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Abstract  
Macroscopic models of equiaxed solidification in an undercooled melt consist of conservation and constitutive relations. 

Currently available constitutive relations assume highly simplified envelope shapes and diffusion conditions and have not 

been validated. Simulation results from a previously developed mesoscopic envelope model are used to develop more realistic 

constitutive relations for envelope sphericity, primary tip and volume-equivalent sphere velocities, and average diffusion 

length.  These relations are verified against the mesoscopic results and can now be used, in macroscopic models of equiaxed 

solidification, to incorporate more realistically the average growth kinetics and solute diffusion rates.   
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1. Introduction 
 

In macroscopic models of equiaxed solidification in an 

undercooled melt, the average growth kinetics of and 

solute diffusion rates from the dendrite envelopes inside a 

representative elementary volume (REV), are described by 

the conservation equations [1, 2]:  

 e
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where eg , envS , envw , eC , *
lC , lD , and env  are the 

extradendritic liquid fraction, envelope surface area per 

unit volume of the REV, average envelope growth velocity, 

average solute concentration in the extradendritic liquid, 

equilibrium solute concentration in the liquid, solute mass 

diffusivity in the liquid, and average diffusion length 

around the envelopes, respectively. The variables envS , envw , 

and env need to be obtained from constitutive relations. 

Currently available constitutive relations assume highly 

simplified envelope shapes and diffusion conditions and 

have not been validated. In the present study, simulation 

results from the mesoscopic envelope model of Souhar et 

al. [3] are used to develop more realistic constitutive 

relations for equiaxed dendritic growth in an undercooled 

melt. 

 

2. Mesoscopic simulations 
 

The reader is referred to Souhar et al. [3] for the details of 

the mesoscopic model. In the mesoscopic simulations, the 

evolution of the dendrite envelopes and solute diffusion 

field in the extradendritic liquid are resolved directly on a 

spatial scale that corresponds to a REV. Simulations were 

performed for isothermal growth of a single grain growing 

into an essentially infinite domain (Figure 1a) and for 

multiple grains (Figure 1b) with high/low grain densities 

of  f l IvR D V  4.03/6.31, where 
fR  and IvV  are the final 

grain radius and  Ivantsov tip velocity at the initial 

undercooling 0 , respectively. For the multigrain cases, 

the grains were arranged periodically in a BCC lattice, 

with the primary arms growing along the axes (Figure 1b). 

Each case was simulated for 0  0.05 and 0.15. Results 

were first averaged over the REV (upscaled), to obtain 

time evolutions of eg , 
eC , envS , envw

,
 and env , and then the 

upscaled results were used to develop constitutive 

relations for envS , envw , and env .  

 

 
Figure 1: Mesoscopic grain envelopes for (a) a single grain and (b) 

multiple grains in a BCC arrangement with the primary arms 

growing along the x, y, and z axes.  

 

 



 
Proceedings of the 6th Decennial International Conference on Solidification Processing, Old Windsor, July 2017 

 

327 

3. Governing equations 
 

The envelope variables envS , envw , and env  are first related 

to volume-equivalent sphere variables 
spS , 

spw , and sp  

through the envelope sphericity   as: 
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The evolution of the sphericity of the dendrite envelopes is 

also obtained from the mesoscopic simulation results. 

Sphere variables are then calculated from 
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where tV  is the primary dendrite tip velocity, 

Pesp sp sp lw R D  and spR  are the sphere growth Péclet 

number and radius, respectively, and FG
sp is the free-

growth diffusion length. The fourth equality is the free-

growth limit (
fR  ) of the relation developed by 

Martorano et al. [3], which, due to the space limitations, is 

not provided here. The last equality in Equation 3 and the 

first equality in Equation 4 indicate that  env sp  and 

sp tw V  are assumed to be functions of   only. The 

sphericity   itself is assumed to be a function of t diffl l  

only, where tl  is the primary arm length, calculated from 

t tdl dt V , and diff l tl D V  is the instantaneous diffusion 

length ahead of the tip, i.e.: 

    t diffl l  (5) 

The dendrite tip velocity tV  is calculated from the 

stagnant film formulation of the Ivantsov solution [4]: 
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where    Ω     
* *

01e l e lC C k C  is the average 

undercooling in the extradendritic liquid, 

 Pe 2t t t lVR D  is the dendrite tip Péclet number, 

   0t l tR d D V  is the tip radius, 0k  is the partition 

coefficient,  0d  is the capillary length, and    is the tip 

selection parameter. The stagnant film thickness  f , scaled 

by diffl , is assumed to be a function of the scaled length of 

the liquid region ahead of the tip up to the symmetry line 

between two adjacent grains, *
ll :  
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4. Results and discussion 
 

In the following figures, mesoscopic results for a single 

grain are shown as black curves and for multiple grains 

with high/low grain density as red/blue curves. Results for 

0 Ω  0.05 and 0.15 are plotted as solid and dashed curves, 

respectively. Purple curves depict our curve fits, and thick 

and thin curves represent predicted (from our fits) and 

mesoscopic results, respectively. 

In Figure 2, the sphericity  is plotted as a function of 

the scaled primary dendrite arm length, t diffl l . It can be 

seen that for a single grain, the mesoscopic simulation 

results for the two different initial undercoolings 0Ω  

collapse onto a single curve. This indicates that the 

sphericity is indeed a function of t diffl l  only. The 

multigrain data in the plot fall on the same curve as the 

single grain data as long as t diffl l is increasing. However, 

when t diffl l starts decreasing, which occurs because tV  in 

the expression for diffl  decreases due to solutal interactions 

between grains, the multigrain data start to deviate from 

the sphericity curve for a single grain. The variation of   

when t diffl l  is decreasing are, however, relatively small and 

are neglected here.  The final fit of the sphericity data for 

both the single grain and the multigrain cases can, is then 

given by:  
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where 0 0.85 l IvR D V  is the radius of the initial spherical 

seed in the mesoscopic simulations. 

 

 

Figure 2: Envelope sphericity, , as a function of the scaled 

primary dendrite arm length, t diffl l .  

 

In Figure 3a,  f diffl  and t IvV V  are plotted as a 

function of the scaled length of the liquid region, *
ll . The 

stagnant film thickness  f  was back-calculated from 

Equation 6 using e  and tV  from the mesoscopic 

simulations. Note that for the single-grain cases  f  tends 

to infinity. The variation of  f diffl  with *
ll  can be best 

understood by first focusing on the low grain density data 

for 0 Ω  0.15. At the start of growth, tl  has its lowest 

value and, therefore, *
ll  is highest ( 5.19 ).  At the early 
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stages of growth, i.e. for * 2ll  , tV  is constant and equal to IvV  which indicates that grains are not interacting yet.  

 

Figure 3: (a) Scaled stagnant film 

thickness f diffl  (left vertical axis) and 

normalized dendrite tip velocity 

   t e Iv oV V   (right vertical axis) as a 

function of the scaled length of the liquid 

region ahead of the tip up to the symmetry 

line between two adjacent grains, *
ll ; (b) 

Comparison of predicted and mesoscopic 

variation of    t e Iv oV V   with 

dimensionless time    2
0Iv ltV D . 

            

Figure 4: (a) Ratio of the sphere velocity 

to the tip velocity, sp tw V , as a function of 

the envelope sphericity,  ; (b) 

Comparison of predicted and mesoscopic 

variation of sp Ivw V  with dimensionless 

time    2
0Iv ltV D . 

              

Figure 5: (a) Ratio of the envelope 

diffusion length to the sphere diffusion 

length, env sp  , as a function of sphericity,

 , for a single grain; (b) Comparison of 

the predicted and mesoscopic variation of 

 env spR  with the spherical growth Peclet 

number, Pesp . 

 

However, due to solute rejection, eΩ  decreases as soon 

as growth starts (not shown due to space limitations). A 

constant tV  along with a decreasing eΩ  causes f  to 

decrease relatively rapidly for * 2ll  . At * 2ll  , t IvV V

starts to decrease from unity, which indicates that the 

grains are starting to interact. For * 2ll  , t IvV V  keeps 

decreasing; therefore, diffl increases and  f diffl decreases. It 

should be mentioned that the decrease in  f diffl for * 2ll  , 

is only due to the increase in diffl . During the final stages of 

growth 0tV  , diffl  , and *, 0l f diffl l  . Despite the 

minor spread, which can be expected to be due to the 

initial transient in the mesoscopic simulations, low-grain-

density curves at the two different values of 0Ω  collapse. 

Next, the low- and high-grain-density curves are 

compared. The curves for the high grain density case 

behave in a similar fashion, with the solutal interactions 

starting again at  * 2ll  .  All results for  f diffl  are fit a 

single curve that is given by: 

  *0.26exp 0.43f l diffl l  
 

 (9) 

Equation 9, along with Equation 6 and the mesoscopic 

values of e , are then used to predict tV . The predictions 

are compared with the mesoscopic results in Figure 3b 

where t IvV V  is plotted against the dimensionless time 

  2
Iv ltV D .  The good agreement between the predicted 

and mesoscopic values of tV  verifies Equation 9.  

In Figure 4a, sp tw V  is plotted as a function of  . To 

calculate spw , spR  was first calculated from 

 
1 3 1 33 4sp REV envR n L g    , where n  is the effective 

number of grains inside the REV (unity for a single grain 
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and two for multiple grains), envg  is the envelope volume 

fraction, and REVL  is the side length of the REV. It can be 

seen that for the single grain cases, sp tw V  decreases 

monotonically as   decreases. Since the data for the two 

different values of 0Ω  collapse, sp tw V  is indeed a function 

of   only, and the single grain data can be fit to a single 

curve. Next, the high and low grain density curves are 

analyzed. These curves fall onto the single grain data only 

initially for high sphericities. At some critical sphericity 

(0.8 or 0.9), sp tw V  for the multigrain cases increases 

steeply, while the sphericity remains almost constant. This 

steep increase can be attributed to tV  in the denominator 

decreasing due to growth interactions. Neglecting this 

effect, all data for the equivalent sphere growth velocity are 

fit by the following equation: 

     
 

0.22
1 0.76 1sp tw V  (10) 

Next, Equations 8–10, along with Equation 6 and the 

mesoscopic values of e , are used to predict spw . The 

predictions are compared with the mesoscopic results in 

Figure 4b, where sp Ivw V  is plotted vs.  . The good 

agreement between the predicted and mesoscopic values of 

sp Ivw V  verifies Equation 10.  

In Figure 5a, the normalized envelope diffusion length 
FG

env sp   for the single grain cases is plotted as a function 

of  . env  was back calculated from Equation 2 using 

mesoscopic values for all the other quantities. It can be 

seen that as   decreases during growth, FG
env sp   

increases monotonically above unity. Hence, the diffusion 

length for a complex shaped dendritic envelope is always 

greater than the diffusion length for the volume-equivalent 

sphere. Since the data for the two different initial 

undercoolings collapse, FG
env sp   is indeed a function of   

only. A curve fit to the data for the single grain is given by:  

        
 

2.5
1 1.3 1env sp

 (11) 

Note that the superscript "FG" (standing for free growth) 

in FG
sp  is dropped because, as shown next, Equation 11 is 

also valid for multigrain growth. In Figure 5b, predictions 

of env  for all single and multigrain cases are compared 

with the mesoscopic values of env .  When calculating env  

from Equation 11, sp  is obtained from the last equality in 

Equation 4 for the single-grain cases, and from the sp  

equation in Martorano et al. [3] for the multigrain cases. In 

all cases, mesoscopic values of  , spR , and Pesp  are used 

as input. The good overall agreement between the 

predicted and mesoscopic values of env spR  verifies 

Equation 11. 

 

Conclusions 
 

Results from a previously developed mesoscopic envelope 

model are used to develop constitutive relations for a 

macroscopic (volume averaged) model of equiaxed growth. 

Relations are proposed for the envelope sphericity, primary 

tip and volume-equivalent sphere velocities, and average 

diffusion length. The relations are verified against the 

mesoscopic results for a range of initial undercoolings and 

grain densities, including a single grain. These relations 

can now be used in macroscopic models of equiaxed 

solidification to more realistically account for the average 

growth kinetics of and solute diffusion rates from the 

grains. 
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