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Abstract

The growth of equiaxed dendrites from a pure supercooled melt is examined. We propose modifications to the classical
Ivantsov theory that allow for consideration of multiple interacting dendrites. The modified theory reveals the existence
of a steady-state dendritic solidification mode in a frame of reference moving with the dendrite tip. This regime should be
valid from the onset of nucleation to the commencement of time-dependent coarsening when the mass of the solid
becomes comparable to the liquid mass in the solidification chamber. This regime is characterized by a reduced (relative
to the single dendrite case) heat flux leading to slower solidification rates, but with the same level of supercooling. We
study the effects of the relative proximity and number of interacting dendrites through a numerical example of
solidification of succinonitrile, a common material used in many experiments. The data show that the model predicts
a new steady growth regime that is different than the steady growth law of a single dendrite as described by Ivantsov
theory. ( 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 68.70.#w; 61.50.Cj
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1. Introduction

Equiaxed dendrites are one of the most common
growth morphologies in metal casting [1].
Equiaxed grains originate from small nuclei that
are dispersed in a supercooled melt or attached to
a mold wall. Usually, the free nuclei quickly devel-
op instabilities at the solid/liquid interface and
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grow into equiaxed dendrites. Typical grain densi-
ties in cast materials range from 109 to 1015/m3 and
a fine equiaxed structure is often promoted through
the use of inoculants or stirring [2]. Under conven-
tional casting conditions, the supercoolings, and
hence, the growth velocities are relatively small,
resulting in diffusion lengths in front of the growing
dendrites that can far exceed the spacing between
the equiaxed grains. In that case, the dendritic
growth stage that ensues after nucleation will be
influenced by the presence of other grains. For high
grain densities, the interactions can be so strong
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from the beginning of growth that no dendritic
branches can develop. The result is a globulitic
microstructure consisting of spheroidal grains
as is commonly observed in inoculated Al-alloy
castings [3].

An understanding of the growth interactions oc-
curring in equiaxed dendritic solidification is thus
critical for the prediction of the resulting micro-
structure in cast materials. The interactions among
multiple free equiaxed dendrites growing in a
supercooled melt is the subject of the present in-
vestigation.

Existing theories of equiaxed solidification gen-
erally focus on the growth of isolated dendrites into
an infinite supercooled melt. The most well-known
result is due to Ivantsov [4], in which a similarity
solution for the product of the tip radius and velo-
city is obtained as a unique function of the super-
cooling. This theory does not include the effect of
capillarity, and thus cannot provide an adequate
selection mechanism for separately calculating the
tip radius and velocity. Incorporation of capillary
effects in an expanded model of dendritic solidifi-
cation (together with Ivanstov theory) has been
proven to be exceedingly difficult to achieve, and
competing theories have been introduced in Ref. [5].

In this work, we concentrate our attention to the
problem of heat transfer in the presence of multiple
dendrites only, i.e., we examine the modifications
necessary to the Ivanstov theory alone. The case of
multiple dendrites examined in this paper describes
a particular experimental arrangement, and is
a part of the more general case of equiaxed de-
ndritic solidification. In this arrangement, the de-
ndrites originate from the ends of small capillaries
that are placed around the periphery of a spherical
envelop and grow towards the common center. The
number of multiple dendrites in such an experiment
is a priori determined by the number of capillaries.
In this work, we propose a modified Ivantsov the-
ory that accounts for the presence of multiple
dendrites under the specific experimental arrange-
ment described above. The new solution is limited
to small fractions of solid, and to diffusional trans-
port of heat in pure materials. The physical consid-
erations and assumptions on which the present
model are based are detailed next. This is followed
by a presentation of the model equations and

parameters. Sample calculations are performed to
illustrate the model results.

2. Physical considerations

We begin by considering the case of several de-
ndrites that are solidifying in a supercooled melt
and are pointing towards each other. The amount
of heat of fusion generated by each actively solid-
ifying dendrite is small. Compared with the large
extent of the liquid and its heat capacity, that
amount is insufficient to raise the bulk liquid tem-
perature. Hereafter we define the liquid supercool-
ing to denote the deviation of the bulk liquid
temperature from the equilibrium melting temper-
ature of a flat interface. It is important to realize
that at this stage of growth, the supercooling as
seen by any dendrite remains the same, namely, the
difference between the dendrite tip temperature and
the liquid bulk temperature. While the supercool-
ing remains the same, the net heat flux at the
dendrite interface, nondimensionally represented
by the Péclet number, is changing. This point is not
trivial, and it deserves further exposition.

The supercooling level is the same for all three
cases: the classical Ivantsov (with the bulk temper-
ature imposed at infinity), the Glicksman single
dendrite experiments [6—10] (with the bulk super-
cooling applied at a fixed wall), and the case of
multiple dendrites (with or without external walls).
The supercooling will be the same provided that
the bulk liquid mass is much larger than the solid
mass. However, in each of these cases, the net heat
flux at the dendrite interface is different. In the
Ivantsov case, the heat flux corresponds to a tem-
perature profile that asymptotes at infinity to the
bulk liquid temperature. For a dendrite growing
inside a finite chamber, with the bulk temperature
being applied at its walls (Glicksman’s experiment),
the net heat flux is increased over the Ivantsov case.
It simply represents the fact that the temperature
distribution in the liquid ahead of the dendrite
is different, giving rise to a steeper gradient in
front of the dendrite tip. In the case under consid-
eration (multiple dendrites), the gradient is reduced
due to the increase in the local temperature be-
tween the dendrites. However, the latent heat which
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is generated at all interfaces is conducted away
from the dendrite interface into the liquid between
the dendrites and is subsequently transported to
the infinite bulk in a steady-state manner. The
steady-state growth of dendrites in the scenarios
described above can occur as long as the mass of
the bulk liquid (its overall heat capacity) remains
large in comparison with the solid. When the two
are comparable, or when the solid mass is larger
than the liquid mass, the bulk temperature would
change in a time-dependent manner, and transient
growth will ensue. The process is then referred to as
coarsening. Indeed, Rappaz and Thevoz [11] and
Wang and Beckermann [12] have recognized the
need for using a raised bulk temperature in the
Ivanstov model and have proposed earlier modifi-
cations to account for this effect.

Steady-state growth is the hallmark of dendritic
growth into an infinite liquid. The existence of
steady growth for wall-constrained or multiple de-
ndrite cases is not that obvious. However, recent
experimental observations imply the existence of
steady-state growth for a single dendrite in a wall-
constrained chamber. In careful diffusion-domin-
ated experiments in microgravity, Glicksman and
co-workers [6—10] have measured the dendrite tip
radius and velocity at various supercooling levels
for succinonitrile. The supercooling was applied on
the experimental chamber wall at a finite distance
from the dendrite. At low supercooling levels at
which the diffusion length became greater than the
distance to the wall, Glicksman’s experimental setup
essentially increased the heat flux at the interface by
setting the value of the bulk supercooling at a finite
distance from the dendrite rather than at infinity
(see above). A nontrivial outcome from Glicks-
man’s experiment was that the dendrites grew in-
deed at steady state (within experimental error),
albeit at faster rates compared to the idealized
Ivantsov case, with infinite extent liquid. That in-
crease in solidification rate was due to the increase
in net heat flux from the dendrite interface. Even
more interesting was the observation that the sol-
idification rate remained constant throughout the
experiment, while the dendrite position relative to
the wall was continuously changing. Only when the
dendrite tip was very close to the wall did time-
dependent growth replace the steady-state growth.

In the case under consideration (multiple de-
ndrites), the net heat flux at the dendrite tip inter-
face is decreased because of the increase in the
inter-dendritic temperature at a finite distance due
to the emission of latent heat from neighboring
dendrites. An analogy with Glicksman’s experi-
ment suggests that the assumption of steady-state
growth is plausible, and that the solidification rate
should remain constant even while the dendrites
approach each other. A departure from this behav-
ior is only expected when the dendrite tips are very
close, or when the mass of the solid becomes com-
parable or larger than the mass of the bulk liquid.
In these cases the actual supercooling level is
changing.

3. Model

Our model for interaction among dendrites is
based on ideas originating from our previous anal-
ysis of dendrite—wall interaction [13]. In that study
we extended the classical Ivantsov theory [4] that
is valid for a single dendrite solidifying into an
infinite extent supercooled melt to a more practical
limit in which the supercooling is applied at a finite
distance from the dendrite (e.g., container or experi-
mental chamber wall). The possibility of construct-
ing a steady-state similarity solution (in a frame of
reference co-moving with the dendrite tip) in Ref.
[13] is due to the modeling of the wall as a confocal
paraboloid on which the supercooling is applied.
Application of the model to Glicksman’s diffusion-
controlled dendritic growth data obtained in
microgravity [6—10] has explained the entire range
of supercooling used in the experiments, using
a single additional parameter in the theory (wall
proximity parameter). The apparent insensitivity
of the physical diffusion process to the exact geo-
metrical features of the wall (Glicksman’s chamber
was a rectangular box rather than a confocal para-
boloid) is easily explained by the extreme ‘near-
sight’ thermal vision of the dendrite, mathemat-
ically expressed by the Laplacian operator. It is the
ability of the Laplacian to smooth out geometrical
details that made the dendrite—wall model useful.
In this study, we follow the same rational to include
dendrite—dendrite interaction into the model.
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The motivating example discussed above led us
to consider dendrite—dendrite interactions in which
the details of the dendrite surface itself are unim-
portant, as long as the physical heat transport
processes are faithfully followed and certain geo-
metrical parameters (e.g., the initial separation dis-
tance between dendrites) are kept in the model.
Specifically, we wish to construct an imaginary
envelope around any dendrite that would substi-
tute for the heat generated by all neighboring de-
ndrites. Each and every dendrite is solidifying with
the same constant velocity since each is experienc-
ing the same level of supercooling. To accomplish
this purpose, the envelope must (a) generate the
overall amount of heat generated by all neighbor-
ing dendrites, (b) be thermodynamically compat-
ible (i.e., not disturb the continuity of the
temperature field). Fig. 1 depicts such a region
where the complex interfaces of the discrete neigh-
boring dendrites are mapped onto a confocal para-
boloid envelope. We require that the generation of
heat of fusion on the envelop be equal to the total
amount of heat generated by all neighboring de-
ndrites. Written in a differential form, this require-
ment is formulated as

(*q
n
),q(`)

n
Dr

q
(t)!q(~)

n
Dr

q(t)
"k¸»

n
Dr

q
(t) (1)

where q
n
is the heat flux, # and ! refer to the two

domains below and above the envelope, r
q
(t) is the

location of the envelope, »
n

is the solidification
velocity at the dendrite tip, k is an interaction
parameter that appears in the model as a con-
sequence of mapping the complex neighboring

Fig. 1. Geometrical domain considered in the model.

dendrite interfaces onto the confocal paraboloid
envelope (to be discussed later), and ¸ is the heat of
fusion per unit volume. The heat flux is defined by

q"!k e¹. (2)

where k is the thermal conductivity and ¹ is the
temperature.

It should be noted that the envelope is a fictitious
interface that is situated in the modeling space.
While it corresponds to the solid—liquid interface of
neighboring dendrites in the physical space, it
should not be thought of as a real solid—liquid
interface. Consequently, the boundary conditions
on the fictitious interface should be consistent with
the heat transfer problem under consideration in
the modeling space. Therefore, the only consistent
boundary condition that is specified on the envel-
ope, in addition to the heat flux jump condition in
Eq. (1), is the continuity of temperature that is still
unknown and must be solved for as a part of the
solution:

¹(`)Dr
q(t)
"¹(~)Dr

q(t)
. (3)

One additional note is warranted before we pro-
ceed with the derivation and solution of our model.
The existence of steady-state solutions is a non-
trivial aspect of solidification into a supercooled
melt. Steady-state solutions are only found for
a paraboloid that is solidifying such that its super-
cooling is constant with time. This requirement
means that for both single and multiple dendrite
cases the bulk temperature must be constant. This
case may equally be valid when the liquid has either
an infinite or a finite extent, as long as the mass of
the bulk liquid is sufficiently large with respect to
the solid mass. Therefore, steady-state growth is
possible even with interacting dendrites that are
moving with respect to each other in the laboratory
frame, as long as the supercooling remains con-
stant. The location of the fictitious interface in our
modeling space is time-independent. This location
could be computed from parameters in the physical
space (as shown in the next section), but its inde-
pendence of time in the modeling space is a direct
consequence of the constant supercooling concept
described here.

Our model considers the thermal fields in the two
domains, one in between the imaginary envelope
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surrounding a particular dendrite, and the other
domain outside the envelope. In the following
model we apply the supercooling at infinity; thus it
is an extension of the classical Ivantsov model. The
equations describing the thermal fields in the two
domains are

¹(`)

t
"a

L
+2¹(`), (4)

¹(~)

t
"a

L
+2¹(~), (5)

where a
L

is the thermal diffusivity of the liquid. The
boundary conditions on the real dendrite interface
represent the balance of energy and the local ther-
modynamic equilibrium. The balance of energy is
represented as before via

(*q
n
),q(~)

n
Dr(t)"¸»

n
Dr(t) (6)

where r(t) is the location of the dendrite interface.
Since the real dendrite is isothermal (at the melting
temperature) as in the Ivantsov as well as in the
present analyses, the heat of fusion must be conduc-
ted into the melt. Similarly, local thermodynamic
equilibrium on the real dendrite interface is simply
modeled as

¹(~)Dr(t)"¹
.0

, (7)

where ¹
.0

is the equilibrium melting temperature
of a flat interface. The supercooling¹

=
is applied at

infinity:

¹(`)
l

D
=
"¹

=
. (8)

These equations and boundary conditions are next
written in a parabolic coordinate system (m, v, /)
co-moving with the tip velocity »:

x"Rm1@2v1@2 cos /, (9)

y"Rm1@2v1@2 sin /, (10)

z"
R

2
(m!v)#»t, (11)

where R is the tip curvature radius of the dendrite,
and

0)m)R, (12)

0)v)R, (13)

0)/)2p. (14)

We denote the locations of the parabolic de-
ndrite interface and the surface of the imaginary
envelope in the parabolic coordinates by m

4
"1 for

the real dendrite and by m
q
"X

q
for the imaginary

envelope, (see Fig. 1). Hereafter the parameter
X

q
will be referred to as the proximity parameter. In

Cartesian coordinates these locations are obtained
by substituting the above values for m in Eqs.
(9)—(11). To complete our model we nondimen-
sionalize the temperature as

¹"¹
.0

#A
¸

c
L
Bh, (15)

where c
L

is the specific heat of the liquid. The
supercooling is defined as

D,

(¹
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!¹
=
)

(¸/c
L
)

. (16)

The solution for the above set of equations and
boundary conditions provides an expression for the
nondimensional net heat flux on the dendrite inter-
face as the Péclet number, P"»R/2a

L
:

P ) ePE
1
(P)#kX

q
PeX

qPE
1
(X

q
P)"D. (17)

When X
q
PR we recover the classical Ivantsov

solution because kP0 as 1/X
q
(see Eq. (18)).

4. The parameter l

The parameter k could be described as an inter-
action parameter that allows for the mapping of all
solidifying interfaces generating latent heat onto
the imaginary confocal parabolic interface sur-
rounding the single dendrite under consideration.
It should be proportional to the number of neigh-
boring dendrites seen by the single dendrite, and
should carry information about the actively solid-
ifying region of the neighboring dendrites that in-
fluence the local net heat flux at the single dendrite
interface.

In general, the parameter k could be evaluated
from experiments by fitting Eq. (17) to the data,
with k being the only free parameter, since X

q
is

computed from the geometrical configuration of
the interacting dendrites as shown in the next
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section. However, its structure can also be exam-
ined by performing the following simple analysis.

The parameter k is evaluated by requiring the
total heat generation rate on the imaginary envel-
ope in our model to be equal to the total heat
generation rate by all neighboring dendrites. The
total heat generation on the imaginary envelope is
calculated by integrating the local net heat flux,
Eq. (1), over the surface of the parabolic envelope
(see also Fig. 1). The total heat generated by all
neighboring dendrite is obtained by integrating the
local net heat flux, Eq. (6), over the single parabolic
dendrite surface, multiplied by the number of
neighboring dendrites, (N!1). By equating the
two expressions we obtain the k parameter:

k"
l(N!1)

X
q

, (18)

where N is the total number of dendrites and l is
a geometric form factor, l&O(1). The geometric
form factor is introduced into the expression to
signify the deviation of a real dendritic surface from
the ideal parabolic shape analyzed in this study.

5. The parameter X
q

The presence of neighboring dendrites should
begin to affect the thermal field produced by the
dendrite when their diffusion lengths would over-
lap. As will be shown below, the diffusion length,
defined as

l
$
"

a
L
»

(19)

is an appropriate length scale for the extent of the
thermal field in front of the dendrite. Before em-
barking on a technical description of how the para-
meter X

q
is calculated, it is worthwhile to consider

its physical origins.
For the case under consideration, in which the

dendritic mass is much smaller than the bulk liquid
mass, we distinguish between two fundamental
scenarios:

1. The initial separation distance between the
dendrites, l

q
, is larger than the diffusion length, i.e.,

l
q
'2l

$
(D), or in terms of supercooling, D'D*,

where D* is the critical supercooling when l
q
"

2l
$
(D*). This case essentially corresponds to the

Ivantsov case since the thermal fields are clearly
independent of each other. Since l

$
is a character-

istic distance at which thermal effects are sensed by
the dendrite, then the presence of other dendrites
outside l

$
cannot be felt by the dendrite. The cessa-

tion of steady-state growth occurs when the de-
ndrites get so close to each other that the process of
heat transport to the bulk is hindered. This stage is
marked by time-dependent coarsening.

2. The initial separation distance between the
dendrites is smaller than the diffusion length, i.e.,
l
q
(2l

$
(D). In this case the dendrites never grow in

an unconstrained Ivantsov mode since their growth
is effectively dominated by an intermediate liquid
temperature to be determined in this model. It is
important to note that the supercooling does not
change since heat is transferred to the large mass of
liquid that is maintained at the bulk temperature.
The presence of the intermediate region among the
dendrites lowers the heat flux but not the super-
cooling. As in the previous case, only the onset of
time-dependent coarsening marks the end of this
steady growth.

The cornerstone of this analysis is the recogni-
tion that if the dendrites grow according to the
second case, then the only additional parameter of
importance in the model should be l

q
. This para-

meter distinguishes between the two growth re-
gimes. In the modeling space, this parameter is
expressed via X

q
, and the condition of l

q
"2l

$
(D*)

should provide the means to calculate its particular
value.

We begin by considering the temperature profile
between the interacting dendrites, h(m)(~), obtained
by solving the field equations in Section 3:

h(m)(~)"!P
P(m~1)

0

Pe~u

P#u
du

"!P
*Z@l$

0

Pe~u

P#u
du, (20)

where *Z is a distance measured along the para-
bolic coordinate line v"0 from the tip of the
paraboloid which is located at R/2 away from the
origin of the parabolic coordinate system (see
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Fig. 1 and Eq. (11)):

*Z,z(v"0, m, t)!A
R

2
#»tB

"

R

2
(m!1)"l

$
P(m!1). (21)

The upper limit for the integral is obtained using
a simple substitution of the definition of *Z
(Eq. (21)). Differentiating the temperature profile
h(m)(~) from Eq. (20) with respect to *Z leads to

h(m)(~)

(*Z)
"!

1

l
$

Pl
$

Pl
$
#*Z

e~*Z@l$. (22)

At the dendrite tip, *Z"0 (i.e., m"1, v"0), the
temperature derivative becomes

h(m)(~)

(*Z) K*Z/0

"!

1

l
$

. (23)

From Eqs. (22) and (23) it is clear that l
$

is
a characteristic distance for the temperature drop.

We expect the interaction between neighboring
dendrites to become significant when their diffusion
lengths overlap. This overlap must occur simulta-
neously in both modeling and physical spaces. At
an arbitrary separation distance, e.g., the initial
separation distance among neighboring grains (l

q
),

we can find a specific level of supercooling (D*) at
which the overlap takes place. In physical space the
overlap condition could be written as:

2l*
$
,2l

$
(D*)"l

q
. (24)

In the modeling space the overlap condition is
formulated as (see Fig. 1):

l*
$
"*Z*,*Z(m"X

q
). (25)

Solving Eqs. (24) and (25) we can obtain an ex-
pression for the proximity parameter, X

q
. Using the

definition of l
$
from Eq. (19) and the scaling law for

» from Ref. [14]:

»"

2a
L

d
0

pP2 (26)

with d
0

being the capillary length and p the scaling
parameter, we formulate the diffusion length, l

$
, as

l*
$
"

d
0

2pP2(D*)
. (27)

Substituting l*
$

from Eq. (27) into Eq. (24) results
in

1

P(D*)
"A

l
q
p

d
0
B

1@2
. (28)

The expression for *Z* in Eq. (25) (see also
Fig. 1) follows from Eq. (21):

*Z*"l*
$
P(D*)(X

q
!1). (29)

Substituting l*
$

from Eq. (27) and *Z* from
Eq. (29) into Eq. (25) results in the following simple
relation between X

q
and P(D*):

X
q
"1#

1

P(D*)
. (30)

Finally, substitution of P(D*) from Eq. (28) into
Eq. (30) gives the expression for the proximity
parameter, X

q
as

X
q
"1#A

l
q
p

d
0
B

1@2
. (31)

In practical cases, the parameter X
q

could be
evaluated from the grain density, n, by simply sub-
stituting l

q
Pn~1@3.

It is interesting to note that the expression for
X

q
should be also valid for analyzing Glicksman’s

single dendrite experiments [6—10] in which the
solidification process was performed inside a finite
size container. As discussed before, the overlap in
physical space is specific to the particular case
under examination. For equiaxed dendrites this
condition is expressed by Eq. (24). For the single
dendrite case the overlap condition should occur
when the diffusion length became equal to the
radius of the container, R

8
: l

$
(D*)"R

8
, because

the dendrite was initiated from the center of the
container. For that particular case, simple algebra
leads to the expression for X (corresponding to
X

q
in this study) discussed in Ref. [13] similar to

Eq. (31) where l
q

is replaced by 2R
8
. For R

8
&

1.1 cm, approximately corresponding to the aver-
age radius of the container used in the experiments,
and for SCN material parameter d

0
"

2.65]10~7 cm, Eq. (31) with l
q
P2R

8
and p"

0.0192 yield X"400. This value was taken for the
value of X in Ref. [13] and was shown to fit the
experimental data over the entire range of super-
cooling.
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6. Discussion

To illustrate the influence of the various para-
meters in the model, we present results calculated
from this model for succinonitrile (SCN) in an infi-
nite supercooled melt. This transparent organic
material is extensively used as a model material for
solidification experiments, and its material proper-
ties are well documented [10].

We begin by examining in Fig. 2 the effect of four
interacting dendrites (N"4) on the heat transfer,
with the interaction proximity parameter X

q
"100.

The particular value of this parameter corresponds
to an initial dendrite separation distance of about
l
q
&1.5 mm. This separation distance corresponds

to grain density of n&1/l3
q
&3]108/m3. Through-

out the remainder of this discussion the parameter
l was assigned a value of unity. We expect the
actual value of l to be less than one. Its particular
value could be determined from experiments. As
expected, the Péclet number (the nondimensional
net heat flux at the interface) for the multiple de-
ndrite case is consistently lower than that for the
single dendrite.

The effect of the interaction proximity para-
meter, X

q
, is further examined in Fig. 2 for the case

of N"4 interacting dendrites. Since X
q
is propor-

tional to the square root of the relative distance
between the locations of the onset of the dendrites,
X

q
"400 thus corresponds to about 15 times that

distance for X
q
"100 case, namely, l

q
"2.2 cm.

Varying the number of dendrites in the model
has a profound effect on the heat transfer. As ex-

Fig. 2. Comparison between the single dendrite Ivantsov theory
and predictions from this model for N"4 and X

q
"100, 400. EI

refers to Equiaxed Ivantsov.

pected, the ability of each dendrite to efficiently
transfer its heat of fusion to the bulk is severely
hampered by the existence of neighboring de-
ndrites. Indeed, doubling the number of the interac-
ting pairs of dendrites (N!1, where N is the total
number of dendrites) in Fig. 3 produces an almost
proportional effect in the heat transfer, albeit
a smaller effect at the high supercooling levels.

To further illustrate the importance of interac-
tions among dendrites, we present in Figs. 4 and
5 the dendrite tip radius and solidification velocity,
respectively, for N"4 and X

q
"100. Unfortunate-

ly, the use of a constant scaling parameter, p to
calculate both R and » is not supported by experi-
mental data [6—10]. Subsequently, Pines et al.
[14,15] have shown, using scaling arguments, that
the following expansion is sufficient to describe all
of Glicksman’s single dendrite data for R and
» [6—10]:

p(D)"p
2
#

p
1

P(D)
. (32)

Fig. 3. Effect of number of interacting dendrites with X
q
"100.

Fig. 4. Dendrite tip radius predicted for a single dendrite using
Ivantsov theory and from the present theory with N"4 and
X

q
"100.
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Fig. 5. Dendrite tip velocity predicted for a single dendrite using
Ivantsov theory and from the present theory with N"4 and
X

q
"100.

Using this relationship, Eq. (31) becomes

X
q
"1#

l
q
p
1

2d
0

#SA
l
q
p
1

2d
0
B

2
#

l
q
p
2

d
0

. (33)

In calculating the radius and velocity we used the
scaling parameters [14] with p

1
"5.3]10~6,

p
2
"0.0172 as obtained from a fit to Glicksman’s

data [6—10]. We postulate that, in the absence of
convection and mass transport, the selection para-
meters would not be different for the multiple de-
ndrite case since the interaction among dendrites
should only affect the diffusive heat transfer pro-
cess.

In this work we presented an extension of the
classical Ivantsov theory that is valid for a single
dendrite in a supercooled bath to the more practi-
cal case of multiple interacting dendrites. The re-
sults demonstrate the existence of a steady-state
growth regime. It is anticipated that the results
presented here would be valid throughout the sol-
idification process, commencing with the nuclea-
tion of dendrites and ending with the onset of
a time dependent coarsening regime when the solid
mass becomes comparable to the mass of the liquid
phase.
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