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A model for the solidification of multicomponent steels is presented and used to simulate the solidification
of an austenitic steel. Assuming stationary solid phases, conservation of muitiple species is considered
simultaneously with the solution of the energy and Navier-Stokes equations, with full coupling of the
temperature and concentrations through thermodynamic equilibrium requirements. By including finite-rate
microscopic solid solute diffusion in the model, the solidus temperature of multicomponent austenitic steels
can be accurately calculated. The extension of the model to incorporate a microscopic model of the peritectic
transformation is described. A simulation of the austenitic solidification of a steel containing ten elements
in a rectangular cavity cooled from the side shows the formation of macrosegregation, channel segregates,
and islands of mush surrounded by the bulk melt. The global severity of macrosegregation of an element
is found to be linearly dependent on its partition coefficient, although such scaling is not possible locally.
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1. Introduction

In recent years, numerical simulations have shown the
ability of macroscopic solidification models to predict
the effects of convection in the mushy zone and bulk
liquid on the development of an irregular liquidus front,
flow channels in the mushy zone, local remelting of solid,
and complicated macrosegregation and eutectic fraction
distributions for the solidification of a variety of binary
alloys.!~® Although this focus on binary systems has
led to a greater understanding of the fundamental
phenomena involved in alloy solidification, the solidifi-
cation of commercially and technologically important
multicomponent alloys (e.g., steels and nickel-base
superalloys, respectively) involves an intricate coupling
between buoyancy forces imparted by each element (as
characterized by their differing solutal expansion
coefficients) and microsegregation of each element (as
characterized by their differing partition coefficients and
solid mass diffusivities).”

Previous efforts at modeling macrosegregation in
multicomponent steel alloys have suffered from the
limitations of neglecting bulk liquid motion*®*" or
incomplete coupling of energy and species conservation
in the mushy zone.!?”!% All of these models also
assumed that microscopic diffusion of each element in
the solid phase was either absent (Scheil type behavior)
or complete (lever rule type behavior).

In a recent paper, the modeling of the formation
of macrosegregation in steel due to multicomponent
thermosolutal convection was explored in detail.®) In
the present study, that work is extended to include a

665

microscopic model of the peritectic transformation. Re-
sults from a representative simulation of the solidifica-
tion of a ten element austenitic steel in a rectangular
cavity cooled from the side are also presented. Simula-
tion results for the peritectic solidification of a multi-
component steel will be described in a separate study.

2. Model Description

The model is an extension of a model for binary alloy
solidification® %7 and can be obtained directly from
the volume-averaged two-phase model of alloy solidifica-
tion presented by Ni and Beckermann.'® Since a detailed
discussion of the macroscopic conservation equations is
available elsewhere,® the focus here is on modeling of
solid microsegregation and the peritectic transformation.

2.1.

The macroscopic conservation equations in the model
are summarized in Table 1. In deriving the equations, it
has been assumed that there are at most three phases
and three phase interfaces, i.e., ferrite (0), austenite (y)
and liquid (¢) phases as well as §/¢, y/¢ and y/§ interfaces.
Use has also been made of the fact that the interfacial
areas (S) and phase change rates (I') at the k/j (or j/k)
interface are related through S;;=S;, and I';;= —I's. In
all of the equations, (¥, >* indicates the intrinsic volume
average of a quantity ¥ of phase k, ¥,; indicates an
average of a quantity ¥ of phase k over the k/; interfacial
area in the averaging volume, and a superscript m
indicates a value for solute m. The reader is referred to
the Nomenclature for a complete description of all the
symbols.

Macroscopic Conservation Equations
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A number of assumptions have been made to arrive
at the conservation equations in Table 1, including:
stationary and rigid solid phases (i.e., no floating or
settling of equiaxed crystals); thermal equilibrium and a
solutally well mixed liquid within an averaging volume;
negligible cross-diffusional effects between alloying ele-
ments; and the dissipative interfacial stress for flow
through the mushy zone is modeled using an anisotropic
permeability in analogy with Darcy’s law. Since the
cooling rates considered here are low, thermodynamic
equilibrium is assumed to exist at the solid/Z and &/y
interfaces so that the interfacial temperature and con-
centrations can be related through the simple phase
equilibrium expressions shown in Table 1 (where the
effects of each element on the liquidus (7,) and
y/6-interface (T,;) temperatures are additive). Further-
more, in this study the changes in the liquidus and
8/y-interface temperatures with concentration (mj; and

Table 1.
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m}3) are assumed to be constant (but unequal) for each
element, and the equilibrium partition coefficients (x7;
and «J;) for each element are assumed to be constant.
This simple approach to phase equilibrium cannot
account for the formation of secondary phases or com-
pounds due to strong interactions between the ele-
ments, and the authors anticipate incorporating more
precise equilibrium calculations into the model in the
future.

Since the focus of the following sections is on solid
microsegregation, it is instructive to examine in detail
the o-solid species conservation equation in Table 1
(with a similar analysis applicable to the y-solid equa-
tion). This equation indicates that the rate of change of
the volume average J-solid concentration (left side) is
balanced by the interfacial transfer of species at the /¢
(first term on right) and J/y (second term on right)
interfaces. The interfacial species transfer rate at the §/j

Summary of the governing equations for multicomponent peritectic solidification.
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Fig. 1.

One-dimensional, plate-like model of a
dendrite arm, illustration of the solid
concentration profiles and illustration of
the species diffusion lengths for: (a)
primary (6 or y) solidification and (b)

42 M2 x

interface consists of two parts!®): the first due to phase
change and the second due to species diffusion in the
solid at the interface. The interfacial species transfer rate
due to diffusion is proportional to its driving force (the
difference between the §/; interfacial average and J-solid
volume average concentrations) as well as the §/j inter-
facial area concentration, and inversely proportional
to a solute diffusion length (/) which characterizes
the resistance to diffusion. Mathematically, a diffusion
length is defined as

acr
on

kj

lfi’}=[G€'}—<Ci">"]/

where the denominator represents the mean concentra-
tion gradient in phase k normal to the k/j interface.!®
The physical meaning of the various diffusion lengths
that appear in Table 1 is illustrated in Fig. 1.

2.2. Solid Microsegregation

In modeling the solidification of steel there are three
situations one must be concerned with: the formation of
primary J-solid above the peritectic temperature, the
formation of primary y-solid for alloys whose compo-
sition is greater than the peritectic, and peritectic
solidification. Figure 1(a) illustrates the conditions on
a microscopic scale for the first two cases (i.e., 5- or
y-primary solidification) while Fig. 1(b) illustrates the
microscopic conditions during peritectic solidification.
During the peritectic transformation, y-solid is assumed
to form simultaneously from both the liquid and J-solid,
with the §/y transformation limited by solute diffusion
through the y-solid layer to the d/y interface.?? This
model of peritectic solidification has shown good agree-
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% peritectic solidification.
2

ment between microsegregation predictions and mea-
surements.20 723

The model used for the diffusion lengths was proposed
by Wang and Beckermann!® based on the work of
Ohnaka®* using the one-dimensional plate-like dendrite
geometry shown in Fig. 1. A parabolic concentration
distribution is assumed in the solid phases (both é- and
y-solid) so that

Cl'=a+bx+cx?

The determination of the coefficients in Eq. (2) is dis-
cussed in the following sections.

2.2.1. Diffusion Lengths for Primary Solidification

As shown in Fig. 1(a), for primary solidification only
one of the solid phases (either - or y-solid) is present,
and the boundary conditions

dcm

dx

~m
st

=0 atx=0 and CI= at x=d/2

§s=06 or vy
can be applied to Eq. (2) along with the definition of the
volume average concentration

Gy =—

2 ds/2
il

s

Cldx s=d or y

Using Egs. (2) through (4) the concentration profile in
the solid can be determined which, in combination with
Eq. (1), yields'®

m=dJ6
Based on the geometry in Fig. 1(a), the length d, as well

s=0 or v
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as the interfacial area concentration S, can, in turn, be
related to the solid volume fraction and the secondary
dendrite arm spacing as*®

ds=832.2 al’ld Ss[=2/ﬂ,2

Note that substituting Eq. (6) into Eq. (5) yields a
diffusion length that is equal for all species. However,
since the rate of diffusion of an element in the solid on
a microscopic scale also depends on its solid mass
diffusivity, microsegregation for each element will still
be different.

Using this approach, the solidus temperature for
multicomponent alloys can be reproduced fairly ac-
curately. Wang and Beckermann?® have shown that,

1750

1725

g

Composition (w1.%):
0.55 C, 0.27 Si, 0.50 Mn, 0.019 P, 0.012 S, “.‘ N
0.99 Cr, 3.0 Ni, 0.31 Mo; 0.06 Cu, 0.08 V L\

Temperature (K)
a
&

P lever rule ".‘.
— present model '

---------- Scheil model (C lever rule)

for no macroscopic transport of solute and a parabolic
solidification rate, the solid and liquid species conserva-
tion equations in Table 1, together with Eqgs. (4) and (6)
and the thermodynamic equilibrium expressions from
Table 1, provide an analytical relationship between the
volume average liquid concentration of solute m, the
solid fraction, and the partition coefficient and diffusion
Fourier number («™=4D"t;/A; where ¢, is the local
solidification time) for solute m. The T-¢, curve shown
in Fig. 2 was generated using this analytical solution
together with the liquidus temperature relation in Table
1, the properties in Table 2, 1,=25um and ¢,=230s.
(Note that the alloy in Fig. 2 is not the same as the
one considered in the solidification simulations in Sec.
3.) The measured liquidus and solidus for the alloy, as
well as T-¢, curves where microsegregation is describ-
ed by the lever rule or Scheil model, are also shown in
Fig. 2. In addition, Table 3 shows values of 1, that give
solidus temperatures within the error associated with
measuring the solidus for three austenitic steels, and
they are reasonable for alloys of the given compositions.

During primary solidification, there is the possibility
of local remelting of some of the solid that has formed.
To avoid the difficulties associated with determining the
local composition of the solid that is melting,>®27) it is
assumed that the average solid concentration of element
m remains constant during remelting, i.e.,

i
1625 - o measured liquidus®?) :
o measured solidus?2) i {CM™y=constant during remelting s=3J or y ... @)
1
1600 | | I I I3 1 1 | 1 1 2 2 2 . . . . . . g0
2.2 ecies Diffusion Lengths f ritectic Solidifi-
00 01 02 03 04 05 06 07 08 09 10 Species on Lengths for Peritectic Solid

&

Fig. 2. Comparison of the evolution of the solid fraction with
temperature for different solid microsegregation
models. The lever rule was used to model carbon
microsegregation for all cases, and the present model
curve is for 4,=25um, {,=230sec and a parabolic
solidification rate. Also shown are measured solidus
and liquidus temperatures.??’

Table 2. Initial concentrations, species dependent thermo-
physical properties'®-213%:31) and phase diagram
parameters®® (T,=1809K).

cation

The determination of the diffusion lengths for peritec-
tic solidification follows that for primary solidification
in Sec. 2.2.1. The microscopic geometry and dimensions
are given in Fig. 1(b), and the parabolic concentration
distribution given by Eq. (2) is assumed in both the J-
and y-solids. The boundary conditions used to determine
the coefficients for the solute distribution in the §-solid
are as given in Eq. (3) with C% and d; replaced by Cj,
and d;, respectively. Following Egs. (1) through (5), the
diffusion length in the d-solid at the d/y interface is then

EL c. ot o . po [B=ds[6 oo (8)
o 0 8 034 10 10-2 56x10-10 Similarly, the length d; and the interfacial area con-
Si 0115 171 0:59 1:19>< 10-2 5:6>< 10-13 centration S;, are readily shown to be

Mn 0.3 —332 075 1.92x 1073 1.2x 10712 — . —

S 00l 304 00p4  123x10-2 33x10-11 ds=¢eshy and Sz =2/A; oo, )
P 0.008 —27.1 0.9 L15x 10:2 24 x 10:12 As for primary solidification, substituting Eq. (9) into
8‘ g? —é‘gl 832 'g;‘g:ig_a ‘l";zig_lz Eq. (8) gives a diffusion length that is equal for all
Ni 0.5  —16 094 —685x107* 1.9x107'3 species. e .

Mo 0.04 2325 0.56 —1.92x10"3 1.8x 1013 Lengths for diffusion in the y-solid at the y/é and y//

interfaces can be obtained using Eq. (2) and the boundary

Table 3. Dendrite arm spacings that reproduce measured solidus temperatures.

Composition Measured solidus ly Aa
C Si Mn P S Cr Ni Mo Cu \Y (+15K)*? (s) (um)
0.55 0.27 0.50 0.019 0.012 0.99 3.0 0.31 0.06 0.08 1663 230 16-30
0.69 0.23 0.72 0.022 0.024 0.02 0.02 0.01 0.03 — 1628 240 <26
1.01 0.25 0.46 0.012 0.009 0.02 0.03 0.02 0.03 — 1593 270 <27
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conditions (note that C# CJ)
Cn=Cn at x=d,/2 and C'=Cpy at x=d,/2 ...(10)

Y
along with the definition of the volume average y-solid
concentration given in Eq. (4). Then, the diffusion lengths
in the y-solid can be shown to be

12 4  (Cn—-Cm) 17!
m = ~ ~ Lo S — (1
(d,—d;) (d,—d;) (CP—<CTD7)
1;;:{ 24 =Gy }_1 ........ (12)
(d,—dy) (d,—d;) (C3—<CTDy)

For the geometry in Fig. 1(b), the length d, and the
interfacial area concentrations S,, are

d,=(es+6)0; and S,=2[4; wrreerieee (13)

Note that unlike the diffusion length in the dé-solid, I
and /7, are different for different species.

In contrast with primary solidification, it is not possible
to obtain a simple analytical relationship between the
liquid composition and the solid factions during peritectic
solidification with no macroscopic solute transport, and
a numerical time integration scheme must be employed.
Given a prescribed cooling rate and using an implicit
numerical scheme, for example, the y/¢ phase change rate
can be determined by substituting the discretized liquid
species conservation equation for each element for the
liquid concentrations in the expression for the liquidus
temperature, and finding the root (I',,) of the resulting
non-linear equation. Similarly, the y/é phase change rate
(I',s) can be determined by combining the expression for
the y/é-interface temperature with the y/é-interfacial
species balance and the discretized solid (both é- and y-)
species conservation equations. (Using this procedure, it
is necessary to iterate on the concentrations and phase
change rates within each time step). Comparison of per-
itectic microsegregation calculations using the diffusion
length model described here with previous calculations
and experimental measurements will be described in a
future study.

2.3. Numerical Procedure

For the simulations discussed in Chap. 3, an implicit,
control-volume based finite difference scheme has been
used to discretize the conservation equations, and a
power law scheme used to evaluate the finite difference
coefficients. The velocity-pressure coupling in the mo-
mentum equations was handled using the SIMPLER
algorithm.?® The method used to couple the energy and
species conservation equations in the mushy zone to
calculate the solid fractions is described by Schneider
and Beckermann.” Computations were performed on a
42 x 82 grid with a time step of 0.25s. For a ten element
multicomponent simulation, 1sec of simulation time
requires approximately 1150sec of cpu time on an HP
715/50 workstation.

3. Results and Discussion

In order to illustrate the use of the model to predict
the formation of macrosegregation, the solidification of
a ten element austenitic steel alloy, with initial com-

Table 4. Thermophysical properties of steel.

Densities®?
p,=p,=7300kg/m?
Specific heats3+:3%)
8<h, /T =650J/kg/K
3<h,> 10T =800 /kg/K
Liquid viscosity®®
u,=6.0x10"*kg/m/s
Latent heat!®

Thermal expansion'?
Br=20x10"*K"!
Thermal conductivities3439
k=30 W/m/K
k, =27 W/m/K
Liquid mass diffusivities®®
DIFr=2x10""m?/s
Dendrite arm spacings

eyt —<hy ' =270 x 10* I kg Ay =350 um
Ap=25um
Permeability. parallel to primary dendrite arms®
a - _sy A€l
[4.53x 1074 +4.02% 107 %(e,+0.1)~5] (T«—)
—g,
K=
< for ¢,<0.7
0.0742542[ —In(1 —¢g,) — 1.487 4+ 2(1 —¢,) —~0.5(1 ~¢,)?]
for ¢,>0.7
Permeability perpendicular to primary dendrite arms®
A 1.09 2,3
[l.73x 10‘3<~1—> e for &,<0.7
_ /12 (1 —81)0'749
™1 0.03979A2[ —In(l —¢&,) — 1.476 +2(1 —&,)
—L774(1—£,)* +4.076(1—€)*]  for ¢,>0.7

position as given in Table 2, was simulated. Note that
the alloy composition is such that only y-solid will form,
so that there is no peritectic transformation. The domain
used for the simulations was a two-dimensional rec-
tangular cavity of 0.2m height and 0.1 m width, with
insulated top, bottom and right walls, that was cooled
at the left wall via an overall heat transfer coefficient of
150 W/m?/K and an ambient temperature of 293 K. The
initial condition was a quiescent melt at a uniform
temperature of 1813K and uniform composition.
Thermophysical properties for steel (as well as relations
for the mushy zone permeability) are summarized in
Tables 2 and 4. Since the permeabilities decrease 'with
decreasing liquid fraction, the velocities in the mushy
zone are naturally dampened during solidification. Note,
also, that flow due to solidification shrinkage is not
included (i.e., p,=p,).

The results of the simulation are summarized in Figs.
3 through 6. The shaded macrosegregation plots used in
the discussion of the results are of the normalized mixture
concentration, i.e., Cm./Cl=(gp,{C;> +6,0,{Cy>")]
(esps+&,p,)/Cln with maximum and minimum values
given at the top of the figures, and a scale provided.

3.1. Intermediate Stages of Solidification

Figure 3(a) shows that after 750 sec of cooling a por-
tion of the casting next to the cooled wall has completely
solidified, and the mushy zone extends across about
two-thirds of the casting. The velocity vectors show the
flow in the bulk melt is generally counterclockwise. Flow
through the mushy zone is mostly downward with some
upflow near the casting bottom, where a channel is
forming (indicated by the dashed lines).

Due to different solubilities of the elements in the solid
and liquid, the formation of solid is accompanied by an
enrichment of the interdendritic liquid with solute. The
flow through the mushy zone, as well as the bulk melt,
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redistributes this enriched liquid, as illustrate for carbon
in Fig. 3(b). Pooling of solute rich liquid at the casting
bottom is visible, and the solid fraction contours in Fig.
3(a) shows that this has delayed the formation of solid
in that region. Some of this enriched liquid has also been
carried upwards through the channel at the casting
bottom and into the bulk liquid. Macrosegregation of
the other elements is similar to that of carbon, with the
severity of segregation dependent on the partition coeffi-
cient of the element (e.g., most severe segregation for
sulfur, which has the smallest partition coefficient).
One consequence of the differing extent of segregation
of the elements is the formation of small islands of mush
along the right wall as shown in Fig. 3(a). The complex
dependence of the liquidus temperature on the liquid

1.0 x 102 my/s Carbon

0694 <C_. /C. <1482

mix’ ~in

(b)

Fig. 3. Simulation results at 750 sec (a) velocity field and solid
fraction contours and (b) normalized mixture con-
centration of carbon.

Nickel
0971 <C,,/C,, <1045

Silicon
L JC. <1341

0.795<C

0.90 094

T 098

composition means that even though a region of the melt
is highly enriched in some elements, a smaller degree of
enrichment of other elements in that region elevates the
liquidus temperature and leads to the formation of the
islands. While they are porous, the islands offer resistance
to the flow which affects the velocity field, as indicated
in Fig. 3(a) by the strong flow between the two islands
at the casting bottom. In reality, one would expect the
islands to be made up of equiaxed crystals that would
be free to move (i.e., settle or float) in the melt, something
the present model does not account for.

Before leaving Fig. 3, it is interesting to note that the
flow through the mushy zone is downwards (i.e., in the
direction of thermal buoyancy driven flow) even though
the enrichment of the liquid in the mushy zone with solute
serves to decrease the density of the liquid (i.e., f& in
Table 2 is positive for most of the elements). This is
explained by the fact that, for the alloy under con-
sideration, carbon dominates the total buoyancy force
in the mushy zone, with the effects of thermal buoyancy
outweighing those due to solutal buoyancy.®

3.2. Final Macrosegregation Patterns

After 2250sec, solidification of the casting is com-
pleted. The final macrosegregation patterns for nickel,
silicon, carbon and sulfur are shown in Fig. 4. Due to
the continuous drawing of solute rich liquid downward
and out of the mushy zone, the solid near the left and
top walls of the casting is solute poor, while the bottom
and right is solute rich. Segregated channels are visible,
with the compositional differences between the channels
and surrounding solid being especially large for sulfur,
which has a small partition coefficient. Overall, the
macrosegregation patterns for the elements are similar,
with the severity of segregation inversely proportional
to the partition coefficient of the element (i.e., more severe
segregation for smaller partition coefficients).

Sulfur
r’Cin <3.026

Carbon
0694 <C_ . /C, <1532 0400<C

mix mix

C . /C

mix’ in

1.10

Fig. 4. Final simulated macrosegregation patterns: (a) nickel, (b) silicon, (c) carbon, and (d) sulfur.
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Fig. 5. Global extent of macrosegregation of the elements as

a function of partition coefficient.

3.3. Scaling of Macrosegregation

To further explore the relative segregation of the
elements, Fig. 5 provides a comparison of the global
extent of macrosegregation of each of the elements. The

plotted values are of
2 1/2
1:| dV}

b IS
S, fms = L —
Vcasling Cl’rr:
V casting

at the end of solidification, which is a measure of the net
macrosegregation of an element throughout the casting.
The curve fit in Fig. 5 shows that the severity of mac-
rosegregation is approximately linearly dependent on
the partition coefficient of the element.

In light of the results in Fig. 5, the remaining question
is whether the local element concentrations can also be
scaled with their partition coefficients. Figure 6 indicates
that the absolute value of the local segregation of sulfur,
normalized by S5, along the horizontal centerline of
the casting is different by up to a factor of 2 from that
of manganese and carbon, especially along the right half
of the centerline. This is most likely due to the fact
that the partition coefficient of sulfur is very small (an
order of magnitude smaller than that for carbon and
manganese). The discrepancy between the profiles in Fig.
6 indicates that although the global extent of segregation
of an element can be scaled with its partition coefficient,
local scaling of the concentrations is not possible for
elements with widely varying partition coefficients.

4. Conclusions

A method for incorporating finite-rate solid solute
diffusion and a microscopic model of the peritectic
transformation into a macroscopic model for the so-
lidification of multicomponent steel alloys has been de-
scribed. By considering finite-rate solid microsegre-
gation, the solidus temperatures of multicomponent
austenitic steels were shown to be accurately calculated.
Comparison of microsegregation calculations for peritec-
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Fig. 6. Normalized segregation along the horizontal centerline
(y=0.10m) of the casting.

tic solidification with previous calculations and measure-
ments will be reported in the near future. A representative
simulation of the solidification of a ten element austenitic
steel in a rectangular cavity cooled from the side showed
the formation of macrosegregation, channel segregates,
and “islands” of mush surrounded by the bulk melt. The
global extent of macrosegregation of an element was
found to be linearly dependent on its partition coefficient,
but local scaling of the concentrations was not possible
for large differences in the partition coefficients of the
elements. Macroscopic simulations of the peritectic
solidification of multicomponent steels will also be
reported in the near future. Other work planned in the
development of the model includes the incorporation
of more precise thermodynamic equilibrium calcula-
tions and comparison of model predictions with experi-
ments.
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Nomenclature

concentration (wt%)

mean characteristic length of solid phase (m)
mass diffusivity (m?/s)

acceleration of gravity (m/s?)

enthalpy (J/kg)

thermal conductivity (W/m/K)

second-order permeability tensor (m?)
diffusion length scale (m)

;o change in j/k interfacial temperature with con-
centration (K/wt%)

p: pressure (N/m?)
S: interfacial area concentration (m™?)
S.me: I'ms value of net macrosegregation
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t: time (s)
;1 local solidification time (s)
T: temperature (K)
T,: pure iron melting temperature (K)

T,: peritectic temperature (K)

v: velocity vector (m/s)
V: volume (m?)

Greek Symbols

o: diffusion Fourier number
Bc:  solutal expansion coefficient (wt%)™1)
Br:  thermal expansion coefficient (K1)
& volume fraction of phase k
I': phase change rate (kg/m?/s)
k: partition coeflicient (wt% /wt%)
A: dendrite arm spacing (m)
1 kinematic viscosity (kg/m/s)
p: density (kg/m3)
¥,: a quantity of a phase k
Subscripts
in: initial
Jj: phasej
k: phase k
kj: k/j interface
¢: liquid
mix: mixture
s: solid
o: ferrite
y: austenite
1: primary
2: secondary
Superscripts
C: carbon
m: species m

1)
2)
3)

4
5

6)

t: transpose of a tensor
interfacial average
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