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The specific area of the solid-liquid interface of an assembly of dendrites is an important integral
measure of the morphology of the microstructure forming during alloy solidification. It represents the
inverse of a characteristic length scale and is needed for the prediction of solidification defects and
material properties. In the present study, the evolution of the interfacial area of dendrites is analysed
using 3D phase-field simulations. A general evolution equation is developed for the specific interface
area as a function of time and solid volume fraction that accounts for the effects of growth, curvature-
driven coarsening and interface coalescence. The relation is validated using data from previously per-
formed synchrotron X-ray tomography and isothermal coarsening experiments. It is found to be valid for
arbitrary and even varying cooling rates and for a wide range of binary alloys. The rate constant in the
evolution equation is successfully related to alloy properties.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Dendrites are the primary microstructure in virtually all metal
alloys solidified from the melt. Their morphology is critical to the
formation of solidification defects, such as porosity, cracks and
macrosegregation. Dendrites also control the distribution of alloy-
ing elements on a microscopic scale and thereby the amount and
spatial arrangement of secondary phases, which in turn strongly
affect the properties of solidified materials. Understanding the
evolution of dendrites during alloy solidification is thus of both
fundamental and technological interest [1]. The most common
measure for characterizing solidification microstructures and
correlating material properties is the secondary dendrite arm
spacing. Clearly, this spacing is an incomplete description of the
complex shape of dendrites. As described in our earlier work on this
topic [2], the specific area of the solid-liquid interface is an integral
measure that characterizes the overall morphology in a more
general sense [3,4]. The specific interface area Ss is defined as the
area of the solid-liquid interface A per volume of the enclosed solid
phase Vs,
. Beckermann).

lsevier Ltd. All rights reserved.
Ss ¼ A=Vs (1)

The inverse of the specific interface area can be considered a
characteristic length scale of the microstructure. A similar integral
measure is the interfacial area density or concentration SV . It is
defined as the interface area A divided by the sample volume V
containing both solid and liquid phases,

SV ¼ A=V ¼ gsSs (2)

where gs ¼ Vs=V is the solid volume fraction. The interfacial area
density is a key ingredient in volume-averaged (macroscopic)
models of alloy solidification [5]. It is needed, for example, in the
modeling of microsegregation and of melt flow through the semi-
solid mush, the permeability of which is directly related to SV via

the Kozeny-Carman relation P � ð1� gsÞ3=S2V [6].
Under isothermal conditions, the interface area decreases

continually due to surface energy driven coarsening, even though
the amount of solid does not change. This temporal variation can be
described by a classical coarsening law of the form [3]

S�1
s ¼

�
S�n
s0 þ Kt

�1=n
(3)

where Ss0, n, K , and t are specific interface area at t ¼ 0, inverse
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Fig. 1. Computational model: (a) assumed arrangement of the dendrites normal to the
temperature gradient and triangular cross section of the calculation domain; (b)
example of the adaptive mesh refinement used near the solid-liquid interface.
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coarsening exponent, coarsening rate constant, and time, respec-
tively. An exponent of n ¼ 3 has been firmly established for volume
diffusion-limited coarsening by both experiments and theory. It
was first obtained in the LSW theory for Ostwald ripening [7e9]
that describes the evolution of a system of dispersed spherical
particles in the long-time limit. Although the LSW theory assumes
spherical particles and gs/0, n ¼ 3 has been found to be valid for
more general geometries [3,10], including morphologies that are
initially dendritic, and for higher solid volume fractions, e.g.
Ref. [11]. The coarsening rate constant K is generally a function of
the solid fraction. More recently, a LSW-type model has been
derived for the important case of concurrent growth and coars-
ening [12]. Although this model is also limited to low gs, n ¼ 3 was
obtained even in the presence of net solidification.

As opposed to pure coarsening, solidification implies that the
system is not isothermal (i.e., the cooling rate _T is non-zero) and the
solid fraction gs increases with time. Initially, the growth of the
solid leads to an increase in the interface area. However, at higher
solid fractions the evolution of the solid morphology becomes
strongly affected by solutal interactions and by interface coales-
cence, which causes the interface area to decrease. For pure growth
processes, in the absence of coarsening, the interfacial area density
SV can be correlated to gs by an equation of the form

SV ¼ c gps ð1� gsÞq (4)

where c, p, and q are constants. According to Eq. (4), with increasing
solid fraction SV first experiences a rise due to the creation of
interfacial area by growth, goes through a maximum, and then
decreases due to impingement and coalescence of interfaces.
Various values for the constants p and q have been suggested.
Speich and Fisher [13] found that data from recrystallization ex-
periments could be described by p ¼ q ¼ 1. A computational model
for the growth and impingement of grains confirmed these expo-
nents [14]. Other suggestions have been p ¼ q ¼ 2=3 [15] and
p ¼ q ¼ 1=2 [16]. A more detailed geometrical model of growing
and impinging spheres has revealed that the constants c, p, and q
are influenced by the nucleation kinetics and the spatial arrange-
ment of the spheres [17]. Therefore, it is not possible to identify
generally valid values for the constants in Eq. (4).

In summary, the basic Eqs. (3) and (4) for the evolution of the
interface area are limited to seemingly opposing cases. Eq. (3) is
valid only for isothermal conditions ( _T ¼ 0, gs ¼ const:), where the
interface area decreases with time due to coarsening. Eq. (4), on the
other hand, describes processes where gs increases due to growth
( _Ts0), but the interface area does not change when gs ¼ const:
Hence, the question remains how the two evolution equations can
be combined to cover the general case of simultaneous growth and
coarsening. Due to the length scales involved with dendrites, both
phenomena are important in most alloy solidification processes.

The direct study of the morphological evolution of dendritic
microstructures during alloy solidification has become possible due
to two relatively recent developments: (i) the availability of
computational tools, in particular the phase-field method [18] and
high performance parallel computing platforms, to allow three-
dimensional simulations to be conducted for realistic material
properties and relatively large length and time scales, and (ii) the
use of enhanced synchrotron and X-ray facilities to perform to-
mography in real time during solidification with sufficient resolu-
tion to measure the geometry of dendrites. In the present study,
phase-field simulations of dendritic solidification of a binary alloy
are used to study the variation of the interfacial area with solid
fraction and time. The simulations extend our previous results [2]
for a single to multiple cooling rates, including an isothermal
coarsening case. A new specific interface area evolution equation is
proposed that fits the simulation data over the entire range of
cooling rates. Then, data from previously performed high-speed
synchrotron X-ray tomography solidification [19e22] and
isothermal coarsening [23e25] experiments involving different
alloy systems are used to validate the general interface evolution
equation.
2. Phase-field simulations

2.1. Computational model

The 3D phase-field model used in the present study is the same
as in Ref. [2]. For completeness, it is briefly described in the
following. We employ the well-established phase-field model for
directional solidification of a dilute binary alloy of Echebarria et al.
[26], which assumes that the dendrites grow in a constant tem-
perature gradient G that moves at a constant velocity Vp. The model
is extended to account for solute diffusion in the solid [27].

Thematerial data used in all simulations of the present study are
representative of an Al-Cu alloy. They are given by an initial alloy
solute concentration C0 ¼ 6 wt.%, liquidus slope m ¼ �2:6 K/wt.%,
melting point of pure aluminum Tm ¼ 660 �C, partition coefficient
k ¼ 0:14, solutemass diffusivities in the liquidD[ ¼ 3000 mm2/s and
solid Ds ¼ 0:3 mm2/s, respectively, Gibbs-Thomson coefficient
G ¼ 0:24 mmK, and surface energy anisotropy coefficient ε4 ¼ 0:02.
As illustrated in Fig. 1a, the computational domain covers a 1/8
sector of a dendrite by using available symmetries. The simulation
domain has a width of 70 mm, which represents one half of the
primary dendrite spacing, and a length in the direction of the
temperature gradient of 350 mm. The boundaries are characterized
by no-flux conditions. A small paraboloid at the bottom of the
domain is used as the initial geometry of the solid. When the
dendrite tip impinges on the upper wall, the simulation proceeds
and the previously grown structure continues to solidify (see Fig. 3
below). The initial temperature of the liquid is taken as the dendrite
tip temperature during steady growth; the dendrite tip under-
cooling was determined iteratively from preliminary simulations.

The phase-field model was implemented numerically using the
parallel FEM library AMDiS [28,29]. It allows for adaptive mesh
refinement, an example of which is shown in Fig. 1b. For the base
case simulation, the smallest element size was 0.153 mm, which can
be compared to a steady state primary dendrite tip radius in the
base case simulation of 2.7 mm. The problem size was on average
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2:5� 107 degrees of freedom. A semi-implicit time discretization
scheme was employed to allow for adaptation of the time step to
the different time scales of the interface dynamics associated with
growth and coarsening. The computations were carried out on a
high performance computing (HPC) cluster using 512 CPUs. The
base case simulation took about one week of time.

Numerous tests were performed to verify that the present re-
sults are independent of the diffuse interface thickness and other
computational parameters used in the phase-field model. The
directional solidification cases in Echebarria et al. [26] were
repeated to provide a basic test of the present computations.
Additional validation included the simulation of singular events,
such as fragmentation of phases due to capillarity. The calculated
variation of the neck radius near pinch-off was compared to an
exact analytical solution and excellent agreement was obtained
[30].
2.2. Base case simulation results

The base case simulation is the same as the one reported in
Ref. [2] and corresponds to a pulling speed of Vp ¼ 300 mm/s and
temperature gradient of G ¼ 200 K/cm, resulting in a cooling rate of��� _T0

��� ¼ 6 K/s. As will be demonstrated later, at such a high cooling

rate the evolution of the interface area is dominated by growth and
coalescence, and curvature-driven coarsening is of secondary
importance.

Snapshots of the computed dendrite at four different times are
shown in Fig. 2 [2]. During the first second (Fig. 2a and b) the pri-
mary dendrite tip translates the entire length of the simulation
domain. This first stage is characterized by the development of
numerous secondary dendrite branches behind the primary tip and
a rapid increase in the interface area. At later times (Fig. 2c and d),
the volume of solid continues to increase and sidebranches can be
observed to coalesce. The impingement of interfaces leads even-
tually to the development of liquid channels and pockets inside the
solid structure (Fig. 2d). The simulation was terminated at t ¼ 7 s,
which corresponds to a solid volume fraction of gs ¼ 0:84 (see
below).

The interface area A and solid volume Vs of the dendrite are
(a) (b) (c

Fig. 2. Evolution of the dendrite geometry for the base case simulation: full view of the grow
(c) and 7 s (d) [2].
evaluated for five different sample volumes along the computa-
tional domain, as indicated in Fig. 3a [2]. Their volume
V ¼ 6:52� 104 mm3 is small enough to neglect temperature varia-
tionswithin them, but sufficiently large to avoid excessive scatter in
the area and volumemeasurements. The tilted shape of the sample
volumes further aids in suppressing scatter. Themeasured interface
area and solid volume for each sample volume are plotted in Fig. 3 as
a function of time [2]. In thisfigure, t ¼ 0 refers to the instantwhen a
portion of the interface enters the sample volume. It can be seen that
the center sample volume is most representative of the average
variation in A. The center sample volume is used exclusively in the
following.

The calculated interfacial area density and inverse specific
interface area are plotted against time in Fig. 4a and b, respectively,
and against solid fraction in Fig. 4d and e, respectively. The solid
fraction variation is shown against time t in Fig. 4c and against
dimensionless time q in Fig. 4f. The dimensionless time (or tem-

perature) is defined as q ¼ ðT[ � TÞ=DT0 ¼ _qt, in which
T[ ¼ Tm þmC0 is the liquidus temperature corresponding to the

initial solute concentration and _q ¼ � _T=DT0 is the cooling rate
scaled by the equilibrium freezing temperature range
DT0 ¼ jmjC0ð1=k� 1Þ. Note that the curves in Fig. 4a to c start to
increase from zero not until about t ¼ 0:7 s, which is the time from
the beginning of the simulation when the primary dendrite tip
reaches the center sample volume. Based on a detailed analysis, the
evolution of the dendrite morphology in Fig. 4 can be divided into
three stages.

Stage I is characterized by a steep increase in SV . This is caused
by the initial free dendritic growth and sidebranching creating a
large interfacial area, while the melt is still undercooled. Stage I
ends at t ¼ 1 s when in Fig. 4f the solid fraction curve from the
present simulation meets the curves for the classical lever rule and
Scheil equation [31]. The latter two predictions assume that the
liquid is not undercooled and the primary dendrite tip is located at
the equilibrium liquidus temperature. During stage I, the solid
fraction increases rapidly from zero to gs ¼ 0:3. Afterwards, the
lever rule and Scheil equation closely bound the solid fraction
variation from the phase-field simulation [2]. This is expected
because the present simulations account for finite-rate solute
) (d)

ing dendrite at t ¼ 0.5 s (a) and 1 s (b); cutaway view of half of the dendrite at t ¼ 2.5 s
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diffusion in the solid, whereas the lever rule and Scheil equation
assume infinite and zero diffusion in the solid, respectively.

Although S�1
s increases steeply with time during stage I (Fig. 4b),

when plotted against gs (Fig. 4e) S�1
s is almost constant and equal to

about 3e3.6 mm during the entire stage, except at the very begin-
ning. Since the secondary dendrite arms in stage I can be easily
identified, it is useful to connect this value of S�1

s with the study of
Li and Beckermann [32] who measured geometrical parameters of
pure succinonitrile dendrites grown in amicrogravity environment.
They found that the interfacial area density can be related to the
secondary dendrite arm spacing l2 by SV ¼ 1:6=l2. This simple
result can be explained by assuming that after some distance from
the primary tip, the interfacial area is dominated by the secondary
arms and that the sidearms grow in a planar or axial manner. The
secondary dendrite arm spacing at the end of stage I (t ¼ 1 s) can be
estimated from Fig. 2b to be approximately l2 ¼ 19 mm in the
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region of the center sample volume (i.e., near mid-height). Hence
SV ¼ 0:084 mm�1, which agrees well with the value of SV ðt ¼ 1 sÞ in
Fig. 4a. Equivalently, the scaling relation of Ref. [32] gives for the
inverse specific interface area S�1

s ¼ gs=SV ¼ gsl2=1:6 ¼ 3:56 mm,
since gsðt ¼ 1 sÞ ¼ 0:3, which is close to the value of S�1

s ðt ¼ 1 sÞ in
Fig. 4b. This agreement with a scaling relation obtained from
experimental data lends some confidence to the present phase-
field computations. More importantly, being able to predict SV
during stage I from the knowledge of l2 allows for the calibration of
more general relations for SV (see the next section). Empirical re-
lations for l2 are available for many metal alloys of technological
interest (e.g., aluminum alloys, steel) [31].

Stage II is characterized by concurrent growth and coarsening
near equilibrium without significant interface coalescence. It ends
when SV in Fig. 4a reaches its maximum value, which occurs at t ¼
2:5 s. Fig. 2c shows the computed dendrite at the end of stage II
(t ¼ 2:5 s), when the solid fraction is equal to gsðt ¼ 2:5 sÞ ¼ 0:57
(Fig. 4c). Another distinct criterion for the end of stage II can be
obtained from Fig. 4b. Up until t ¼ 2:5 s, the inverse specific
interface area varies as S�1

s � t1=3, as indicated by the dashed line;
at later times, it increases at a significantly faster rate. As
mentioned in the Introduction, a t1=3 law for the evolution of the
characteristic interfacial length scale, primarily known for
curvature-driven coarsening at constant phase fractions, was also
found to be valid for concurrent growth and coarsening in Ref. [12].

During stage III, coalescence of interfaces leads to a decrease in
SV (Fig. 4a) and an increase in S�1

s that is much faster than a t1=3 law
(Fig. 4b). The interfaces impinge primarily between the thickening
secondary dendrite arms (Fig. 2c and d). The coalescence of side-
arms also leads to a considerable thickening of the primary stem
during stage III.

The plot of the computed interfacial area density SV against the
solid volume fraction gs in Fig. 4d demonstrates that SV varies
indeed in accordance with Eq. (4). By fitting the present data to Eq.
(4), it is found that the exponents are equal to p ¼ 0:99 and
q ¼ 0:92. The proximity of these exponents to p ¼ q ¼ 1 found in
Ref. [13] for pure growth indicates that curvature-driven coars-
ening is not important for the relatively high cooling rate used in
the base case simulation. Clearly, exponents of p ¼ q ¼ 0:5 [19] do
not fit the simulation results.
2.3. Effect of cooling rate

New results are now presented where the simulation is
extended from a high cooling rate _T (base case, coarsening of minor
importance) toward low _T, including the case _T ¼ 0 such that
isothermal coarsening is achieved. The simulations for the lower
cooling rates were all restarted from the base case results at the end
of stage I (gs ¼ 0:3). This allows one to clearly distinguish between
the initial growth of the dendrite in the undercooled melt and the
subsequent coarsening and coalescence processes. Restarting the
simulation from an intermediate stage is necessary for the
isothermal coarsening case, since only an existing solid structure
can coarsen. In order to save computational time, the simulations
were performed for a reduced computational domain that corre-
sponds approximately to the center sample volume used for the
base case (Fig. 2a) but has a rectangular cross section. Cooling rates
equal to 1.0, 0.5, 0.1, and 0 times the base case cooling rate were
investigated. The results of the simulations are plotted in Fig. 5
using the same structure as in Fig. 4. The lines in the plots of
Fig. 5 up to t ¼ 1 s or gs ¼ 0:3 are identical for all cooling rates for
the reason just explained.

Focusing first on the solid fraction variation with time, Fig. 5c
shows that as expected the solid fraction increases more slowly for
the lower cooling rates and stays constant at gs ¼ 0:3 for the
isothermal case. On the other hand, when plotted against the
dimensionless time (Fig. 5f), all solid fraction variations collapse to
a single line. This indicates that back diffusion in the solid does not
have a significant effect in the present simulations.

As mentioned before, the inverse specific interface area S�1
s is a

characteristic length scale of the microstructure. Fig. 5e shows that
a reduced cooling rate leads to a coarser microstructure (larger S�1

s )
at the same solid fraction. This effect is due to curvature-driven
coarsening, which becomes more dominant as the solidification
process becomes slower. On the other hand, Fig. 5b indicates that at
a given time, the microstructure is finer (smaller S�1

s ) for a smaller
cooling rate. This can be attributed to the fact that coarsening is a
slow process relative to growth and coalescence. In other words,
the growth and coalescence that occur for a finite cooling rate in-
crease S�1

s relative to the pure coarsening case when examining the
microstructure at the same time.

The interfacial area density SV versus solid fraction plot in Fig. 5d
is perhaps most interesting. The transition between stages II and III,
marked by a dot with an arrow, shifts to lower solid fractions when
the cooling rate is reduced. This implies that a coarser structure at
the same solid fraction is more prone to coalescence. As expected,
for the isothermal coarsening case the interfacial area density de-
creases at a constant solid fraction. For the next lowest normalized
cooling rate (0.1), the strong effect of coarsening causes the inter-
facial area density to never increase after stage I. Clearly, a relation
for the interfacial area density of the form of Eq. (4) no longerworks
when coarsening is important.
3. General interfacial area evolution equation

To be valid for all cooling rates, a general evolution equation for
the specific interface area during alloy solidification should
combine growth, coarsening and interface coalescence mecha-
nisms. Such a relation must contain both the solid volume fraction
and time as independent variables. In solidification processes, the
solid fraction can sometimes be related to the temperature through
a relation such as the Scheil equation [31], and the temperature
may be known as a function of time through the knowledge of the
cooling rate. However, this is difficult when the cooling rate is
highly variable and impossible during the initial period when the
solid grows freely into an undercooled melt, especially if reca-
lescence is involved [31]. Furthermore, during isothermal coars-
ening, solid fraction and time are completely unrelated. In order to
cover all of these diverse mechanisms and cases, the following new
relation is proposed here

S�1
s ¼ ð1� gsÞ�r

�
S�3
s0 þ K0t

�1=3
(5)

where r, Ss0, and K0 are, at this point, fitting parameters. The second
term on the right-hand-side of Eq. (5) has the same form as the
classical coarsening law given by Eq. (3). An exponent of n ¼ 3 is
adopted, since it is valid for concurrent growth and coarsening [12].
The first term accounts for diffusional interactions and interface
coalescence, which become increasingly important as the solid
volume fraction approaches unity. The strength of both processes is
characterized by the exponent r. A least-square fit of the present
S�1
s data in Fig. 5 to Eq. (5) yields the following values for the three
parameters: r ¼ 0:4, S�1

s0 ¼ 2:46 mm and K0 ¼ 23:5 mm3/s. Fig. 6a
shows that Eq. (5) provides a reasonable fit to the present simula-
tion results for all cooling rates. The values of K0 and r are discussed
in later sections.
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According to Eq. (5), S�1
s0 is the inverse specific interface area or

characteristic length scale of the solid at t ¼ gs ¼ 0. This value is
generally not defined, since a solid structure of vanishing volume
does not have a finite interface area or size. The present finite value
for S�1

s0 (2.46 mm) is simply a result of fitting the data over the entire
duration of the simulations. It is interesting to note that this value is
close to the present steady-state primary dendrite tip radius of
2.7 mm (see Section 2.1). In the present simulations, S�1

s ¼ 2:46 mm
is attained after a short time when a few secondary dendrite arms
have entered the sample volume (see also Fig. 4b). Note that the
initial secondary dendrite arm spacing is closely related to the
primary dendrite tip radius [32]. The computed values of S�1

s at
earlier times do not affect the fit in a significant way. As demon-
strated in the next section, S�1

s0 can also be used to establish a
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Fig. 5 for various cooling rates.
unique reference time that is equal to t0 ¼ S�3
s0 =K0. Shifting time by

this reference time then results in S�1
s ¼ 0 at gs ¼ 0.

Using Eq. (2), Eq. (5) can be re-written in terms of the interfacial
area density as

SV ¼ gsð1� gsÞr
�
S�3
s0 þ K0t

��1=3
(6)

Note that the first two terms on the right-hand-side of Eq. (6)
correspond to Eq. (4) with p ¼ 1 and q ¼ r. Fig. 6b shows that Eq.
(6), with the values of the three parameters from above, fits the
predicted SV from the phase-field simulations reasonably well for
all cooling rates, including isothermal coarsening. Some of the
discrepancies can be attributed to the use of a reduced computa-
tional domain for the simulations in Fig. 6 (for gs >0:3). This can be
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seen by comparing the SV ðgsÞ curves for _T= _T0 ¼ 1 in Fig. 4d (full
domain) and 5d (reduced domain). Hence, the discrepancies in
Fig. 6 between the simulation results and the fit should not be
overemphasized.
4. Experimental validation using synchrotron X-ray
tomography data

The general interfacial area evolution equation, Eq. (5) or Eq. (6),
is validated using data from eleven recently performed synchrotron
X-ray tomography experiments [19e22]. In these experiments, the
interface area and solid volume in a small cell of uniform temper-
ature were measured in real time during solidification. Table 1 lists
the main parameters of the experiments. They involve three binary
alloy systems (Al-Cu, Mg-Sn, andMg-Zn) and awide range of solute
concentrations and cooling rates. Experiments D1 to D7 with Mg-
Zn alloys are characterized by an initial solidification phase, fol-
lowed by an approximately isothermal holding phase. Note that the
Al alloy dendrites have a cubic crystal lattice, whereas theMg alloys
have a hexagonal lattice.

For each experiment, measurements of the specific interface
area were made over a range of solid volume fractions and times.
Because meaningful measurements could generally not be per-
formed during the very initial period of solidification, it is not
possible to identify the exact time at which the solid fraction starts
to increase from zero. This problem was overcome by performing
the fit of the data using an arbitrary time scale. The resulting S�1

s0 is

then used to calculate a time shift according to t0 ¼ S�3
s0 =K0. A plot

of S�1
s versus this shifted time then goes through the origin. The

time shift has no effect on the values of the other two fitting pa-
rameters, K0 and r.

Fig. 7 shows the fit of the experimental data to the general
interfacial area evolution equation as plots of S�1

s versus shifted
time (Fig. 7a and c) and SV versus solid volume fraction (Fig. 7b and
d). Excellent agreement can be observed. The fit is good even for
those experiments that feature a highly variable cooling rate and
include an isothermal holding phase. This can be attributed to
including both the solid volume fraction and time as independent
variables in the evolution equation. The values of the fitting
parameter K0 obtained for the eleven experiments are listed in
Table 1 and are discussed further in the next section. For all ex-
periments, an exponent of r ¼ 0:25 was used. This value gave the
best fit for Experiment A, where measurments were made over a
solid fraction range from about 0.2 to 0.85. For the other experi-
ments, the value of r has a large uncertainty, because the mea-
surements were made either over a relatively small solid fraction
Table 1
Summary of the conditions for the phase-field simulations and the synchrotron X-ray to
from the fit of the data to the general interfacial area evolution equation, Eq. (5). Experim
fraction, followed by isothermal holding. The fits use r ¼ 0:4 for the simulations and r ¼

Ref. Alloy

simulations present work Al-6wt.%Cu
exp. A [19] Al-10 wt.%Cu
exp. B [20] Al-24 wt.%Cu
exp. C1 [21] Mg-15 wt.%Sn
exp. C2 [21] Mg-15 wt.%Sn
exp. D1 [22] Mg-25 wt.%Zn
exp. D2 [22] Mg-25 wt.%Zn
exp. D3 [22] Mg-25 wt.%Zn
exp. D4 [22] Mg-38 wt.%Zn
exp. D5 [22] Mg-38 wt.%Zn
exp. D6 [22] Mg-38 wt.%Zn
exp. D7 [22] Mg-38 wt.%Zn
range or only at solid fractions below 0.4 (Experiments B and D1 to
D7), where r plays only a minor role. In fact, an exponent of r ¼ 0:4,
as obtained from the phase-field simulations, would have also
resulted in a reasonably good fit for most experiments, except for
Experiment A (not shown here for conciseness). The difference in
the exponents between the simulations (r ¼ 0:4) and the experi-
ments (r ¼ 0:25) may be explained by the highly regular and
symmetric arrangement of the (columnar) dendrites in the simu-
lations (Fig. 1a). Such an arrangement leads to stronger interface
coalescence, a smaller interfacial area density and, hence, a higher
exponent r. In contrast, the (equiaxed) dendrites in the experi-
ments were grown freely, in the absence of a temperature gradient,
and were oriented randomly. Clearly, the exact dependence of r on
the orientation and spacing of the dendrites deserves further
investigation.

5. Prediction of the rate constant

Table 1 lists the values of the fitting parameter K0 obtained for
the eleven experiments and the phase-field simulations. While
they vary by almost a factor of 50, the K0 values for each individual
alloy composition are close to each other, indicating that K0 is
indeed independent of the cooling rate. A general expression for K0
in terms of alloy properties may be obtained by realizing from Eq.
(5) that K0 is the constant of proportionality at which the cube of a
microstructural length scale, S�3

s , evolves with time at a given solid
fraction. According to various theories of growth and coarsening of
solid-liquid mixtures [7,8,12], such a rate constant is always pro-
portional to the product of the solute mass diffusivity in the liquid
and the capillary length, i.e.,

K0 ¼ aD[d0 (7)

where a is a constant of proportionality. The capillary length for
binary alloys at the equilibrium liquidus concentration C0 is defined
as

d0 ¼ G

jmjC0ð1� kÞ (8)

The present data are used in the following to determine if a unique
value for the constant a can be found that links K0 to alloy prop-
erties in accordance with Eq. (7).

The various alloy parameters used to evaluate the product D[d0
are listed in Table 2. For the simulations, they are the same as those
provided in Section 2.1 and simply represent popular choices for Al-
Cu alloys [33]. For the experiments, the properties m and k were
determined at each alloy composition C0 by taking into account the
mography solidification experiments, together with the rate constants K0 resulting
ents D1 to D7 are characterized by an initial constant cooling rate up to some solid
0:25 for the experiments.

_T ðK=minÞ K0 ðmm3=sÞ
�360, �180, �36, … 0 23.5
�3 9.59
�2 3.05
�3 26.3
�12 24.5
�25 … 0 2.33
�25 … 0 1.91
�3 … 0 2.79
�25 … 0 0.79
�25 … 0 0.62
�3 … 0 0.64
�3 … 0 0.57
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Fig. 7. Fits of the general interfacial area evolution equation (lines) to the synchrotron X-ray tomography experimental data (open circles) referenced in Table 1: (a) and (b) are for
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Table 2
Estimated properties for the various alloys.

C0 ðwt:%Þ m ðK=wt:%Þ k T ðKÞ D[ ðmm2=sÞ G ðKmmÞ

Simulation (Al-Cu) 6 �2.6 0.14 e 3000 0.24
exp. A (Al-Cu) 10 �3.3 0.13 e 2400 0.24
exp. B (Al-Cu) 24 �4.3 0.16 e 2400 0.24
exp. C1-2 (Mg-Sn) 15 �2.0 0.3 853 6171 0.141
exp. D1-3 (Mg-Zn) 25 �6.7 0.12 763 4146 0.147
exp. D4-7 (Mg-Zn) 38 �9.3 0.13 683 2665 0.151
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varying slopes of the liquidus and solidus lines in the relevant
equilibrium phase diagrams [34]. For the Al-Cu experiments, the
value for D[ reflects the results of recent experiments [35]. For the
Mg-Zn experiments, D[ was estimated using data from Wang et al.
[36]: theoretical predictions of the inter-diffusion coefficient in
liquid Mg-Zn alloys at the melting point of pure Mg, which are
relatively independent of solute content, were extrapolated to the
approximate average temperature T in the experiments (also listed
in Table 2) using the Arrhenius exponent for self-diffusion of pure
Mg. Since inter-diffusion coefficients for Mg-Sn could not be
identified in the literature, the same data and procedure as for Mg-
Zn was utilized. The Gibbs-Thomson coefficient G for the Al-Cu
alloys was taken from Ref. [33]. For the Mg alloys, G was esti-
mated as the value for pure Mg using the data and equations listed
in Table 3. According to the data in Ref. [38], the surface tension for
Mg-Zn alloys on the Mg-rich side is only weakly dependent on the
solute content, justifying the use of pure Mg data. The slight tem-
perature dependence of the G values for Mg in Table 2 stems from
the temperature dependent properties in Table 3.

Fig. 8 shows a plot of the present K0 values from Table 1 against
the product D[d0. It can be seen that Eq. (7) predicts the rate con-
stant well, with a ¼ 0:53±0:084 obtained from a least-square fit.
The deviations from Eq. (7) can easily be explained by uncertainties
in the experiments and the alloy properties. Since the uncertainties
in the properties are largest for the Mg alloys, another fit was
performed using the Al alloy data only. This fit (not shown here for
conciseness) gave a ¼ 0:46±0:021, which is well within the un-
certainty of the value from the fit of all datasets.



Table 3
Thermodynamic and surface properties of pure Mg.

Parameter Symbol Value/Relation Units Ref.

Melting temperature Tm 922 K [34]
Molar mass M 24:305 g=mol [34]
Latent heat at Tm Lm 8790 J=mol [34]
Liquid density r 1590� 0:26 ðT � TmÞ kg=m3 [34]
Interface energy liquid/vapor gLV 0:556� 35� 10�5ðT � TmÞ J=m2 [34]
Interface energy solid/liquid gSL 0:1525 gLV J=m2 [37]
Gibbs-Thomson coefficient G gSLTm=ðLmr=MÞ K m [31]
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6. Isothermal coarsening limit

The general interfacial area evolution equation should also be
valid for the limiting case of isothermal coarsening at a constant
solid volume fraction. Comparing Eq. (5) to the classical coarsening
law given by Eq. (3) yields for the coarsening rate constant

K ¼ K0ð1� gsÞ�3r (9)

Hence, K0 can be interpreted as a coarsening rate constant in the
limit of vanishing solid fraction. Eq. (9) then provides a relation for
the dependence of the coarsening rate constant on the solid
fraction.

Fig. 9 shows a comparison of Eq. (9) with experimental data for
the coarsening rate constant as a function of the solid volume
fraction as collected by Voorhees [9]. The data are from isothermal
coarsening experiments on dispersed solid-liquid mixtures of Sn-
Pb [23], Pb-Sn [23], Fe-Cu [24,25], and Co-Cu [25] alloys. Excel-
lent agreement between the measurements and the present pre-
diction can be observed for r ¼ 0:25. It can be seen that even with
r ¼ 0:4, Eq. (9) fits the experimental coarsening date reasonably
well. The exact morphology and arrangement of the solid particles
in the isothermal coarsening experiments is not known, but it can
be expected to be rather random and not aligned. Therefore, it is
not surprising that the exponent r ¼ 0:25 from the synchrotron X-
ray tomography experiments, involving randomly arranged equi-
axed dendrites, fits the isothermal coarsening data better. Recall
that the exponent from the present phase-field simulations,
r ¼ 0:4, was obtained for highly aligned and symmetric columnar
dendrites. In summary, the present general interfacial area evolu-
tion equation is not only valid in the limit of isothermal coarsening,
but it also provides the correct solid fraction dependency of the
coarsening rate constant. It is interesting to note that, even though
the exponent r was obtained, in part, from experiments or simu-
lations where curvature-driven coarsening is of minor importance,
it is the same as in pure (isothermal) coarsening.
7. Conclusions

Phase-field simulations have been performed of columnar so-
lidification of a binary alloy in order to study the evolution of the
interface area of an assembly of dendrites. Three stages in the
evolution of the interface area can be distinguished. During stage I,
the dendrites grow in a melt that is still undercooled and the
interface area and the solid volume fraction increase sharply with
time. Towards the end of stage I, the interfacial area density may be
related to the secondary dendrite arm spacing through SV ¼ 1:6=l2.
During stage II, the inverse specific interface area evolves with time
as S�1

s � t1=3, regardless of cooling rate. At the end of stage II, the
interfacial area density reaches a maximum. During stage III, the
interfacial area density decreases due to coalescence of interfaces.

A general evolution equation for the specific interface area, Eq.
(5), or the interfacial area density, Eq. (6), during dendritic alloy
solidification has been developed and validated using data from
both the present phase-field simulations and synchrotron X-ray
tomography and isothermal coarsening experiments available in
the literature. This equation contains both the solid volume fraction
and time as independent variables. It is shown to be valid for
arbitrary and variable cooling rates, including isothermal
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coarsening, and a wide range of (binary) alloys.
The present evolution equation contains three fitting parame-

ters: S�1
s0 , K0, and r. The initial inverse specific interface area S�1

s0
represents an initial length scale of the microstructure. Although
this parameter is generally not defined at the beginning of solidi-
fication, the simulations show that it can be taken equal to the
primary dendrite tip radius. Alternatively, S�1

s0 can be used to

establish a unique reference time at which S�1
s ¼ 0. The rate con-

stant is given in terms of alloy properties by K0z0:5D[d0, as veri-
fied by both simulation and experimental data covering a wide
range of cooling rates and alloy systems. The experimental data for
both solidification and isothermal coarsening suggest an exponent
r equal to 0.25. However, for the highly regular and symmetric
dendrite arrangement assumed in the phase-field simulations, r ¼
0:4 provides a better fit.

Future research should be aimed at investigating in more detail
the dependence of the interaction and coalescence exponent r on
the arrangement and spacing of the dendrites. For example, for
columnar solidification the exponent can be expected to depend on
the spacing of the primary dendrite trunks, which in turn is a
function of the cooling rate and the temperature gradient [31]. For
equiaxed solidification, the number density of grains depends on
the cooling rate. For a high grain density the growth can be globular
rather than dendritic [31], which can be expected to result in a high
r. The present evolution equation should also be examined for
higher solid fractions, exceeding 0.85. Often, additional phases (e.g.,
eutectic) form at such high solid fractions, and it is unclear how the
present interfacial area evolution equation would perform in those
cases. Extension of the equation to multi-component alloys and to
account for melt convection would also be of great interest.
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