the tip
radius. Due to solutal interactions between dendrites, d f

should be much smaller than the distance between them.
Without this separation of length scales, the present model
would not work. As is shown below, a stagnant film width
can be found that gives results that are independent of d f for
a reasonably wide range of growth velocities.

Since the present experiments were performed in a
Hele–Shaw cell with a relatively small gap thickness (see
Chap. 4 below), the mesoscopic solute concentration field

is assumed to be uniform across the gap. Therefore, Eqs.
(1) and (8) are solved in two dimensions (x, y) only. In all
simulations, the computational domain is a 1 300�1 300
mm2 square, which corresponds to the field of view in the
experiments. The equations are solved numerically using a
uniform, square mesh with a grid size of dx. Equation (1) is
discretized using an explicit finite-difference scheme with a
second-order, 9-point stencil in space.25) Once discretized, it
is solved for the new liquid solute concentration at the
mesh points that are located outside of the envelope (with
gl�1), and for the new liquid fraction at the mesh points
that are located inside of the envelope (with Cl�Cl

*(T)).
Equation (8) is discretized using the high-order method 
explained in Sun and Beckermann.25) In order to maintain
sufficient numerical resolution of the j field, all simula-
tions employ W�2dx. All calculations were performed on a
personal computer and took generally less than 1 h to com-
plete.

3. Validation

Before the mesoscopic model is applied to simulate the
experiments, it is tested and validated for three different
cases that all involve dendritic solidification of an Al–Cu
alloy with an initial concentration of C0�20 wt% Cu. The
thermo-physical properties used in the simulations are
listed in Table 1.

3.1. Growth of a Single Dendrite in an Undercooled
Melt

The first test case concerns steady growth of a single
equiaxed dendrite in an essentially infinite, uniformly 
undercooled melt. The melt undercooling is set to
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Fig. 2. Schematic of the liquid solute concentration profile nor-
mal to a grain envelope.

Table 1. Properties for Al–Cu alloys used in the simulations.



W�(Cl
*�C0)/(Cl

*(1�k))�0.1. Figure 3 shows the results of
two simulations with dx�5 mm, at a time of 5 s after initial-
ization. In the first simulation the primary growth axes of
the centred seed were aligned with the coordinate axes,
while in the second simulation the growth axes were rotated
by 45°. Essentially the same results are obtained (see also
Fig. 4 below), which indicates that the numerical scheme
used does not suffer from grid anisotropy effects. As can be
seen from Fig. 3, the grain envelope (white line) develops a
typical dendrite shape. Solute diffuses outwardly from the
envelope into the undercooled melt. The solid fraction field
shows several interesting features. The small red dot in the
centre represents the initial seed. Over most of the grain,
the solid fraction is approximately equal to 0.2. However,
along the primary growth axis, the solid fraction is some-
what above 0.2, which can be attributed to enhanced solute
transport at the envelope in the tip region.

Figure 4 shows computed steady-state dendrite tip
growth velocities as a function of the undercooling. Numer-
ous simulations were performed to find a suitable value for
the width of the stagnant film, d f. Figure 4 shows the results
for d f�21.2 mm and 10.6 mm. For dimensionless undercool-
ings up to 0.1, this range of film widths gives consistent tip
velocities that are fairly close to each other. Much smaller
or much larger d f do not give reasonable results. It can also
be seen that the computed tip velocities are close to the 
analytical result from the LGK14) model, which is given by
Eqs. (5) and (6) with d f →�. The two results cannot be 
expected to be identical because in the present simulations,
the extra-dendritic solute concentration is only computed in
two dimensions. Nonetheless, the differences are not large,
since in the mesoscopic model the tip velocities are calcu-
lated from essentially the same equations as in the LGK
model (except for the stagnant film width). To better com-
pare the mesoscopic model with the LGK model, fully
three-dimensional simulations are required. Such a valida-
tion was successfully performed in the original study by
Steinbach et al.21) They also found that the predicted enve-
lope shape behind the tip matches experimental measure-
ments.

3.2. Growth of a Cylinder in an Undercooled Melt at
Constant Velocity

In order to validate the computation of the solid fraction
inside of the envelope, a second test case was designed that
allows for a semi-analytical solution to be found. In this
case, the two-dimensional growth of an infinite dendritic
cylinder in a uniformly undercooled melt was simulated.
Instead of calculating the growth velocity from the equa-
tions for a dendrite, it was taken as a constant, denoted by
vn. In analogy with the heat balance in Ref. 26), the varia-
tion of the average solid volume fraction, ḡs, inside of the
growing cylinder can be obtained from a solute balance,

..........................(9)

where V and A are the cylinder volume and surface area, re-
spectively, and d is the thickness of the solutal boundary
layer around the cylinder. For a constant growth velocity,
this thickness can be obtained from an analytical solution of
the solute diffusion equation for a growing cylinder, using

the method explained in Ref. 27), and is given by

..............(10)

where Pen�vnR/Dl, in which R is the instantaneous cylinder
radius (R�vnt). By substituting Eq. (10) into Eq. (9) and
performing some rearrangements, one obtains the following
ordinary differential equation for the average solid fraction

......(11)

The initial condition was taken to be a small seed with
ḡs�1. The solution of Eq. (11) is shown in Fig. 5(b).

Figure 5 shows the mesoscopic simulation results for this
case with W�0.1 and vn�50 mm/s. The predicted solute
concentration field shows a thin boundary layer around the
cylinder. The predicted evolution of the average solid frac-
tion is plotted in Fig. 5(b). Excellent agreement with the so-
lution of Eq. (11) is obtained. The solid fraction decreases
from the initial value of unity and asymptotically ap-
proaches a value of 0.1. It can easily be seen from Eq. (11)
that ḡs�W is indeed the long-time analytical result.

3.3. One-dimensional Directional Solidification

The last test case concerns one-dimensional directional
solidification, in which a fixed vertical (in y) temperature
gradient, G, is translated across the domain with a constant
“pulling” speed, vp. Thus, the temperature distribution is
given by

.......................(12)

where y is as the vertical coordinate and y0 is the y-position
of the Tliq isotherm. A moving domain technique28) is em-
ployed to simulate the translation of the temperature gradi-
ent across the domain. The domain is moved at discrete
time intervals dx/vp by shifting all fields by one grid point
along y, removing the top row while introducing a new row
of points at the bottom. The new points are initialized as
liquid with Cl�C0.

The results of a simulation with G��20 K/mm and
vp�50 mm/s are shown in Fig. 6. In this simulation, the liq-
uidus isotherm is located at the bottom of the domain (i.e.,
y0�0) and the temperature decreases (linearly) toward the
top. Thus, solidification proceeds in a downward direction.
Figure 6(a) shows the predicted quasi-steady solute concen-
tration field in the liquid, Cl. The envelope is located at
about y�440 mm. Above the envelope, inside of the den-
dritic mushy zone, Cl varies in a linear fashion, in accor-
dance with Eq. (2). Below the white line, in the liquid
ahead of the dendritic front, a steep concentration gradient
can be observed where the liquid concentration quickly 
approaches C0. Since the liquidus temperature is at the bot-
tom of the domain, the entire liquid below the envelope is
constitutionally undercooled.

Figure 6(b) shows the computed solid fraction, gs, profile.
Inside of the mushy zone, the solid fraction varies in agree-
ment with the Scheil equation, gs�1�(Cl/C0)

1/(k�1). At the
position of the envelope, the predicted solid fraction
abruptly decreases to zero. This variation is in accordance
with the so-called truncated Scheil model, which has been
verified through direct phase-field simulations to be an 
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excellent approximation for columnar dendritic solidifica-
tion of an alloy.28)

4. Simulation of Experiments

4.1. Experimental Setup

The experimental data selected for simulation by the
mesoscopic model were taken from two in situ X-ray video
microscopy sequences of columnar dendritic growth during
directional solidification of an Al–20wt%Cu alloy and of an
Al–30wt%Cu alloy.2) The experiments were carried out at
beamline ID22 at the European Synchrotron Radiation 
Facility, under experiment codes HS-1332 and ME-595.
The Al–Cu alloy was contained inside of a Hele–Shaw cell,
which consists of two closely spaced quartz glass plates.
The gap thickness was Dzsample�200 mm, while the lateral
dimensions of the cell were 12�22 mm2. The Hele–Shaw
cell was placed inside a Bridgman furnace system and
translated upward towards the cold stage at a constant 
velocity, vp. The imposed temperature gradient, G, was set
by adjusting the furnace separation distance and operating
temperatures, and was verified to be approximately con-
stant, at least over the imaging region. In both test 
sequences the camera settings employed gave a field of
view of 1.3�1.3 mm2, with nominal temporal and spatial
resolutions of 0.15 s and 1.3 mm, respectively. Hence, the
imaging region was about 150 times smaller than the
Hele–Shaw cell. Further details of the experimental proce-
dure and setup, as well as a description of high-energy syn-
chrotron X-ray imaging, can be found elsewhere.1)

4.2. Internal Solid Fraction Measurements

In order to quantitatively compare the experimental data
with the simulations, an attempt was made to measure solid
volume fractions from the radiographic images. This can
only be done in an approximate fashion, since the radi-
ographs are two-dimensional projections of a complex,
three-dimensional, confined microstructure. A typical radi-
ograph from one of the experiments is shown in Fig. 7(a).
The overall goal of the measurements is to obtain the varia-
tion of the horizontally averaged solid fraction inside of a
dendrite envelope, ḡs, with vertical distance along the pri-
mary dendrite axis. For this purpose, an idealized dendrite
was constructed from a variety of connected cylinders, as
illustrated in Fig. 7(b). The diameter and length of each of
the cylinders is estimated by measuring the following mi-
crostructural quantities from a radiograph: primary trunk
diameter, Dtrunc, secondary arm diameter, Darm, secondary
arm length, Larm, and secondary arm spacing, l2. All of
these quantities vary with distance along the primary den-
drite axis. Since the secondary arms that are growing in the
z direction, parallel to the incident X-ray beam, cannot be
seen on the radiograph, their diameter and length are as-
sumed to be the same as the adjacent secondary arms that
are growing in the image plane. However, since the dendrite
is confined inside of the Hele–Shaw cell, the length of the
secondary arms growing in the z direction is restricted by
requiring that Dtrunc�2Larm�Dzsample. As sketched in Fig.
7(b), the internal solid fraction is then calculated for a par-
allelepiped volume, V0, that has a height equal to l2 and an
average rectangular cross section that spans the tips of the

secondary arms. One parallelepiped volume thus contains
five cylinders, and the sum of their volumes is the total
solid volume, Vs, within V0. The internal solid fraction is
then given by ḡs�Vs/V0.

4.3. Comparison between Simulation and Experimen-
tal Results

The first experiment involves directional solidification of
an Al–20wt%Cu alloy with G��18 K/mm and vp�10.5
mm/s. Figure 8(a) shows a typical image from the video of
this experiment. Three columnar dendrites are visible in the
field of view. In this image, the system has reached a quasi-
steady state, meaning that the positions of the three primary
dendrite tips are fixed in the field of view. This occurs only
if the primary axes of the dendrites are aligned with the di-
rection of the temperature gradient, as is the case in the
image. Note, however, that the spacing between the den-
drites is very different.

This experiment was simulated by placing three properly
oriented seeds at the upper boundary of the 1 300�1 300
mm2 simulation domain, applying the temperature gradient
and moving domain technique of Sec. 3.3, and letting the
system evolve for a long time. The position of the liquidus
isotherm was estimated based on temperature measure-
ments to be at y0�350 mm. No-flux boundary conditions
were applied at the left and right sides of the domain, and
the grid spacing was chosen to be dx�5 mm.

Figures 8(b) and 8(c) show the predicted results after the
system reaches a quasi-steady state. Remarkable agreement
is achieved between the predicted dendrite envelope shapes
and the overall shape of the dendrites in the experiment. In
the experimental image, the Cu content of the melt is 
approximately visible as different gray levels. These gray
levels compare well, in a qualitative sense, with the 
predicted liquid solute concentration field (Fig. 8(b)). The
predicted solid fraction field (Fig. 8(c)) shows some non-
uniformities inside of the envelopes, which also appear to
correspond well with the solid microstructure that can be
observed in the experimental image.

The measured internal solid fractions, ḡs, for dendrites 1
and 2 (see Fig. 8(a)) are plotted in Fig. 9 as a function of
distance along the primary dendrite axes (i.e., the y direc-
tion). The error bars on the symbols denote the estimated
measurement uncertainty. These measurements are com-
pared in Fig. 9 with the simulation results for this experi-
ment. The variation of the internal solid fraction in the sim-
ulation was obtained by averaging the predicted solid frac-
tion field along a horizontal line that spans across the enve-
lope (see Fig. 8(c)). Excellent agreement can be observed.
The internal solid fraction is relatively uniform along the
dendrite axes, with values around 0.25, except near the pri-
mary dendrite tips where it increases to higher values. This
can be expected because the melt undercooling is largest
near the primary tips and the secondary arms become very
short. Also shown in Fig. 9 (as a black line) is the solid
fraction prediction from the Scheil equation. The Scheil
solid fractions are generally below the measured and pre-
dicted internal solid fractions. This is expected because the
Scheil model predicts a solid fraction that is averaged over
both the solid–liquid mixture inside of the envelopes and
the liquid between the envelopes. Furthermore, it does not
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Fig. 5. Predicted liquid solute concentration field for an infinite
cylinder growing into a uniformly undercooled melt at
constant velocity (Al–20wt%Cu, W�0.1, vn�50 mm/s)
(a), and comparison of the predicted average solid frac-
tion with an analytical solution (b).

Fig. 6. Predicted liquid solute concentration field for one-dimen-
sional directional solidification of an Al–20wt%Cu alloy
(G��20 K/mm, vp�50 mm/s) (a), and comparison of the
predicted solid fraction variation with the Scheil equation
(b).

Fig. 3. Predicted envelope shape (white line) and solute concen-
tration field (colours) (a) and solid fraction field (b) for a
single equiaxed dendrite of an Al–20wt%Cu alloy grow-
ing into a uniformly undercooled melt (W�0.1). The
upper panels are for a dendrite with the growth axes
aligned with the coordinate axes, while the lower panels
are for a dendrite with the growth axes rotated by 45°.

Fig. 4. Effect of different grid sizes and grain orientations on the
predicted tip velocities for a single equiaxed dendrite of
an Al–20wt%Cu alloy. The mesoscopic model predic-
tions for different melt undercoolings (symbols) are com-
pared to the LGK model (line).

Fig. 7. Illustration of the measurements made to determine the
internal solid fraction from the experimental images (a),
and idealized dendrite geometry used to calculate the in-
ternal solid fraction (b).

Fig. 8. Comparison of results for directional solidification of an Al–20wt%Cu alloy with G��18 K/mm and
vn�10.5 mm/s: (a) radiographic image from the experiment, (b) predicted grain envelopes and liquid solute con-
centration field, (c) predicted solid fraction field.



take undercooling of the liquid into account. The meso-
scopic model predictions and the measured internal solid
fractions approach the Scheil curve toward the top of the
domain (y�1 300 mm), where the envelopes meet and there
is no more extra-dendritic liquid (see Fig. 8(b)).

The second experiment involves an Al–30wt%Cu alloy
that is directionally solidified with G��27 K/mm and vp�
22.4 mm/s. The high Cu content combined with the high
thermal gradient results in a very shallow mushy zone. As
can be seen from the experimental image in Fig. 10(a), the
primary dendrite tips and the eutectic front are present si-
multaneously in the field of view. For a binary alloy, the eu-
tectic front corresponds to an isotherm. It can be seen in
Fig. 10(a) that the eutectic front is not completely horizon-
tal, which indicates that the temperature gradient was
slightly inclined. Furthermore, the four dendrites visible in
the image are not completely aligned with the temperature
gradient. In particular, the third and fourth dendrites from
the left appear to be slightly misoriented. The image in Fig.
10(a) does not correspond to a full quasi-steady state and
the temperature field and the solid microstructure are still
evolving (see the experimental images in Fig. 11 below).
The colours in the images of this experiment indicate the
approximate Cu content of the melt. In principle, quantita-
tive solute concentration fields can be extracted from the
experimental data,2) but in the images of the present experi-

ment they are only of a qualitative nature. Nonetheless, a
solutal boundary layer can be observed in the melt ahead of
the columnar front. The solute concentration increases from
the original alloy composition (30 wt% Cu) far ahead of the
dendrites to the eutectic composition (33.2 wt% Cu) near
the eutectic front.

In order to simulate the second experiment, a tempera-
ture field was prescribed that matches at all times the loca-
tion and inclination of the eutectic front observed in the ex-
periment. In addition to applying a vertical temperature
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Fig. 9. Comparison of measured and predicted internal solid
fraction variations for directional solidification of an
Al–20wt%Cu alloy with G��18 K/mm and vp�10.5
mm/s, and corresponding prediction from the Scheil
equation.

Fig. 10. Comparison of results for directional solidification of an Al–30wt%Cu alloy with G��27 K/mm and
vp�22.4 mm/s: (a) radiographic image from the experiment, (b) predicted solid fraction field and (c) measured
and predicted internal solid fraction variations together with the corresponding prediction from the Scheil equation.

Fig. 11. Comparison of a time sequence of measured and pre-
dicted results for directional solidification of an
Al–30wt%Cu alloy with G��27 K/mm and vn�22.4
mm/s, showing overgrowth and elimination of a primary
dendrite branch (time increasing from top to bottom).
Left panels: predicted grain envelopes and liquid solute
concentration fields; right panels: radiographic images
from the experiment. Bar charts to the right relate the
colour table used in the radiograhs to grey levels.



gradient of Gy��27 K/mm, a small horizontal temperature
gradient of Gx��2 K/mm2) was imposed to model the in-
clination. Furthermore, the reference temperature in Eq.
(12) was chosen to be the eutectic temperature and y0 was
continually adjusted to match the average height of the 
eutectic front in the X-ray video of the experiment. In order
to model the formation of the eutectic, the liquid solute
concentration was set to the eutectic concentration at the 
location of the eutectic isotherm and the solid fraction to
unity behind the eutectic front. The simulation was initial-
ized by placing four seeds at the top of the domain, such
that the lateral positions and orientations of the four den-
drites in the experimental image are closely matched.

Figure 10(b) shows the predicted solid fraction field for
this experiment at a time when the eutectic front is at 
approximately y�925 mm. Reasonably good agreement is
obtained with the experimental image in Fig. 10(a). At the
eutectic front, there is still a considerable amount of under-
cooled liquid present between the dendrite envelopes.
Hence, as shown in Fig. 10(c) for the left-most dendrite, the
solid fraction never approaches the Scheil prediction. Fig-
ure 10(c) shows that the measured and predicted internal
solid fractions agree well over the entire (predicted) length
of this dendrite. The main disagreement between the meas-
ured and predicted results is in the position of the columnar
front. In the experimental image (Fig. 10(a)), the primary
tips of the dendrites are located at about y�600 mm, while
the predicted position is at approximately y�700 mm (Fig.
10(b)). While this difference is small in absolute terms
(0.1 mm), it may indicate inaccuracies in the dendrite tip
growth model used in the mesoscopic model, including 
uncertainties in the stability constant. A more likely reason,
however, is the effect of melt convection in the experiment.
The X-ray video of this experiment clearly shows the pres-
ence of melt flow. The flow advects solute past the primary
dendrite tips and thus modifies their growth. This is dis-
cussed in more detail below.

Figure 11 shows a time sequence of simulation results
and X-ray images, where the third dendrite (from the left) is
overgrown by the neighbouring dendrites and eventually
gets eliminated and “captured” by the eutectic front. The
elimination process occurs because there is a slight misori-
entation between the third and fourth dendrite. Note that the
eutectic front moves downward during this sequence, indi-
cating that the temperature had not reached a steady state.
As already explained, this was realized in the simulation by
continually adjusting the imposed temperature gradient.
Not surprisingly, the measured and predicted eutectic front
locations agree almost perfectly. Figure 11 shows that,
overall, the elimination process of the third dendrite is sim-
ulated well.

Figure 11 also allows for a qualitative comparison of the
measured and predicted liquid solute concentration fields
over time. At first glance, the agreement appears to be rea-
sonably good. However, upon closer inspection one finds
considerable differences. The red colour indicates a Cu
concentration equal to the initial melt concentration of
30 wt%Cu, while the dark blue colour corresponds to the
eutectic concentration of 33.2 wt%. In the first experimental
image, the entire range of colours is present in the liquid
between the dendrites. However, at the two later times, the

dark blue liquid near the eutectic front has largely disap-
peared. As was confirmed by the X-ray video of this experi-
ment, this is the result of solutally driven melt convection.
Since the density of a liquid Al–Cu alloy increases with 
increasing Cu concentration, a melt layer with a higher Cu
content above one with a lower Cu content is a hydrody-
namically unstable situation. As a result, the Cu rich melt
close to the eutectic front flows downward in the form of
periodic plumes and is replaced by melt of a lower Cu con-
tent (with a green colour in Fig. 11). This effect is particu-
larly strong in the present experiment because of the wide
open spaces between the dendrites and the short vertical 
extent of the mushy zone. The unsteady melt convection
also causes variations in the dendrite growth velocity.2) This
can be observed in the experimental images in Fig. 11 by
noting that the length of the first and second dendrites, be-
tween the eutectic front and the primary tips, is not the
same in the three images. Similar fluctuations in the growth
velocity due to unsteady melt convection were recently
found in two-dimensional phase-field simulations of colum-
nar dendritic growth.19)

In addition to the solutally driven melt convection, there
is evidence of large-scale thermal convection in the experi-
mental X-ray video sequence. This flow is from the right to
the left of the field of view.2) It can be discerned in Fig. 11
by noting that the waves in the solutal boundary layer near
the columnar front are sometimes shifted relative to the
dendrites. The presence of thermal convection in the exper-
iments is not surprising, since the present Bridgman setup
is thermally unstable (cold at the top, hot at the bottom) and
there are some heat losses from the sides of the Hele–Shaw
cell. It is believed that the inclination of the eutectic front is
also evidence of large-scale thermal convection.

Since the present simulations do not include melt flow,
the agreement between the measured and predicted results
in Fig. 11 is limited. An attempt was made to include con-
vection in the simulations, but it was unsuccessful so far,
primarily due to our inability to specify realistic boundary
conditions for the flow at the edges of the simulation 
domain. In order to fully predict the flow, a much larger
simulation domain, equal in size to the entire Hele–Shaw
cell, is needed. This will be attempted in the near future.

5. Conclusions

Synchrotron X-ray video microscopy experiments involv-
ing directional solidification of Al–Cu alloys are simulated
using a mesoscopic model. The mesoscopic model is an 
extension of the purely thermal model of Steinbach 
et al.,21,22) and is valid for columnar and equiaxed dendritic
solidification of alloys with a prescribed temperature field.
It uses an averaged solute conservation equation together
with a dendrite tip growth model for the propagation of the
grain/dendrite envelopes. The model is extensively vali-
dated in three different test cases. It is then used to simulate
the columnar dendritic growth occurring during the X-ray
video experiments. For both alloy compositions, reasonably
good agreement is obtained between measured and pre-
dicted dendrite envelope shapes and internal solid fractions,
despite the neglect of melt convection. This indicates that
the model correctly predicts the solute concentration field
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in the extra-dendritic liquid. The predicted height of the
mushy zone and extent of the undercooled melt region
ahead of the columnar front both agree with the experimen-
tal observations. The present authors are not aware of 
another study where such predictions are verified for a 
solidifying metallic alloy. It is also shown that a primary
trunk spacing adjustment observed in one of the experi-
ments, due to a misorientation between dendrites, can be 
realistically simulated. The comparison of the instantaneous
solid fraction fields also constitutes the first successful vali-
dation of such a prediction for a metallic alloy. The differ-
ences to the Scheil model are emphasized. Considerable ad-
ditional research is necessary. In particular, the effect of
gravity driven melt flow needs to be investigated further.
The inclusion of melt convection in the present mesoscopic
model is possible, but a much larger computational domain
will be needed.
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