
Equiaxed Dendritic Solidification with Convection 
Part I. Multiscale/Multiphase Modeling 

C.Y. WANG and C. BECKERMANN 

Equiaxed dendritic solidification in the presence of melt convection and solid-phase transport is 
investigated in a series of three articles. In part I, a multiphase model is developed to predict com- 
position and structure evolution in an alloy solidifying with an equiaxed morphology. The model 
accounts for the transport phenomena occurring on the macroscopic (system) scale, as well as the 
grain nucleation and growth mechanisms taking place over various microscopic length scales. The 
present model generalizes a previous multiscale/multiphase model by including liquid melt convec- 
tion and solid-phase transport. The macroscopic transport equations for the solid and the interdendritic 
and extradendritic liquid phases are derived using the volume averaging technique and closed by 
supplementary relations to describe the interracial transfer terms. In part II, a numerical application 
of the model to equiaxed dendritic solidification of an A1-Cu alloy in a rectangular cavity is dem- 
onstrated. Limited experimental validation of the model using a NH4C1-H20 transparent model alloy 
is provided in part III. 

I. INTRODUCTION 

ThE solidification microstructure of many metal alloys 
can generally be categorized into two groups: (1) columnar 
structures consisting of long, aligned dendrite arms that are 
attached to the mold wall; and (2) equiaxed structures con- 
sisting of crystals that grow radially inside an undercooled 
melt. In the recent past, columnar solidification with ther- 
mosolutal convection in the liquid melt and the resulting 
macrosegregation have been extensively studied, t2,31 In con- 
trast, modeling of equiaxed dendritic solidification with 
convection has not been widely attempted because of the 
complications associated with the transport of free equiaxed 
crystals in the melt. The gravity-induced settling or flotation 
of free crystals is fundamental to the development and ex- 
tent of the equiaxed zone and greatly affects the columnar 
to equiaxed transition. Moreover, grain transport may cause 
severe macrosegregation and structural inhomogeneities. 

Toward predicting composition and structure in alloy 
castings, this article presents a general framework for mod- 
eling microstructure evolution during equiaxed alloy den- 
dritic solidification. The modeling task is to incorporate 
descriptions of fundamental microscopic phenomena, such 
as nucleation, undercooling, and grain growth mechanisms, 
into macroscopic heat and fluid flow calculations. An ex- 
tensive review of the micro-macroscopic modeling ap- 
proach has been provided by Rappazt41 and Thevoz et aLl 51 
and recent developments have been reported in conference 
proceedings.t6,71 The two most recent approaches include the 
probabilistic modeling proposed by Brown and Spittle, I81 
Zhu and Smith, tgl and Rappaz and Gandin u~ and the mul- 
tiscale/multiphase model developed by Wang and Becker- 
mannJ 1,~r'121 However, none of these previous models has 
considered melt convection and solid transport occurring 
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during solidification, thereby greatly limiting their utility. 
The present work is intended to extend the multiphase 
model of Wang and Beckermannt~l by accounting for both 
melt convection and solid-phase transport. The present 
work is a continuation of Ni and Beckermann's two-phase 
modeling study, t131 which deals with globulitic solidification 
only but does account for melt convection and solid-phase 
transport. 

The general multiscale/multiphase modeling framework 
is first introduced in Section II. A specific model obtained 
using the general approach is subsequently presented in 
Section III, where all the necessary supplementary relations 
are also supplied to complete the mathematical system. In 
the second article of this series on equiaxed dendritic so- 
lidification, E~4] calculations for two-dimensional (2-D) 
equiaxed dendritic solidification of an A1-4 wt pct Cu alloy 
are carried out using the multiphase model, while a com- 
bined experimental and numerical investigation on the so- 
lidification of a NH4C1-H20 alloy analog is reported in the 
third part of this seriesY 5J 

II. MULTISCALE/MULTIPHASE MODELING 

In this section, a micro-macroscopic model of dendritic 
alloy solidification is formulated by using a multiphase ap- 
proach and volume averaging. After explaining the basic 
approach, the resulting macroscopic equations are summa- 
rized. The detailed derivation using the volume averaging 
technique can be found in Wang t~61 and, for brevity, is not 
repeated here. Finally, the general forms of the constitutive 
relations for the phase interaction terms are presented. 

A. Multiphase Approach 

Consider a small volume element that contains several 
equiaxed dendritic crystals, as schematically illustrated in 
Figure 1, in which two different interfacial length scales 
can be distinguished. The solid crystal and the interdendri- 
tic liquid share a common interracial structure of the order 
of 10 -5 to 10 -4 m, whereas the interface between the liquid 

2754--VOLUME 27A, SEPTEMBER 1996 METALLURGICAL AND MATERIALS TRANSACTIONS A 



Vo 

~ extradendritic liquid 

solid interdendritic liquid 

Fig. 1--Schematic illustration of  the averaging volume and the dendrite 
envelope for equiaxed growth. 

outside the grains and the interdendritic liquid has a higher 
length scale (of the order of 10 -4 to 10 -3 m). The size of 
the volume element is chosen such that it is much larger 
than all interfacial length scales but small compared to the 
system scale (of the order of 10 -1 to 10 ~ m). Hence, a 
proper volume element could have a radius between 10 -3 
and 10 -2 m, about the same size as a typical computational 
element used in numerical analyses. 

The hypothetical interface between the interdendritic liq- 
uid and the liquid outside the crystals is referred to as the 
dendrite envelope, t17] The specification of this envelope is 
somewhat subjective. However, a reasonable choice ap- 
pears to be a smooth surface connecting the primary and 
secondary dendrite arm tips, as shown by the interrupted 
line in Figure 1. More discussion on the envelope topology 
can be found in Wang and Beckermann. tq 

The volume element can be considered to consist of three 
different phases: the solid phase and the two liquid phases. 
The two liquid phases separated by the dendrite envelope 
are distinguished by their different interfacial length scales. 
Separate macroscopic conservation equations can then be 
formulated for each phase. These macroscopic equations 
are linked through interfacial transfer terms, which reflect 
the microscopic transport phenomena present at the inter- 
faces. The new interface between the two liquid phases 
(i.e., the envelope) thus provides an opportunity to incor- 
porate additional microscopic phenomena in the model and 
to transmit information from the two different length scales 
into the macroscopic equations. 

Based on the multiphase approach, the macroscopic con- 
servation equations can be derived using the volume aver- 
aging technique, as described in Ni and Beckermann [13] and 
Wang and BeckermannY 1 

B. Macroscopic Equations 

Application of certain averaging theorems to the micro- 
scopic (exact) conservation equations shown in the first col- 
umn of Table I results in the macroscopic mass, 
momentum, energy, and species conservation equations for 
a phase k. [1,16] They are also summarized in Table I. The 
numerous symbols in Table I are defined in the Nomencla- 
ture. 

Several features can be observed with regard to the av- 
eraged equations in Table I: (1) they contain the phase vol- 
ume fraction, ek; (2) integrals arise over the interfacial 
areas, which account for the interactions of phase k with 
all other phases due to relative movement of interfaces 
(e.g., phase change) and interfacial transport (e.g., diffu- 
sion/convection); (3) they contain dispersive fluxes which 
reflect the effects of microscopic fluctuations of a property 
within a phase on the macroscopic transport (such terms 
are of key importance in turbulence modeling); and (4) an 
interfacial balance requires that the interfacial fluxes are 
equal on both sides of the interface. Since in the present 
model phases may be simply distinguished by their inter- 
facial length scales, several interfacial integrals appear, 
through which information from each microscopic level is 
passed to the macroscopic level. 

C. Constitutive Relations 

The interfacial or phase interaction terms as well as the 
dispersive fluxes require further modeling, since the micro- 
scopic variables on which they are based are not known 
from the solution of the macroscopic equations. This in- 
formation has been lost in the averaging process. The mod- 
eling of these terms for solidification systems requires (1) 
postulation of constitutive relations and (2) formal micro- 
scopic analyses for the system in question. 

1. Interfacial transfers due to interfacial/movement 
Interfacial movement can be due to phase change at the 

solid/liquid interface or dendrite tip advancement at the 
dendrite envelope. The exact expressions for the interracial 
transfers of mass, momentum, heat, and species due to this 
movement are provided in Table I. Physically, these terms 
represent advection of an interfacial quantity of phase k due 
to the relative motion of the interface. In view of  the mean 
value theorem for integrals, the terms can be modeled as 
the product of an interracial area concentration and a mean 
interfacial flux. Hence, at the k-j interface, the interfacial 
mass-transfer rate becomes 

Fkj = Skj P~nkj [ l ] 

where ~.kj represents the average normal velocity of the 
interface kj relative to phase k. 

In a like manner, a general transfer ~ corresponding to 
the property ~ at the k-j interface due to interfacial move- 
ment can be expressed as 

I ~  ~- ~JFkj rk j [2] 

where the overbar together with the subscript kj denotes an 
average over the interfacial area Ae in V o. The term ~ 
stands for the momentum transfer Mk~, heat transfer Q~, and 
species transfer ~ ,  if �9 corresponds to the velocity, en- 
thalpy, and concentration, respectively. Note that Eq. [2] 
introduces interracial quantities, ~kj, into the macroscopic 
conservation equations that are usually distinct from their 
volume averaged counterparts, (~k) k. 

2. Interfacial transfers due to diffusion~convection 
The exact expressions for the interfacial stress, M~, heat 

transfer, Qkj, and species transfer, J~, due to diffu- 
sion/convection are also given in Table I. Physically, these 
terms represent the transport phenomena among the phases 
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Table I. Summary  of  Microscopic and Macroscopic Conservation Equations 

Microscopic Conservation Interracial 
Equations Macroscopic Conservation Equations Balances Dispersive Fluxes 

0 0 
Mass ~ pk + V. (pkVk) = 0 ~ (t~p~) + V" (Skp~ (V~) k) = ]~ Fkj Fkj + F;~ = 0 - -  

j , j  ~4~ 

M~ + M~ = 0 
0 0 

Momentum ~ (p~v,) + V" (p~v~v~) = ~ (e~p~ (v~) ~) + V. (e~p, (v~)~(v~) ~) = ( 0  = -<Pfi'~r 

- v p~ + v .  ~-~ + b~ - e~ V (p)~ + v .  (6")  + (~-~)) + ]~  M ~  + e~(b)  ~ 
jd~k 

o o 
Energy ~ (p~h~) + V" (p~h~v~) = ~ (e~p~(h~) ~) + V . (e~p~(h~)~(v) ~) = Q~ + Q~ = o (q~O = (p, h~r 

- V .  q~ - V" ((q~) + (q'~)) + ~ Q~s 

0 0 
Species ~ (pkCk) + V. (pkCkvk) = ~ (e~pk(Ck) k) + V . (e~p~(C)~(v~) ~) = J,s + J~, = 0 Q~) = (p,C~r162 

- V .j~ - V .  ((j~) + (j'~)) + .sa~ J~s 

Interfacial Stress and Transfers 
Total Interfacial Transfers Interfacial Transfers Due to Phase Change Due to Diffusion 

zf Mass I~kj Fkj = Vo pk(vk -- Wk) " nk dA - -  

y ly 
. . . .  z, " nk dA 1 p~v~(v~ w~). n, aA M~ = -700 ~ Momentum Mky Mr s + M~ M~ = Vo AkS 

1 y p ,  hk(v,  w~) n kdA Q~J 1 f . . . . . . .  qk " nk dA Energy Okj O~ + a~  Q~ = ~ Akj Vo A~j 

1 PkCk (Vk -- Wk)" nk dA J~s = - ~oo J~" nk dA Species Jkj = J~j + J~ J~ = Vo Akj 

within Vo and are caused by microscopic velocity, temper- 
ature, and species concentration gradients, on each side of  
the interface Akj. Similar to the interfacial transfers due to 
interracial movement, they can generally be modeled as the 
product of the interracial area concentration Ski and a mean 
interfacial flux. It can be assumed further that the mean 
interracial flux, in turn, is linearly proportional to the dif- 
ference between the interracial average and the intrinsic 
volume average of a quantity of phase k, i.e., ~k j  - (~k)  k. 
In other words, this difference is assumed to be the driving 
force for the interfacial flux. Hence, the interfacial mass 
transfer at the k-j interface due to diffusion/convection in 
phase k can be expressed as 

D~ ( ~ ,  _ ( G ? )  [31 

where l is called the diffusion length, which characterizes 
the resistance to diffusion/convectionY] The diffusion 
length is generally a complicated function of the micro- 
scopic phenomena, and its determination requires a formal 
microscopic analysis of the diffusion/convection processes 
(Section III-C-6 provides more detail). 

3. Model ing  o f  macroscopic f luxes  
The macroscopic fluxes include the viscous stress (~'k), 

heat flux (qk), and species flux ( j ) ,  as well as their disper- 
sive counterparts, 0"~), (q~) and (j~). These fluxes are typi- 
cally modeled by introducing effective transport 
properties, t~8~ so that 

(~k) + (0~) = - r *  ek V (~k)* [4] 

where F* represents an overall macroscopic transport prop- 
erty, which is a function of not only the microscopic trans- 
port property but also the microstructure as well as 
microscopic flow fields. For multiphase flows, evaluation 
of these effective transport properties is an area of consid- 
erable research and controversyY 8j 

IlL A M U L T I P H A S E  M O D E L  

The macroscopic conservation equations presented in 
Section II can be simplified for specific systems by making 
certain assumptions. Various limiting cases as well as sim- 
plified model equations for diffusion-controlled solidifica- 
tion have been extensively discussed by Wang and 
BeckermannYJ As in Reference 1, the present study con- 
siders a three-phase system consisting of the solid (k = s), 
the interdendritic liquid (k = d), and the extradendritic liq- 
uid outside the dendrite envelope (k = /), so that e s + ea 
+ el = 1. An internal solid fraction can be defined as e,i 
= e/(e~ + ca), and the grain fraction is given by eg = e~ 
+ e a. It is further assumed that the solid (s) has only point- 
wise contact with the liquid (/) outside the dendrite enve- 
lope (Figure 1), so that 

Asa = Aas = A,, Aal = Ate = A~, andAsl = AI~ = 0 [5] 

These geometric relationships imply that there exists no di- 
rect coupling between phases (s) and (/), while phase (d) 
interacts with both phases (s) and (/). More model assump- 
tions are made in Section A. Also, in the remainder of  this 
article, the averaging symbols are dropped for convenience, 
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Fig, 2--Schematic of the partitioning of the liquid flow through the inter- 
and extradendritie regions in equiaxed solidification.vgl 

namely, (aPk)k = ~k, whereas an interfacial quantity is still 
denoted by an overbar, so as to distinguish it from its vol- 
ume-averaged counterpart. 

A. Model  Assumptions 

The model equations presented subsequently are based 
on the following assumptions. 

(1) Mechanical equilibrium exists, i.e., p ,  = Pd = P~ = P" 
(2) The momentum exchange due to interfacial movement 

is neglected. 
(3) A certain flow partitioning between the inter- and ex- 

tradendritic regions is assumed, as originally proposed 
in Reference 19. As schematically shown in Figure 2, 
the liquid may flow either through the inter- or the ex- 
tradendritic region. The relative portions can be quan- 
tified by introducing a flow partition tensor, K,, which 
is defined as the ratio of the liquid mass flux through 
the porous dendrites to the total liquid mass flux; i.e., 

edOd (Vd -- V~) = Kv E/Of(V/ -- V=) [6] 

and 

etp~ (v, - v~) = (1 - K3 e : O / ( V / -  v~) [7] 

where e /and vf stand for the total liquid fraction, consisting 
of the interdendritic and extradendritic phases, and the mix- 
ture velocity vector for both phases, respectively: e / =  e~ 
+ et and Efpfvf = edPdV a + e~OlV~. Note that when Kv = 
OdeJ(pjey), a uniform flow distribution results; i.e., vd = Vl 
= vs. The coefficient K~ is also called the fluid collection 
efficiency of porous aggregates in chemical engineering.t2ol 
A correlation for Kv is developed in Section C. The concept 
of flow partitioning between the inter- and extradendritic 
regions is introduced to simplify the solution of the mo- 
mentum equations in the proposed multiphase model. Once 

Kv is calculated, only the momentum equation for the total 
liquid phase needs to be solved, and the individual liquid 
velocity fields, Vd and vz, can be algebraically obtained from 
Eqs. [6] and [7]. 
(4) Local thermal equilibrium exists, i.e., Tk = 7"kj = T. 

The assumption can safely be made under normal so- 
lidification conditions because of the large value of the 
Lewis number of metal alloys, so that heat transfer at 
an interface is fast enough to reach local thermal equi- 
librium. 

(5) The interdendritic liquid is well mixed so that Cd, = 
-'Cdl = -'Cld = Cd = -'Ce, The assumption has been dis- 
cussed in Wang and BeckermannV~ and found to be 
valid. 

(6) The dendrite envelope is spherical. 
(7) Thermophysical properties are the same for the inter- 

dendritic and extradendritic liquid phases. 

As discussed in assumption 3, only the solid and total 
liquid phases require principal consideration. The distinc- 
tion between the variables pertinent to the inter- and extra- 
dendritic liquids can be made algebraically after the 
primary variables pertinent to the total liquid phase (f) are 
obtained. The primary variables pertinent to the total liquid 
phase are defined by the rule-of-mixtures, i.e., 

volume fraction e: = ed + et [8] 

density Prey = paed + p t e  t [9] 

viscosity PsestZ~ = OdEdtZ* + ptEdx*t [10] 

mass diffusivity pfEfD~ = Pded D *  -t- ptetD* [11] 

thermal conductivity eflc* I = euk*d + elk* [12] 

specific heat OsesCs -~- OdEdCd -I- OISICI [13] 

concentration OyefCy = pdeaCd + OletCt [14] 

velocity o/efvr = Odeava + Oley~ [15] 

B. Model  Equations 

With the assumptions stated in Section A, a reduced set 
of model equations can be derived from the general for- 
mulation presented in Table I and the constitutive relations 
developed in Section II-C. These macroscopic equations 
are summarized in Table II. Some details of their deriva- 
tions are described in Sections 1 through 5. 

1. Calculation o f  phase  change rate 
As a critical parameter in solidification processes, the 

phase change rate Fs may be determined from the species 
balance in the interdendritic liquid phase (extracted from 
Table I): 

0 
(PdedCd) + V " (PdSdVdCd) = V "  (PdedD* 7Cd) 

P~S~Ds (C,~ - Cs)] [16] - + 

+ [CeFe p,S~D, ( - C e -  C,)] 
ltd 

where the interfacial species fluxes on the right-hand side 
(RHS) have been replaced by their counterparts on the other 
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Table II. Summary  of a Multiphase Model 

Continuity Equations 
Solid phase (s) 

(p,e,) + V. (p,e,v,) = F, 

Total liquid phase (f) 
0 

( a6 )  + v . (p:e:v,) = - r ,  

Interfacial Species Balance (for Calculating Phase Change Rate) 

(-C~ - C,) + [pde,~ + p,~e,~va" V -C, - V "  (OdedD*d V C,)] 

Momentum Equations 
Solid phase (s) 

0 
(me, v,) + V �9 (o~e,v,v3 = - e ,  Vp + V �9 (#x'e, Vv,)  + MJ + p,e,g 

Total liquid phase (f) 
0 
Ot (o/eYe) + V. (p:eyy) = - e sV  p + V. (/xTe:Vvs) - M, ~ + e/peg + V. [VO:5(v: - Vs)(V s - v3] 

Species Equations 

Solid phase (s) 

at (p,e,C,) + V . (p,e,v,C,) = V . (p,e,D*VC,) + -c, dr, + (-C,a - C,) 
s 

Total liquid phase (f) 

a PsS, D, 
(o,~,c,)  + v .  (o,~:v,C,~ = v .  (p,e:DZVC:) - s  + ~ (~,~ - c , )]  + v .  {p,e,(v,  - v~)[C - ~vC~ - ( 1 - ~ ) c , ] }  

Mixture Energy Equation 

O 
[(p,e,c, + OflZ/c)T] + V . [(p,e,c,v, + p:e:cyy)T] = V. [(e,~ + e:k~:)VT] + F,[Ah+(c,-c3TE] 

Auxiliary Relations for Secondary Variables 
Interdendritic liquid fraction 

0 
(pact) + V "  (pdedVd) = S~p, w~ - F, 

Extradendritic liquid fraction 
e, = e : -  ed 

Extradendritic liquid concentration 
C, = (p:e:C:- p~e~-CJ(p,e,) 

Inter- and extradendritic liquid velocities 

v,~ = v, + K~ P2~ v);  v,. + pae~ ( v / -  v, = (I - K~) (v / -  v~) 

sides of  the interfaces, because the former become indeter- 
minate under assumption 5. 

Eliminating Fe in Eq. [16] using the mass conservation 
equation for phase (d) and noting that C a = Ce (assumption 
5), it follows that 

( ~  _ ~d)F, _ PsS, D,  (~,~ _ Cs) 
l,<, 

pISdDI 
(C< - 6 )  + [p.e~ oc ,  [17] 

§ t - )S /  
+ o~e.vd, v ~ .  - v .  (p.e~9* v Ce)] 

Physically, this equation implies that the species flux re- 
jected into the interdendritic liquid due to phase change 

(left-hand side (LHS)) is either diffusect/convected into the 
solid and extradendritic liquid through interphase ex- 
changes within the control volume (the first and second 
terms on the RHS), is stored in the interdendritic region 
(third term on the RHS), or is advected and diffused out of  
the control volume (fourth and fifth terms on the RHS). 
Equation [17] is used to calculate the phase change rate, 
F s �9 

2. M o m e n t u m  conserva t ion  
The momentum equation for phase 0O listed in Table II 

is obtained by summing up the momentum conservation 
equations for phases (d) and (/), as listed in Table I, as well 
as using assumption 3 stated in Section A. The viscous 
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terms are linear so that they are additive, whereas the sum- 
mation of the nonlinear advective terms results in an ad- 
ditional term (the last term on the RHS), where y is called 
the momentum dispersion coefficient and is given by tl61 

r Kv2 --Kv)2] [18] 
Y = 1 -- pie~ LPaed + (1 pte~ -I 

When K~ = puea/plel (i.e., uniform flow through the inter- 
and extradendritic regions), y = 0 so that the last term in 
the momentum equation for phase (/3 vanishes. This is why 
3' is called the dispersion coefficient. 

The solid/liquid interfacial drag, MJ, in the two momen- 
tum equations listed in Table II is modeled in Section III- 
C-4. 

3. Species conservation 
The species conservation equations for the solid and total 

liquid phases can be derived in a similar fashion. These 
equations contain interracial species transfer terms that are 
inversely proportional to the solid and liquid diffusion 
lengths l~a and l~a, respectively. These diffusion lengths are 
modeled in Section III-C--6. Notice again that when K~ = 
edpd/(eypl) (uniform flow), the last term in the species con- 
servation equation for the total liquid phase drops out. 

4. Energy conservation 
In deriving the energy equation for the multiphase mix- 

ture, the macroscopic enthalpies of the various phases are 
expressed as linear functions of temperature: 

hs = csT 

and 

ha = cuT + (Cs-Ca)T~. + Ah 

[19] 

[201 

h~ = c~T + (c, - c3T e + Ah [21] 

where Ah is the latent heat of fusion at the eutectic tem- 
perature, Te; i.e., 

A h = ( h , -  h,)lr=r~ [22] 

The last term on the RHS of the energy equation listed in 
Table II represents the latent heat release due to solidifi- 
cation. 

5. Secondary variables 
The model equations listed in Table II constitute a com- 

plete mathematical formulation for eight primary variables: 
e,, F,, Vs, vs, p, C~, C# and T, while the total liquid fraction, 
e i, can be obtained from the constraint e~ + e I = 1. All 
quantities pertinent to the inter- and extradendritic liquid 
phases are classified as secondary variables whose deter- 
mination from the preceding primary variables is explained 
subsequently. 

To distinguish the inter- and extradendritic liquid frac- 
tions from the total liquid fraction ej~ one can resort to the 
following mass conservation equation for the interdendritic 
liquid phase: 

0 
(Paed) + V .  (Oaeavd) = re -- F, [23] 

where Fe is related to the growth velocity of the dendrite 
envelope via Eq. [1]: 

r~ = Sept ~,e [241 

Hence, the quantity Fe can be calculated from the growth 
model for the dendrite envelope, which is provided in Sec- 
tion III~S-3. Once ed is obtained, the extradendritic liquid 
fraction is simply equal to (w - Ca). 

By definition, the extradendritic liquid concentration can 
be calculated, once C I is available, from 

C~ = (PsesCs- pdeaCe)l(p,e,) [25] 

where the relation C a = C, has been used due to the as- 
sumption that the interdendritic liquid is well mixed, 
namely, assumption 5. 

Likewise, the liquid velocities in the inter- and extraden- 
dritic regions are obtained, respectively, from the definition 
of the flow partition coefficient: 

va = Vs + Kv pjef (vs_ v,) [26] 
paea 

vl = vs + (1-Kv)PYel tv - vs) [27] 
ptel ~ i 

in which K v is calculated, as shown in Section III--C-4. 
The preceding auxiliary relations for calculating the sec- 

ondary variables from the primary variables are also sum- 
marized in Table II. To complete the mathematical system, 
however, supplementary relations are needed for the inter- 
facial area concentrations, S, and Se, the growth velocity of 
dendrite envelope, w,e, the solid/liquid interfacial drag, ~ ,  
the flow partition coefficient, K~, the interfacial diffusion 
lengths, l,u and l~d, and the macroscopic transport properties. 
These additional inputs to the multiphase model are pro- 
vided in Section C. 

C. Supplementary Relations 

1. Morphological relations 
The interfacial area concentrations, Ss and S~, characterize 

the topology of the interfacial structures and thus are related 
to complex microscopic phenomena, such as the growth of 
various solid microstructures, impingement of interfaces, 
and coarsening of dendrite arms. The area concentrations 
also play important roles in the modeling of the interracial 
transfer terms, as shown in Section B. For completeness, 
the morphological relations derived by Wang and Becker- 
mannm for an equiaxed morphology are included in Table 
III. They are based the assumption of a platelike geometry 
of the dendrite arms and an equivalent sphere concept for 
the dendrite envelope. The interracial area concentrations 
in Table III are expressed as functions of the traditionally 
employed secondary dendrite arm spacing and the grain 
density. The interfacial area concentration, S, is related to 
the specific area, Sv, by S = Sv(l - e), where e is the volume 
fraction of the microstructure under consideration. For more 
details on the derivation of these morphological relations 
and their underlying assumptions, the reader is urged to 
consult Wang and Beckermann. 

2. Grain nucleation 
As an important microstructural parameter, the grain den- 

sity is needed for the evaluation of certain geometric quan- 
tities listed in Table IIl. Due to solid motion in the equiaxed 
case, this grain density, n, is not only determined by nu- 
cleation mechanisms but also modified by the flow field 
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Table IlL Summary of Morphological Relations for 
Equiaxed Crystals m 

Mean diameter of the solid phase, ds 

Mean diameter of the dendrite 
envelope, de 

Solid/interdendritic liquid interfacial 
area concentration, S~ 

Envelope area concentration, S~ 

e~Az 
1-el 

( 6 ( 1 - - e t ) )  u3 

- T g - ~ .  

2 
)t2 

l 
qb Z (36~)1/3nm(1--e~) 2/3 

during solidification, according to the following conserva- 
tion equation91 

On 
- -  + v .  (v~n)  = h [ 2 8 ]  
Ot 

where the second term on the LHS is the flux of grains due 

to a finite solid velocity, vs. The term h is the net nucleation 
rate accounting for both the birth and death of grains due 
to heterogeneous nucleation, remelting, dendrite arm pinch- 
off, agglomeration, and other effects. Although a number 
of semiempirical nucleation models are available, they do 
not explicitly account for fragmentation and agglomeration 
effects in the presence of convection. The realistic model- 
ing of grain structure formation on the macroscopic scale 
will largely depend on resolving these issues. Careful ex- 
perimentation coupled with solutions of the present model 
equations may help in this respect. 

As a first approximation, the calculations presented in 
parts II and 1II of this study employ the simplest nucleation 
model, namely, the instantaneous nucleation law proposed 
by Stefanescu et al. tzq In this model, it is assumed that a 
certain number of nuclei instantaneously appear as soon as 
the temperature of the liquid melt falls below the nucleation 
temperature, TN; i.e., fi = nor(T - TN), where no is a con- 
stant and 6 is the Dirac delta function. Moreover, nucleation 
can only occur if the local grain density before nucleation 
is equal to zero. This implies that no new grains will nu- 
cleate in the immediate neighborhood of existing grains. In 
the presence of solid movement, grains may be advected 
into regions of higher temperature and remelt to a suffi- 
ciently small diameter d~. In this case, death of the grains 
takes place, and the present nucleation model instantane- 
ously resets the local grain density to zero. The control 
volume in question is then allowed to renucleate later when 
the conditions are right. Grains may exist in regions of su- 
perheated melt as long as their diameter is above d~. Again, 
such a model can only be expected to capture some of the 
first-order effects of the grain density on the growth and 
transport phenomena, and future work should concentrate 
on explicitly including the fragmentation/agglomeration ef- 
fect. 

3. Grain growth 
The dendrite envelope motion is governed by the growth 

of dendrite tips. The growth model for dendrite tips can be 
obtained by connecting two phenomena: solute transport 
near the tip and tip stability. Assuming no back diffusion 
in the solid and using the common marginal stability con- 

dition for tip growth, as proposed by Lipton et al.,[22] it can 
be shown thatrZ3] 

4o-* Dim(K-- 1)~ 
~,e = F Pe~ [29] 

where o-* is the stability constant ( ~ 1 / 4 ~  in the pure dif- 
fusion limit) and F is the Gibbs-Thomson coefficient. The 
tip Peclet number, Pe,, is related to the dimensionless so- 
lutal undercooling, 12: 

a = _ [30] 
ce (1  - K) 

via the solution of the solute transport problem near the tip. 
Coupling such a solution with Eq. [29] yields a growth 
model that relates Wne directly to the solutal undercooling 
l~. Equation [29] is generic, in that all of the effects of the 
assumed dendrite tip shape and flow conditions around the 
tips are incorporated in the stability constant or* and the 
relation between the tip Peclet number Pet and the under- 
cooling 1). Subsequently, diffusion- and convection-domi- 
nated cases are considered, separately. 

For diffusion-dominated growth, the exact Ivantsov func- 
tion is given by 

Iv(Pe,) = Pe, exp (Pet) El (Pet) = 1) [31] 

where E~(Pet) is the exponential integral function. For com- 
putational convenience, the inverse Ivantsov function can 
be approximated byfU 

Pet = lv-I(~) = a [32] 

where a = 0.4567 and b = 1.195 give the best fit. Substi- 
tution of Eq. [32] into Eq. [29] and insertion of o-* = 1/4~ 
yield a growth model for diffusion-dominated dendrite tip 
growth. This model has been used in Wang and Becker- 
mann [1a2] for diffusion-dominated solidification. 

For convection-dominated growth, there is ample exper- 
imental evidence showing that both the stability criterion 
and the species gradients are affected by the flow field 
around dendrite tips.t24] A reliable and accurate model ac- 
counting for these convection effects, however is not yet 
available. To a first approximation, one can assume a neg- 
ligible influence of convection on the stability criterion, and 
thus the focus is first placed on the fluid flow effect on the 
species transport field around dendrite tips. 

Considerable research has been conducted in order to 
find analytical solutions of the heat transport around den- 
drite tips in the presence of convection. A summary has 
been given by Ananth and Gill. t25~ It was found that the 
Stokes approximation of the Navier-Stokes equations for 
convection in a subcooled melt yields an exact solution for 
shape preserving growth of a parabolic dendrite. The so- 
lution was also found to be in good agreement with the 
available experimental data of Huang and Glicksman.t24] In 
terms of the tip Peclet number P e  t and the dimensionless 
undercooling 12, this solution can be written as 

*/ 

( ~ f e x p [ - f ( f / r / ) d r / ]  ) 
12 = 2Pe, dr/ [33] 

1 r/ 
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Fig. 3~Comparison of the Stokes' solution of Ananth and Gill, t25~ for Sc 
> 20, with the present correlation, Eqs. [32] and [36l, for dendrite tip 
growth. 

where the functionf(~) is given by 

f(r/) = 2Pet 
2Peoo 

+ [~(2 In ~/ - 1) + 1] 
E~[(Pem + 2Pe,)/Sc] 

[34] 

and the ambient Peclet number is based on the relative ve- 
locity between the liquid and the solid dendrite; i.e., 

Pew = [ v t -  v,[Rt/O, [35] 

In Eqs. [33] through [35], the heat-transfer solution of Ref- 
erence 23 has been rewritten in terms of mass-transfer 
quantities, i.e., the solutal Peclet numbers and the Schmidt 
number, Sc. Parametric calculations indicate that the ana- 
lytical solution given by Eqs. [33] and [34] becomes in- 
dependent of the Schmidt number when Sc is greater than 
about 20, which is the case for all metal and transparent 
model (e.g., NH4C1-H20 ) alloys. When Peo~ = 0, which 
implies no convection, Eq. [34] yields fir/) = 2Pe,~ and 
Eq. [33] reduces to the Ivantsov solution for pure diffusion, 
as given in Eq. [31]. 

Again, for computational efficiency, the inverse of the 
solution to Eqs. [33] and [34] for convection-dominated 
dendrite tip growth can be curve fitted, for Sc > 20, using 
the same form as Eq. [32]: 

a = 0.4567 + 0.173 Pe~ 5s [36a] 

b = 1.195 - 0.145 Pe~ 16 [36b1 

Figure 3 shows a comparison of the present correlation con- 
sisting of Eqs. [32] and [36] with the Stokes solution given 
by Eqs. [33] and [34] for various values of Pe~. It can be 
seen that the present correlation adequately matches with 
the analytical results for Sc > 20. 

4. Solid~liquid interracial drag 
The dissipative interracial stress in a particulate system 

has traditionally been modeled using various approaches. 
For high solid fractions (i.e., the packed bed regime), the 
porous medium approach is often adopted, with the per- 

3 = 
where 

meability representing a key parameter; t26,271 while at low 
solid fractions (i.e., the free particle regime), the submerged 
object model is more frequently used in which the drag 
coefficient is important, t2sl Recently, both approaches have 
been unified by Wang et al. t~91 for the multiparticle system 
of equiaxed solidification, and a general correlation (valid 
for all solid fractions ranging from zero to unity) for the 
dissipative interracial stress, M, a, on the solid crystals in the 
Stokes regime has been obtained; i.e., 

M~ = Ef/32 I.Zf Ef (vf -- v,) [37] 
Re ~ 

where/3 is a dimensionless parameter, which is only a func- 
tion of the particle volume fraction and its morphology, and 
Re is the envelope radius. The expression for /3 is given 
byt 19] 

[38] 
[ ( I  - e , ) .  + ( / 3 , / / 3 , ) : . ] , , : .  

3V~ Ss 
/3d = 

( I  -- Ss,) 3/2 6eSe 

/3, = { ~  (1-et)  2 + 413(I-et)5 

i 2/3,~ ( i  - 

Cp( ~)e) 2 ~  -+ -3 6 

2-3( I  -et)+3(l  -e~)5-2(I -e~) 6 

- tanh/3~//33J 

[39] 

[4o] 

n = 0.176 log/3 a + 0.275 [41] 

The function Cp(~be) accounts for the effect of an aspherical 
dendrite envelope, with ~b e being the sphericity of the den- 
drite envelope.t29.u The following expression for Cp(gae) has 
been proposed by Wang et al.: tl91 

{ ~b~ for 0.7>e~>0.0 
CP(4ae) = 6~ [421 

1.26 log~0 (0.~63) for l>et>0.7 

While other details on the drag model are available else- 
where,rig] several salient features of the model are outlined 
here. First, note that this drag model accounts for the mul- 
tiple length scales present in a dendritic structure, namely, 
S, and Se (or Re). Second, the drag model encompasses 
many important limiting cases, which include the single 
equiaxed dendrite t29,3~ and packed beds of impermeable and 
permeable spheres. Third, the model has been validated 
against various experimental data available in the literature 
for both globular and dendritic crystalsJ ~91 In particular, it 
was found that this model improves the prediction of per- 
meabilities of equiaxed dendritic structures due to its ex- 
plicit consideration of multiple length scales. For spherical 
solid particles, this drag model reduces identically to the 
well-known Stokes' law for the drag coefficient in the free 
particle regime,t2sl while it coincides with the Kozeny--Car- 
man permeability relation in the packed bed regime. 

5. Flow partitioning between inter- and extradendritic 
regions 

In equiaxed solidification, it can be assumed that the flow 
partition coefficient is isotropic, so that only a single value 
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Fig. 4---Flow partition coefficients as functions of  the extradendritic l iquid 
fraction and internal solid fraction for SJS~ = 0.1.tin 

of K~ is required. It has been shown by Wang eta/ .  [19l that 

K~ = (1 - e3(~/[3a) 2 [43] 

where 13 and/3 a are given by Eqs. [38] and [39]. Figure 4 
illustrates the effects of the extradendritic liquid fraction, 
e~, and internal solid fraction, e,~ (i.e., the ratio of the solid 
fraction to the grain fraction), on the flow partition coeffi- 
cient in an equiaxed dendritic system with S]Se = 0.1. As 
can be seen, the portion of the flow through the dendrites 
approaches zero in the free particle regime (i.e., higher e3. 
On the other hand, in the packed bed regime, the flow par- 
tition coefficient quickly increases as el decreases and 
reaches unity at et = 0, at which point all flow must be 
through the interdendritic spaces. 

6. Interfaeial mass transfer 
By considering the diffusion process in the solid and the 

moving solid/liquid interface due to phase change, it has 
been shown by Wang and Beckermannm that the solid dif- 
fusion length l,a in dendritic solidification is given by 

l,a = d~/6 [44] 

where the mean diameter of the solid phase, d~, can be 
related to the secondary dendrite arm spacing, Az, and the 
volume fraction e, (Table III). 

In the presence of convection, the diffusion length ahead 
of the dendrite envelope in equiaxed solidification can be 
expressed a s  fl6] 

de 2 + 0.865 Pe~/3 [45] 
lu 

where 

e, l v , -  VZe 
Pe~ = [46] 

Dl 

and 

4 
: + ~(1-e,)~'~ 

C~ = [47] 
2 - 3(1-~)  '/3 + 3(l-e ,)  '/3 - 2( l -e , )  2 

This correlation is based on the momentum-mass-transfer 
analogy and is derived along the same lines as the inter- 
facial drag expressions given by Eqs. [37] through [42]. 
A comparison between this correlation and Agarwal's for- 
mula, [3q which was employed previously by Ni and Beck- 
ermann, [32] indicated a discrepancy of less than 20 pct for 
all solid fractions.tlrl In addition, it should be mentioned 
that the correlation given by Eqs. [45] through [47] ne- 
glects the effect of interfacial movement. This can be jus- 
tified by the fact that in the presence of convection, the 
convection effect dominates that of interfacial movement 
in determining mass-transfer rates. Overall, the use of the 
preceding correlation should only be viewed as a first at- 
tempt, based on a review of the literature available on 
convective heat/mass transfer in multiparticle systems, t16] 
at estimating the convective mass-transfer rate for 
equiaxed dendritic crystals. Experiments are underway to 
directly measure the mass-transfer coefficient for growing 
equiaxed crystals. I331 

7. Macroscopic transport properties 
The effective macroscopic viscosities/x* and/x* repre- 

sent the rheological behavior of a multiphase mixture. They 
are dependent on the viscous properties and deformations 
of the phases, the flow field, and the distribution and ge- 
ometry of the dispersed or suspended phase. To a first ap- 
proximation, the liquid macroscopic viscosity can be taken 
to be equal to its microscopic counterpart, i.e., 

/x* = /x, [48] 

Modeling of the macroscopic viscosity for the solid 
phase must account for the packing limit, where the 
equiaxed grains impinge upon each other (i.e., when eg = 
~) and form a coherent and rigid solid structure. In this 
limit, p,~* must approach an infinite value so that the mac- 
roscopic velocity gradients of the solid phase vanish. If the 
rigid solid is fixed to a wall, the solid velocity will then be 
uniformly equal to the velocity of the wall (which may be 
zero). 

In the other extreme, where e~ --~ 0, the seminal theory 
of Einstein predicts that /z,* = 3.5 ~l.[34] In solidification 
systems, where the grain fraction may vary anywhere from 
zero to unity, a smooth transition between these two limits 
is necessary. Based on the model of Kriegel ~3sJ and as Ni 
and Beckermannt3:J did, we use the following formula for 
~*: 

/z* = /.z~ [(1 - eg/r - (i - e~)] [49] 
eg 

Note that the RHS of Eq. [49] reduces to 3.5 /z t for e, 
0 and to an infinite value for eg = ~. It should also be 
emphasized that for dendritic structures, the solid viscosity 
is not directly dependent on the solid fraction but rather on 
the grain fraction. In other words, as soon as the grain frac- 
tion reaches the packing limit (~g is about 0.637), the solid 
microstructure will become rigid, even though the solid 
fraction may be much lower than g. There has been ample 
experimental evidence to support this hypothesis. For ex- 
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ample, experimental data for different a l l o y s  [36'37] indicated 
that the packing limit could be reached at solid fractions 
between 0.1 and 0.3 in a large-grained casting, where the 
grain fraction is much higher than the solid fraction. In 
contrast, in well-grain-refined castings, packing of dendrites 
("dendrite coherency") was found to occur at much higher 
solid fractions between 0.5 and 0.65. This is because the 
grain fraction is nearly equal to the solid fraction for small 
grains. 

As a first approximation, the macroscopic thermal con- 
ductivity and mass diffusivity are taken to be equal to their 
microscopic counterparts: 

k~k = kk; D* = Dk [50] 

8. Thermodynamic relations 
Under the assumption of interfacial thermodynamic equi- 

librium, the following conditions are valid at the 
solid/interdendritic liquid interface: 

_ r - r ~  
Ce = - -  [51] 

mt 

and 

( ~ ,  

cs~ = [52] 
I. cs  

where it has been assumed that the remelting solid has a 
composition equal to the average concentration of the solid 
phase. The assumption eliminates the difficulties associated 
with determining the local composition of the solid that is 
remelting; however, establishing its validity clearly requires 
future experimental efforts. 

during primary solidification 

during remelting, 

IV. CONCLUSIONS 

A multiscale/multiphase approach to modeling dendritic 
alloy solidification has been presented. The macroscopic 
transport equations are developed separately for the solid 
phase, the interdendritic liquid, and the extradendritic liq- 
uid using the technique of volume averaging. The model 
distinguishes different microscopic length scales present 
in a dendritic structure and links the microscopic phenom- 
ena occurring on each respective length scale to the heat 
flow, solute redistribution, melt convection, and solid 
movement taking place on the macroscopic (system) scale. 
In particular, the model incorporates the grain nucleation 
and dendrite growth mechanisms in addition to dendrite 
morphology and finite-rate solute diffusion in the solid. 
The model is intended for predicting compositional and 
structural features in an alloy casting. Representative nu- 
merical calculations for 2-D equiaxed dendritic solidifi- 
cation of an A1-4 wt pct Cu alloy are presented in part II, 
and some preliminary experimental validation is provided 
in part III. 

A 
As 

A 
e 

b 

NOMENCLATURE 
interfacial surface area, m 2 
area of the solid/interdendritic liquid interface, 

m 2 

area of the dendrite envelope, m 2 
body force vector, N/m 3 

C concentration of a chemical species, wt pct 
c specific heat, J/kg K 
C, settling ratio 
Cp shape factor function 
ds mean characteristic length or diameter of the 

solid phase, m 
de mean characteristic diameter of the dendrite en- 

velope, m 
mass diffusion coefficient, m2/s 
enthalpy, J/kg 
Ivantsov function 
species diffusion flux, kg/m 2 s 
interfacial species transfer rate per unit volume 
thermal conductivity, W/m K 
species diffusion length, m 
liquidus line slope, K/wt pct 
solid/liquid interfacial drag, N/m s 
equiaxed nuclei density ( m - 3 ) ,  o r  an index in 

Eqs. [38] and [41] 
n outwardly directed unit normal vector 
Pe~ multiphase Pelcet number, et[vt - vsldJDt 
Pe, solutal Peclet number at the dendrite tip, 

V t R t / 2 D  I 
Pe~ ambient Pelcet number for dendrite tips, Iv/ - 

v~IR/D, 
q heat flux, W/m 2 
Q interfacial heat-transfer rate, W/m 3 
R t tip radius 
S interracial area concentration, A/Vo (m -r) 
Sc Schmidt number, v/D 
t time, s 
T temperature, K 
v velocity vector, m/s 
V~ volume of phase k, m 3 
Vo averaging volume, m 3 
Vt dendrite tip velocity, m/s 
w interface velocity, m/s 
Greek Symbols 

D 
h 
Iv 
J 
J 

k 
l 
mt 

M f  
n 

/3 dimensionless parameter, Eq. [38] 
7 momentum dispersion coefficient, Eq. [18] 
F interfacial phase change rate (kg/m 3 s) or 

Gibbs-Thomson coefficient (m K) 
F* macroscopic transport property 
Ah latent heat of phase change, J/kg 
e volume fraction 
esi internal solid fraction, eJ(es + ed) 
K partition coefficient, wt pct/wt pct 
~v flow partition coefficient 
A2 secondary dendrite arm spacing, m 
~b sphericity 
p density, kg/m 3 
/z viscosity, Pa s 
o'* stability constant 
z shear stress 
qb a general transfer 

a field property 
~2 solutal supersaturation, Eq. [30] 
Subscripts 
d interdendritic liquid 
e dendrite envelope 
E eutectic 
f total liquid phase (d + /) 
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g 
J 
k 
/r 
l 
/d 
m 

n 
N 
0 
s 
sd 
t 

grain 
phase j 
phase k 
pertinent to phase k on the k-j interface 
extradendritic liquid 
extradendritic-interdendritic liquid interface 
melting point of pure metals 
normal direction 
nucleation 
initial state 
solid 
solid-interdendritic liquid interface 
dendrite tip or tangential 

Superscripts 

c critical 
d due to diffusion 
j due to species gradients 
t macroscopic dispersion 
F due to interface movement 
- interfacial area-averaged 
* effective 
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