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Abstract

A combined experimental and computational study is performed to investigate the effect of
internal shrinkage porosity on the mechanical behavior of cast steel under static loading. Steel
plates containing various levels of porosity are cast in a sand mold, machined, and tensile tested
until fracture. A significant loss of ductility is observed. Radiographic imaging is used to
reconstruct the porosity field in the test specimens. The measured porosity field is then used in a
finite-element stress analysis of the tensile tests. The local elastic properties are reduced
according to the porosity fraction present and porous metal plasticity theory is used to model the
damage due to porosity. Good agreement between measured and predicted stress-strain curves is
obtained. The computational model proposed in this study allows for a detailed evaluation of the
effect of porosity, including its size, shape and location, on the mechanical performance of a
steel casting.

Introduction

Steel castings are under-utilized due to uncertainties in their performance and lack of expertise in
casting design. Discontinuities in castings, like porosity, play an important role in casting
underutilization. Porosity creates uncertainty in a design’s robustness, since there are no
methodologies for including its presence in the design. As a result designers employ overly large
safety factors to entire parts to ensure reliability. Contributing to the issue, the processes of
designing and producing castings are usually uncoupled, except for the specification of non-
destructive evaluation (NDE) requirements. Unless design engineers have test data or experience
for a part, they request NDE requirements without knowing how this relates to part performance.
By predicting porosity accurately from casting simulation and realistically modeling its effects
on the part performance, engineers can develop robust designs that are tolerant of the porosity
and reliable. Engineering approaches have been applied here to simulate the effect of porosity on
deformation, damage and fracture for a cast steel (WCB) in tensile tests.

ASTM A216 Grade WCB steel is a cast carbon steel having a combination of good ductility and
strength, having a 248 MPa (36 ksi) yield strength, 485 MPa (70 ksi) tensile strength and 22%
elongation as minimum tensile requirements. Failure of such ductile metals occurs on the
microscale by mechanisms of void nucleation, growth and coalescence. Voids can preexist as
microporosity and nucleate from imperfections like second phase particles. After nucleation,
voids grow from increasing hydrostatic stress and local plastic straining. As voids nucleate and
grow, the void volume fraction, or damage, increases. The voids begin to interact, and the void
volume fraction at which interaction between voids begins is the critical void volume fraction f.
As plastic strain continues to increase, local necking and coalescence occurs in the material
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between voids until a connected chain of voids forms and failure occurs. The void fraction at
which fracture occurs is the failure void volume fraction fe.

The effects of porosity on the structural performance of steel castings on the macroscopic scale
are not as well understood. In terms of stiffness, strength, fatigue and component performance in
the presence of porosity [2,3], it is found that microporosity does not result in a measurable loss
of stiffness, or large stress concentrations, or stress redistribution, but it greatly affects fatigue
resistance [4-5]. The presence of microporosity reduces ductility of metals because microvoids
pre-exist before the metal is stressed and the nucleation stage is bypassed. Macroporosity in
metals causes gross section loss, and locally reduces their effective stiffness [6-8]. Macroporosity
is not uniformly distributed throughout the entire cast part, and the casting material properties are
not homogenous. Stress redistribution occurs in parts due to macropores, and stress
concentrations occur near them that cause micro-cracks and failure. The mechanical behavior of
porous materials can be categorized into three groups based on porosity amount [8]: less than
10%, 10% to 70%, and materials greater than 70%. This division is promoted because the
materials at the extremes behave quite differently. The high porosity group is comprised of
foams and cellular structures. The elastic-plastic behavior of the porous materials in the 10% to
70% porosity range has a non-linear dependence on the porosity amount [2,6-8]. Materials in the
lowest range depend linearly on porosity, assuming that voids do not interact [9] and by
considering isolated pores [10], or a uniform distribution of pores [11]. Applying the ductile
failure micromechanical mechanisms described previously, one micromechanics-based model is
the porous metal plasticity model. The finite element analysis (FEA) software ABAQUS has this
model [10-13]. In the model, the volume fraction of porosity is a primary state variable, and the
inelastic flow is modeled as voids grow and coalesce until failure occurs. Porous metal plasticity
model is used here to predict the elastic-plastic behavior of cast steel with porosity.

Here castings with porosity were produced, made into specimens and radiographed. The porosity
was quantitatively determined from the radiographs. The castings underwent tensile testing.
Using porosity data from radiographs, finite-element models of the test specimens with porosity
were created and the tensile testing simulated using elastic-plastic material models. Results of the
simulated tensile behavior were compared with the measured tensile behavior.

Experimental Procedures

The effect of porosity on the elastic properties of steel was determined by testing cylindrical test
specimens having 5 mm diameter gage section, and simulating the measurements. For the elastic
property work castings were designed to position porosity in the specimen gage section [2].
Elastic properties were measured from stable cycle hysteresis loops during fatigue testing. For
the elastic-plastic tensile property studies, WCB steel specimens were produced from 2.5 mm
thick x 12.7 cm wide vertically cast plates of two lengths (38.1 cm and 45.7 cm). Five plates
were produced at each length. The castings were normalized and tempered, and machined into
1.91 cm (0.75”) thick tensile test coupons with a gage section width of 8.64 cm (3.4”). Other
dimensions were determined by the ASTM E8 tensile test standard. Radiographs of the
cylindrical/elastic property specimens were taken from orthogonal directions to reconstruct their
porosity distributions in simulations [2]. For the flat plate tensile plates, radiographs as shown in
Figure 1(a) were taken in which stepped gage blocks were placed. A calibration curve for
radiographic gray level versus plate thickness was determined. Filtering and background
corrections were performed and only indications identified as seen Figure 1(b) were analyzed for
porosity. The thickness of the steel shown in Figure 1(c) was determined from the gray level
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Figure 1 (a) Original radiograph image, (b) image of indications detected by analysis, (c)
thickness measured from analysis and (d) section porosity measured in a test plate.

(d)

calibration curve, and division by the nominal (or “sound”) machined plate thickness gave the
porosity fraction through the plate (Figure 1(d)). Tensile testing was performed at the University
of lowa for the sound material, and for material with porosity at SSAB North American
Division, Muscatine, IA. From the fracture surfaces after tensile testing, the porosity was found
to lie about the mid-thickness of the plates. A finite element mesh for the tensile test plates was
developed with mesh refinement at the plate mid-thickness shown in Figure 2(a). Mesh
dimensions at the mid-thickness were defined so that two elements on each side about the mid-
thickness of the plate were in a region 2.2 mm wide. This is a good representative value for the
thickness of the porosity layer. The measured porosity (Figure 1(d)) is assumed to lie in this
centerline region as seen in Figure 2(b). The porosity is scaled up accordingly and, in
transferring measurements from the radiograph to the FEA nodes, the average porosity about a
node position in the radiograph is determined, conserving porosity.

Modeling Procedures Used

The ABAQUIS elastic material model is used below the yield stress with properties depending on
porosity locally as a function of porosity fraction f at the FEA nodes [2]. The porosity fraction
is f =V . /V, Where Vpore is the volume of porosity in the sound metal matrix and Vo is the total

volume. The relationship between the elastic modulus and porosity fraction used node-by-node
in the FEA analysis is E(f) = E, (1- f /0.5)*° where E; = 198 GPa for WCB steel. The Poisson
ratiov was dependent on f using «f) =vg + (f/f,)(v, —v,) with v, = 0.14, f_ =0.472 and
the Possion ratio for the sound metal was taken as vg = 0.3.

The porous metal plasticity material model in ABAQUS is used to simulate ductile plasticity and
failure. Due to space limitations, only a brief description can be given here. A complete
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Figure 2 (a) Finite element mesh used in simulations of tensile test plates (b) example
mapping the porosity faction to the mid-thickness plane of the FEA mesh.

presentation of the model is found in Gurson et al. [10-12], the software manual [13] and the
numerical integration procedure used was developed by Aravas [14]. The model requires the user
to define the hardening behavior of the metal matrix using true stress-strain data, which was
determined from tensile tests for sound WCB steel without porosity. The yield function used in

the model is given by
2
¢_(q] +2q1fcosh[—ngpj(l+q3f2)—0 1)
o

O_Y y
where f is the porosity fraction, q is the effective Von Mises Stress, p is the hydrostatic stress,
o, is the yield stress of the fully sound material as a function of plastic strain, and qs, g and g
are material parameters. Note from Eq. (1) that when f = 0 (for porosity free material), the yield

condition becomes q =, or the Von Mises yield condition. The hydrostatic stress (or pressure)
p and the Von Mises Stress gq are the two stress invariants p=—(1/3)c:1and

q=+/(3/2)S : S where ¢ is the Cauchy stress tensor and S is the deviatoric stress tensor S = pl +

o. The material parameters g1, g2 and gz in Eq. (1) are included to model the interactions between
voids [11]. Values used here are q; = 1.5, g,= 1.0 and gs= 2.25, where g3 = g;2, as recommended
for ductile metals [13]. The flow rule for the plastic strain rate & "

¢" :2@:2[—16—“’“&@3] ®
o6 30p 2q aq

where A is a non-negative scalar constant of proportionality, a measure of the plastic flow rate.
The plastic strain in Eq. (2) causes damage, or void growth and nucleation, as it increases. The
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equation  describing the growth rate of wvoids by growth and nucleation
is f =(@1— )&l + Az” where the first term on the right hand side denotes growth of existing
voids from current void fraction f and &) , the total plastic strain rate (trace of the strain rate
tensor), and the second term denotes the growth rate due to nucleation. In the nucleation term the
equivalent plastic  strain  rate &” is multiplied by a scaling coefficient

ol 2
A= fy exp{—l(‘gm _SN] }and is based on the assumption that the nucleation function
Sy V27 20 s,
(A/fy) follows a normal distribution depending on the plastic strain range about a mean value ey,
a standard deviation sy and a volume fraction of nucleated voids fy. Values recommended for
metals are used here [13]: ey = 0.3, sy = 0.1 and fy = 0.04. A coalescence model and failure
criteria model was used here [12,13], in which the void fraction f in Eq. (1) is replaced by an
effective void volume fraction due to coalescence f'. In the equation, f* takes on the actual void
volume fraction f when it is less than the critical value f;, where coalescence begins. When > 1,
the effective void fraction increases more rapidly than f due to the coalescence with

*

f:fﬁ%(f—fc). In ABAQUS f. is calculated from the model material

F c
parameters f, = (q, ++/0; —qa)/q3 . The material has no load carrying capacity when f > fg, where

fe is the void fraction at failure. In the present work f; = 0.05 and fg = 0.15. The purpose of the
model description here is to give the most important model features and the parameters used.
Details on the solution scheme used in ABAQUS is given in [13,14].

Results

Simulation results using the porosity dependent elastic properties are given in Figure 3. In Figure
3(a) the non-uniform stress-strain distribution for a test specimen is shown. Because of the non-
uniformity, the predicted strain was averaged about the circumference of the gage section at the
extensometer location, and its 95% confidence interval was determined. Simulations for the 28
specimens are compared with measurements in Figure 3(b) showing good agreement for
predicted versus measured strain. Note that where there is disagreement, there is also large
uncertainty due to the non-uniformity in the measured strain.

Elastic-plastic tensile curves of the plate specimens with porosity were simulated using the
porosity fields mapped to the FEA nodes at the plates’ mid-thickness. The initial porosity
fraction for the sound WCB steel was set to 0.2%. This and the porous metal plasticity model
parameters (q; = 1.5, go= 1.0, gs= 2.25, ey = 0.3, sy = 0.1, fy = 0.04, f. = 0.05 and fz = 0.15) were
determined by trial and error simulations, achieving good agreement between the measured and
predicted sound tensile curves shown in Figure 4. The sound material’s maximum elongation at
failure, ultimate tensile (UT) stress, and yield stress are predicted within 2%. Plates with porosity
are simulated using the model parameters, and measured nodal porosity values or 0.2% porosity
if f=0 at a node. In Figure 4, measured and predicted tensile curves for plate-1D E4 with porosity
are shown. The reduction in ductility due to the porosity is well predicted. The yield stress for E4
is predicted to follow more closely the sound steel curve than the measured E4 curve. The UT
stress is well-predicted for plate E4. Figure 5(a) gives the simulated and measured tensile curves
for a second plate with porosity and the sound curve is provided for comparison. Here also the
reduction in ductility is well-predicted but not the yield stress. Also, the UT stress is under-
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Figure 3 (a) Predicted strain on surface of test specimen, (b) measured and predicted strain
from ABAQUS FEA simulations using the f dependent properties for E and v.

predicted. In Figure 5(b) a photo of plate after testing compares well with the predicted
appearance of the final failure in Figure 5(c). In Figures 6(a) to 6(c) the predicted and measured
tensile properties are given. The sound data are circled. In Figure 6(a) the variation in yield stress
for the plates with porosity was not predicted, and no prediction was greater than the sound yield.
The reason for this is not presently known. The ability to predict ultimate stress and elongation is
more encouraging. The elongation appears to have only two outliers where the property is under-
predicted. Examining these cases in more detail, especially their porosity mapping results, will
lead to refinement of the analysis and improved agreement.
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Figure 4 Simulated and measured stress-strain curves for Plate E4 with porosity
and sound WCB steel.
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Figure 5 Results for plate-ID D2 (a) Predicted and measured tensile curve, (b) photo of plate
after testing, and (c) predicted final failure from Mises stress contour.

Conclusions

Elastic-plastic behavior of cast steel in the presence of porosity has been predicted using
radiographs. The porous metal plasticity material model used here requires nine parameters that
were determined for WCB steel. Using these parameters and porosity fields measured from
radiographs, the entire tensile test curves for castings with centerline porosity were simulated.
Predicted and measured tensile curves and properties were compared. In most cases the
comparisons for ultimate stress and elongation are good. Reduction in ductility in the castings is
perhaps the most noticeable effect of porosity and it is well-predicted. Disagreement remains
between yield stress prediction and measurement. The clearest factors contributing to the
disagreement are assumptions and limitations in the model and in determining the porosity
distribution in the plate specimen thickness. It is anticipated that this work can be improved by
investigating the porosity distribution through the plate thickness further. The castings will be
radiographed in their failed condition, to observe the internal damage, comparing the before- and
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Figure 6 Predicted and measured tensile properties for sound WCB steel (circled) and for
plates with porosity (a) yield stress, (b) ultimate tensile stress, and (c) elongation at fracture.
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after-testing radiographs. Selected sections of the plates will be machined to visualize the
through thickness porosity distribution. Using more realistic porosity distributions in the
simulations, the accuracy of the model to predict the elastic-plastic response of steel in the
presence of porosity can be determined with more certainty.
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