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Phase-field simulations are used to examine tip velocity and shape selection in free dendritic growth of a
pure substance into an undercooled melt in the presence of a density change between the solid and liquid.
The dendrite is assumed to grow two-dimensionally inside a Hele-Shaw cell. The phase-field model is
coupled with a previously developed two-phase diffuse interface model to simulate the flow in the liquid
that is induced by the density change. The predicted dependence of the dendrite tip growth Péclet number
on the relative density change is compared with an available analytical solution and good agreement is
obtained. The simulations verify that the dendrite tip selection parameter, modified to account for the

PACS: ' different densities of the solid and liquid phases, is independent of the relative density change.
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1. Introduction

Dendritic growth is of fundamental importance in the
solidification of many materials. Usually, such crystal growth
involves a density change between the solid and liquid phases.
This density change induces a contraction or expansion flow in the
undercooled melt ahead of the dendrite. McFadden and Coriell [1],
for an axisymmetric paraboloidal dendrite, and Emmerich [2], for
a two-dimensional parabolic plate dendrite, extended the Ivant-
sov solution for free dendritic growth of a pure substance into an
undercooled melt to include the effects of a density change upon
solidification. In the extended Ivantsov solution, the tip growth
Péclet number, Pe, is a function not only of the imposed
dimensionless melt undercooling, 4, but also of the relative density
change, . The relative density change is defined as 8 = ps/pi—1,
where ps and p, are the densities of the solid and liquid,
respectively. From the solution of the Navier-Stokes equation, the
magnitude of the flow in the melt was found to be of the order of f,
with the velocity decaying to zero with increasing distance from the
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dendrite. Despite the fact that the density change induced flow
plays an important role, the extended Ivantsov solution does not
contain the Prandtl number or, more directly, the liquid viscosity.
This result is different from the case of dendritic growth with forced
convection in the melt, where the growth Péclet number depends
also on the Prandtl number [3].

Emmerich [2] also modified the microscopic solvability theory
of Kessler et al. [4] for dendrite tip velocity and shape selection to
include the effects of a density change. According to this theory,
a unique dendrite tip velocity and shape is selected by the action
of anisotropic surface tension via a selection parameter ¢*, and at
low undercoolings, ¢* is a constant that only depends on the
crystalline anisotropy strength ¢. In the presence of a density
change, Emmerich [2] found that the relation for the selection
parameter must be modified to include the relative density
change. With this modification, ¢* should take the same value as
for diffusion limited dendritic growth without a density change.
To date, this theory has not been validated by either experiments
or direct numerical simulations.

In recent years, phase-field methods and other diffuse interface
approaches have been popular tools in the direct numerical
simulation of dendritic growth from the melt [5,6]. By introducing
an order parameter, ¢, to represent the transition between the
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solid and liquid, a unique set of evolution equations is solved over
the entire domain without explicitly tracking the solid-liquid
interface. Due to the strong influence of melt motion on the
evolution of microstructures during solidification, efforts have
been made to include convection within phase-field models
[7-10]. For the sake of simplicity, most phase-field simulations
of solidification assume equal densities in the solid and liquid.
Recently, several phase-field simulations [2,11-16] have been
carried out that account for the density change induced flow
during free dendritic growth. Although these studies have
revealed much interesting physics, it is not always clear if
the results correspond to the same sharp interface model
for which analytical solutions were obtained previously and/or
if the results are fully converged with respect to the width of
the diffuse interface. None of the previous studies have examined
the effect of the density change on the dendrite tip selection
parameter, ¢*.

In this paper, the phase-field model of Karma and Rappel [17]
is used in junction with the two-phase diffuse interface approach
of Sun and Beckermann [18,19] to examine tip velocity and shape
selection in two-dimensional free dendritic growth of a pure
substance into an undercooled melt in the presence of a density
change. The remainder of this paper is organized as follows. In
Section 2, an available theory for two-dimensional (2D) dendritic
growth with density change is reviewed. A sharp interface
description of the problem being solved is provided in Section 3.
The corresponding phase-field model is summarized in Section 4.
Section 5 describes the numerical procedure used to solve the
model equations. The results and conclusions are presented in
Sections 6 and 7, respectively.

2. Theory of 2D dendritic growth with density change

The basic theory of free dendritic growth predicts the steady-
state tip velocity, V, and tip radius of curvature, R, of a dendritic
needle crystal of a pure substance growing into an infinite
undercooled melt. For a two-dimensional parabolic plate
dendrite, and equal densities of the solid and liquid, the analytical
solution of the heat equation for diffusion limited growth is
given by

4= Iv, (Pe) (1)

where 4 = (T;,—T.)/(L/c,) is the dimensionless melt undercool-
ing, T, and T, are the equilibrium melting temperature and the
far-field temperature, respectively, L is the latent heat of fusion,
and ¢, is the specific heat. The dendrite tip growth Péclet number
is defined as Pe = VR/(2¢;), where o; is the liquid thermal
diffusivity. The Ivantsov function for a two-dimensional plate
dendrite, Iv,(x), is given by

Iva(x) = /X exp(x)erfc(v/X) )

where erfc(x) is the complementary error function. In the presence
of density change flow, Emmerich [2] obtained the following
extended Ivantsov solution,

A(P) = (1 + p)v/mPe expPe(1 + p)*lerfc[v/Pe(1 + B)] 3)

where f is the relative density change, as defined in the
Introduction. Eq. (3) implies that the effect of the density change
on the heat transfer rate at the dendrite tip is of the order of 5. The
corresponding extended Ivantsov solution for an axisymmetric
dendrite can be found in McFadden and Coriell [1].

According to microscopic solvability theory [4], a unique
dendrite tip velocity is selected by the action of anisotropic

surface tension via the scaling relation

_ 2a,d0
TRV

*

(C)]

where dj is the thermal capillary length. The selection parameter
¢* is a constant that only depends on the anisotropy strength ¢ as
o*~¢"’> in the limit of small &. Emmerich [2] extended the
solvability theory to include the density change between the solid
and liquid phases and derived the following modified selection
equation

o — 2oydg do
T R2ZV(1+ ) RPe(1+p)

(3)

The main motivation of the present study is to verify, by direct
numerical simulation, the theory of Emmerich [2] that the
selection parameter ¢*, as defined by Eq. (5), is not a function of
the relative density change, f, and takes the same value as for
equal densities.

3. Sharp interface description

Before presenting the present phase-field model, it is im-
portant to state the conventional sharp interface equations for the
dendritic growth problem being solved. In order to reduce
computational effort, the growth is assumed to take place inside
of a horizontal Hele-Shaw cell with a narrow gap of width b that is
much smaller than the cell dimension L (i.e., b<L). This
assumption renders the problem two-dimensional. Due to the
small gap width, inertia effects can be neglected so that the
density change induced flow in the liquid is purely viscous. While
the densities of the solid and liquid are taken to be unequal (but
constant), the thermal conductivities (k) and specific heats (c,) of
the solid and liquid are assumed to be equal. Solid-liquid interface
kinetic effects and the Clausius-Clapeyron effect (i.e., the
dependence of the melting temperature on pressure) are
neglected. The gap-averaged sharp interface equations can then
be written as

Liquid:
V.u; =0 (continuity) 6)
b2
u = —TM’Vp, (momentum) @)
o0 2
at +u- VO =1+ posV0 (energy) 8)
Solid:
2—? = o V20 (energy) 9)
Interface:
u,-n=—pfu;-n (continuity) (10)
o0 o0 -
u;-n=os (— -— ) (Stefan condition) an
on s on |
0 = —do(1 — 15ecos4¢p)x (Gibbs—Thomson condition) 12)
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where u; is the liquid velocity, y the liquid dynamic viscosity, p;
the liquid pressure, u; the interface velocity, 0 = (T-T,,)/(L/cp) the
dimensionless temperature, ¢ the fourfold anisotropy strength, n
the interface unit normal vector pointing outward of the solid
phase, ¢ the angle of the interface normal vector, and xk the
interface curvature. The thermal capillary length is defined as
do = aTmcp/pst. where ¢ is the interfacial tension between the
solid and liquid. Note that the above equations are written in
terms of the thermal diffusivity of the solid, which is given by
os = k[(cpps) = o/(1+p). This was done only to make the above
sharp interface equations correspond more directly to the phase-
field model presented in the next section.

4. Phase-field model

Based on the two-phase diffuse interface model for Hele-Shaw
flow recently developed by Sun and Beckermann [19], the
continuity equation can be written in a dimensionless form as

Vi - g =20 (13)
where the phase-field ¢ varies from unity in the solid phase to
zero in the liquid over a distance of approximately 3+/2W,, where
Wy is a measure of the diffuse interface width. The other
dimensionless variables are defined as ') = uto/Wy, V' = VW,
and t' = t/to, where 1g is the relaxation time. Based on the Hele-
Shaw approximation, the dimensionless momentum equation for
the present diffuse interface model is given by [19]

. Vo, ddo, V¢
"’__n{vp’_ﬁv<¢(1¢) a9

where b’ = b/Wy, p'1 = prto/i, and ¢’ = oto/(1;Ws). The second
term inside the square brackets of Eq. (14) is a capillary stress
gradient term that is non-zero only inside the diffuse interface.
The reader is referred to Sun and Beckermann [18,19] for a
detailed discussion of this term and its effect on the variation of
the pressure inside the diffuse interface. The diffuse interface
energy conservation equation can be derived using the same
averaging methods as in Sun and Beckermann [18], and the result
is given by

<¢+%>2—f,+]Jlrﬂu/,(l—@.ve:w@wgff (15)
where the dimensionless thermal
& = o5 To/W3.

Since the solid is assumed to be stationary and the effect of
pressure on the interface temperature is neglected, the phase-field
equation is identical to the one derived by Karma and Rappel [5]
for dendritic growth under purely diffusive conditions

diffusivity is given by

1+ scos4(p)2‘;—ltp, = V2 + (1 =) — 21 — >0

+£€0S4Q(2 + £cos 4p)V' 2y

—8¢sindg(1 + & cos4Q) @y + oy,)
—16¢[cos 4¢ + £(cos? 4¢ — sin’ 4¢)]

(@ — @x¥)) (16)

where i is a modified phase-field given by  =2¢—1. The
modified phase-field varies smoothly from 1 in the solid to —1 in
the liquid over a small but numerically resolvable diffuse interface
region, and the solid-liquid interface is defined by the contour

Y = 0. The angle between the direction normal to the interface
and the horizontal axis is calculated from the phase-field via
¢ = arctan(d,y[0x)). Eq. (16) is non-dimensionalized using ¢ and
Wy, and / is the so-called coupling constant. The relations
Wy = Ado/a; and 1o = (d3/os)a-23/a? follow from the thin-interface
analysis of Karma and Rappel [5], where a; and a, are constants.
The coupling constant A is the only free parameter and the results
should be independent of 4 once they are converged. Decreasing A
corresponds to decreasing the diffuse interface width, since
A= a]Wo/do.

5. Numerical procedures

The model described in the preceding section is used to
numerically simulate the growth of a two-dimensional dendrite
with flow induced by a density difference between the solid and
liquid. The simulation domain is schematically illustrated in Fig. 1.
Taking advantage of symmetry, only one quadrant of a dendrite is
computed; thus the initial seed is actually only a quarter of a
circle. The crystal axes are aligned with the coordinate axes.
Symmetry boundary conditions are applied for all fields on the left
and bottom boundaries. The pressure is assumed to be constant
on the upper and right boundaries. The initial dimensionless melt
temperature is set to be —A4 (undercooling), except inside the seed
where the dimensionless temperature is set to zero.

The continuity and momentum equations for the flow are
solved numerically using a conjugate-gradient pressure Poisson
solver on a uniform mesh. The phase-field and energy equations
are solved using an explicit Euler scheme. The flow is only
calculated every 10 time steps used in the phase-field and energy
equation solution [20]. The advection term in the energy equation
is discretized using a fourth-order convex essentially non-
oscillatory (CENO) scheme.

Due to anisotropy, the circular seed grows preferentially
along the horizontal and vertical axes, developing arms as shown
in Fig. 2. The rate of change of the tip position of these arms is
defined as the tip velocity. The radius of curvature of the tip is
calculated using the same method as in Ramirez and Beckermann
[21]. When the tip velocity and radius of curvature cease to
change with time, the steady-state growth regime is achieved for
which the analytical solution of Emmerich [2] is valid. Based on
experience from previous studies [20-22], the dimensionless grid
spacing is set to Ax =0.8, the dimensionless time step to

y

/_ p = const.

symmetry

N

p = const.

|

seed

N x

symmetry

Fig. 1. Phase-field simulation domain and boundary conditions.
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Fig. 2. Evolution of phase-field contours, every 100,000 time steps, for a dendrite growing at 4 = 0.55 and ¢ = 0.05 for (a) f = 0.1, (b) # = 0 (no flow), and (c) f = —-0.1.

At =0.018, and the coupling constant, A, that dictates the
interface width to A =4. For equal densities of the solid and
liquid, when the growth is under purely diffusive conditions,
identical results to those of Karma and Rappel [5] and Tong et al.
[20] were obtained. These references demonstrate that the above
choices for the grid spacing, time step and diffuse interface width
give reasonably well converged results. Convergence studies for
the Hele-Shaw flow calculations can be found in Sun and
Beckermann [19].

6. Results and discussion

All dendritic growth simulations in the present study were
performed for a melt undercooling of 4 = 0.55 and an anisotropy
strength of ¢ = 0.05. Fig. 2 shows the predicted evolution of the
phase-field contours (y = 0), every 100,000 time steps, for three
different values of the relative density change: f = 0.1, § = 0, and
f = —0.1. It can be seen that the growth of the dendrite is strongly
affected by the density change. Compared to the equal density
case (Fig. 2b), the dendrite grows slower when shrinkage occurs
upon solidification, as shown in Fig. 2a for f = 0.1. In contrast,
when f = —0.1, as shown in Fig. 2c, the growth velocity is faster
than in the equal density case.

Fig. 3 shows the liquid velocity vectors and phase-field
contours for two different relative density changes: f=0.1
(shrinkage) and f = —0.1 (expansion). Fig. 3a provides results at
to;/d = 190,000 and Fig. 3b at tos/d3 = 380,000. For f§ = 0.1, the
liquid flows toward the solid-liquid interface to compensate for

the shrinkage upon solidification. On the other hand, for f = —0.1,
the liquid flows away from the solidification front, since the solid
has a lower density than the liquid. In both cases, the flow velocity
is the highest at the dendrite tips, as opposed to other parts of the
solid-liquid interface, since the tips have the highest growth
velocity [see Eq. (10)]. The flow velocity decreases continually
with increasing distance from the dendrite. These findings agree
with the results of McFadden and Coriell [1].

As already mentioned, the presence of shrinkage reduces the
dendrite growth rate. This result may be somewhat unexpected,
since the melt flows toward the dendrite. In the case of forced
convection (but equal densities of the solid and liquid), a flow
towards a dendrite tip increases its growth rate [20,23]. The
increase in the growth rate in the forced convection case can be
attributed to advection of undercooled liquid towards the
dendrite, resulting in a thinner thermal boundary layer and
higher temperature gradients at the solid-liquid interface. In
order to clarify this issue, the steady-state temperature fields (at
tos/d3 = 380,000) predicted for f=0.1, f =0, and = —0.1 are
compared in Fig. 4. It may be seen that the thermal boundary layer
on the liquid side of the solid-liquid interface is the thickest in the
case of shrinkage (f = 0.1, Fig. 4a), even though the flow advects
undercooled liquid towards the dendrite. The thicker thermal
boundary layer causes the dendrite to grow more slowly in the
presence of shrinkage. The opposite is true in the case of
expansion (ff = —0.1, Fig. 4c). These differences in the thermal
boundary layer thickness can be explained by the fact that the
density change not only induces a flow in the liquid, but it also
changes the thermal diffusivity. This can be most easily seen from
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Fig. 3. Velocity vectors at (a) to/d3 = 190,000 and (b) tos/d3 = 380,000 for a dendrite growing at A4 = 0.55 and & = 0.05; the upper two panels are for § = 0.1 (shrinkage)

and the lower panels for f = —0.1 (expansion).

the energy equation for the liquid phase, Eq. (8). There is a factor
of (1+f) in front of the heat diffusion term on the right-hand-side
of Eq. (8). Hence, for shrinkage (f>0), heat diffusion in the liquid
is enhanced, which results in a thicker thermal boundary layer
and shallower temperature gradients along the solid-liquid
interface. This effect is stronger than the advection of
undercooled liquid towards the dendrite by the shrinkage-driven
flow (which would reduce the thermal boundary thickness),
resulting in the dendrite to grow more slowly. Again, the opposite
is true for f<0.

Fig. 5 shows predicted steady-state dendrite tip growth Péclet
numbers as a function of the relative density change, f.
Simulations were performed for five different f values, ranging
from —0.1 to 0.1. It can be seen that the Péclet number decreases
with an increasing relative density change. Fig. 5 also shows that
the Péclet numbers predicted by the phase-field simulations are in
good agreement with, but slightly above, the analytical solution
given by Eq. (3). It should be noted that Emmerich [2] derived this
solution for flow governed by the Navier-Stokes equations, rather
than for Hele-Shaw flow. However, the solution given by Eq. (3)
depends only on the flow normal to the dendrite tip, which has a
dimensionless normal velocity component at the dendrite tip
equal to pPe. For the Hele-Shaw flow considered here, the flow
velocity normal to the interface is also equal to fPe. In other
words, the type of flow and the liquid viscosity affect only the
pressure field, and not the heat transport at the dendrite tip.
Hence, the comparison shown in Fig. 5 is valid and the good
agreement instills considerable confidence in the present
numerical simulations.

Predicted dendrite tip selection parameters, ¢*, as a function of
the relative density change, f, are shown in Fig. 6. The definition
of ¢* given by Eq. (5) was used. It can be seen that ¢* is essentially
constant and independent of the relative density change. For the
range of relative density changes considered (—0.1 <f<0.1), the
selection parameter varies by less than 2%, which is well within
the present numerical uncertainty. This finding constitutes the
key result of the present study. It verifies that Emmerich’s [2]
definition of the selection parameter is appropriate for dendritic
growth in the presence of a density change between the solid and
liquid phases. If the traditional definition of the selection
parameter given by Eq. (4) had been used instead, ¢* would
have varied by 20%.

7. Conclusion

The effect of a density change between the solid and liquid
phases on free dendritic growth of a pure material into an
undercooled melt is examined using phase-field simulations. The
dendritic growth is assumed to be two-dimensional and inside of
a Hele-Shaw cell. Good agreement is obtained with the analytical
solution of Emmerich [2] for the dependence of the dendrite tip
growth Péclet number on the relative density change, 5. The
modified dendrite tip selection parameter ¢* as defined by
Emmerich [2], is found to be a constant that is independent of the
relative density change. These results validate the available theory
for dendritic growth in the presence of a density change. The
density change should generally not be neglected when analyzing
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Fig. 4. Dimensionless temperature field (grey scale) and phase-field (black line) at txs/d3 = 380,000 for a dendrite growing at 4 = 0.55 and ¢ = 0.05 for (a) f = 0.1,(b) f = 0,
and (c) p = —-0.1.
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analytical solution of Emmerich [2] (line).
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dendritic growth data. As pointed out by Emmerich [2], for a
material such as succinonitrile, where the relative density change
is only # = 0.028, the dendrite tip velocity is reduced by about 5%
relative to the equal density case. Future work should include an
investigation of the effects of different specific heats and thermal
conductivities between the solid and liquid phases on dendritic
growth, since those differences can be significant as well.
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