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Fig. 2 Nu x /Nu x U H F versus n for flat plates (A = 0) 

Nu;fGrx*-1/5 = a(Pr)[^(A)+/1(Pr)A](l + VW) (17) 

where 

a(Pr) = = Pr2/5(4 + 9Pr1/2 + 10Pr)~1/5 

,4(A) = 1+0.09A1/2 

/1(Pr) = (0.032 + 0.176Pr-°-384) 

[[0.328 + 0.343 exp (-2.12Pr1 / 5)]-0.195«)n 

W= exp[ - (0.0265 + 0.0907Pr-°-444)A0-8] 

The average Nusselt number for the same ranges of parametric 
values can be correlated by 

V=\ 

(18a) 

(186) 

(18c) 

(18d) 

(18<?) 

NuLGrL-1 / 5 = — a(Pr) [5(A)+/2(Pr)A](l + V) (19) 

where 

(20a) 

(20b) 

(20c) 

(20tf) 

fl(A)=l+0.08A1/2 

/2(Pr) = (0.026 + 0.14Pr-°-39) 

V=(4VW-nW)/(4 + nW) 

W=exp(-0.5A0-6) 
with A in equations (19) and (20) now standing for AL or A at x 
= L. 
_ It is interesting to note that for the UHF case (« = 0) V and 
Kin equations (17) and (19) become zero. It is also interesting 
to note that for the flat plate (i.e., A = 0) the terms [A(A) + / , 
(Pr)A] and [5(A) + f2 (Pr)A] both become one. Therefore, for 
the flat plate solution under UHF, Nux Gr*~1/5 = a(Pr), 
where a(Pr) is taken from Fujii and Fujii (1976). The max­
imum error in the correlations for the local and average 

Nusselt numbers is less than 5 percent for the UHF case and 
less than 8.3 percent for the variable heat flux condition. 
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A General Correlation for Melting in Rectangular 
Enclosures 

C. Beckermann1 

Introduction 
The problem of melting of ordinary (nonmetallic) and 

metallic solids in enclosures has received considerable research 
attention due to its importance, for example, in materials pro-
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cessing and latent heat energy storage. It is well known that 
natural convection in the melt, as well as heat conduction in 
the solid, considerably influence the solid/liquid interface 
shape and motion. However, attempts to correlate the average 
heat transfer and melting rates have been relatively unsuc­
cessful, except for a few special cases (Viskanta, 1985). 

Many experimental and numerical studies of melting with 
natural convection have shown that three distinctive heat 
transfer regimes can be identified (Viskanta, 1985): (1) an in­
itial regime during which the heat transfer in the small melt 
layer is by pure conduction, (2) a transition regime 
characterized by developing natural convection in the melt, 
and (3) a quasi-steady natural convection regime during which 
the heat transfer rate across the melt region is approximately 
constant. The above scenario of the heat transfer processes 
across the melt holds for a large range of Rayleigh (Ra), 
Stefan (Ste), and Prandtl (Pr) numbers, as well as for a variety 
of geometries. Recently, it has been shown that the above 
regimes also exist during melting with heat conduction in the 
solid (Benard et al., 1986; Beckermann and Viskanta, 1989). 

Despite a good understanding of the physical phenomena 
occurring during melting in enclosures, it has not been possi­
ble to correlate the melting rates and heat transfer data of 
various independent investigators accurately (Viskanta, 1985). 
For the case of melting from a vertical wall of a solid that is at 
the fusion temperature, Webb and Viskanta (1985) concluded 
that conventional correlation techniques fail to collapse the 
data, because the length scale in the governing dimensionless 
parameters changes with time as the size of the melt region in­
creases. Through a careful scaling analysis, Jany and Bejan 
(1988) were able to construct heat transfer and melt fraction 
correlations that cover the entire time domain. Their investiga­
tion is, however, limited to melting from a heated vertical wall 
inside cavities with the solid at the fusion temperature and 
laminar natural convection in the melt. No attempt is made to 
generalize these results for other initial and boundary condi­
tions. For example, they conclude "if one is to consider the 
additional effect of [heat] conduction in the solid, one must 
construct a new scenario . . . It is not a question of merely in­
troducing a new dimensionless group . . ." . 

Consequently, the objective of this study is to demonstrate 
that a more general melt fraction correlation can be obtained 
covering the entire time domain as well as the additional effect 
of heat conduction in the solid. The present analysis is based 
on the assumptions that (1) the melting proceeds through the 
three heat transfer regimes described above and (2) the liquid 
and solid Stefan numbers are small so that the heat transfer is 
quasi-steady (i.e., negligible thermal inertia of the liquid and 
solid). The latter assumption is supported by the fact that in 
virtually all previous numerical and experimental studies the 
Stefan numbers were less than about 0.3 (Webb and Viskanta, 
1985; Viskanta, 1985; Benard et al., 1986). For conciseness, 
this study concentrates on melting in rectangular enclosures. 
However, the methods presented can easily be applied to other 
geometries (e.g., cylinders, etc.). The melt fraction correlation 
derived in this study is validated using the example of melting 
of metals in vertical cavities. 

Analysis 

The physical system considered in the present study consists 
of a rectangular enclosure with two vertical side walls of 
height H held at uniform temperatures and the connecting 
walls of length L well insulated. Initially, the enclosure is filled 
with a solid of fusion temperature Tf. Melting is initiated by 
raising the left ("hot") wall temperature to TH>Tf, while 
maintaining the right ("cold") wall at Tc<Tf. The assump­
tion of quasi-steady heat transfer in the liquid and solid 

regions (see the Introduction) implies that the difference be­
tween the heat transfer rates supplied through the hot wall and 
extracted through the cold wall is exclusively used to advance 
the melting front. In other words, the thermal inertia of the 
system is assumed to be negligibly small, so that the mean 
temperatures of the liquid and solid are constant. Again, this 
assumption is good in the limit of small Stefan numbers. An 
overall energy balance on the enclosure can now be written, in 
dimensionless form, as 

N u H - N u c = 
ds 

~dT (1) 

The use of the average melt region width i is preferable over 
the melt fraction/, because it eliminates the aspect ratio A as a 
parameter in equation (1). The two quantities s and / are 
related by 

1 [H 

HL Jo 

where A =H/L, S is the local melt region width, and y is the 
vertical coordinate. The other dimensionless quantities in 
equation (1) are defined as 

_ci(TH-Tf) (ai Pi 
M H2 

dimensionless time 

= SteFo/p* 

N u H = -
QHH 

(3) 

(TH-Tf)k, 

average Nusselt number at the hot wall 

N o g - * " c {TH-T,)k, 

average Nusselt number at the cold wall 

where k, c, p, a, q", t, and Ahf are the thermal conductivity, 
specific heat, density, thermal diffusivity, average heat flux, 
time, and latent heat of fusion, respectively, while the 
subscripts / and 5 denote the liquid and solid phases, respec­
tively. According to the above definitions, the average Nusselt 
numbers at the hot and cold walls will be equal at steady state. 
Furthermore, it is evident that equation (1) can also be derived 
by integrating a local interfacial energy balance over the height 
of the enclosure and relating the heat transfer rates on both 
sides of the solid/liquid interface to the heat transfer rates at 
the hot and cold walls. 

The fact that equation (1) is valid regardless of the par­
ticular physical situation considered (i.e., Ra, Pr, orientation 
of the enclosure, etc.), together with the fact that virtually all 
melting processes are characterized by the three heat transfer 
regimes outlined in the Introduction, holds the key for obtain­
ing a general correlation for the melt fraction (i.e., s). Because 
the Nusselt numbers are not constant, equation (1) cannot be 
integrated over the entire time domain. For the case of 
Nu c = 0 (no heat conduction in the solid), a number ofjn-
vestigators have integrated equation (1) by using separate NuH 

relations for the various heat transfer regimes (Webb and 
Viskanta, 1985; Benard et al., 1985; Jany and Bejan, 1988; 
and others). Through comparisons with experiments and 
numerical simulations, these studies have shown that accurate 
melt fraction correlations can be obtained by simply matching 
the solutions for the first conduction regime and the third 
quasi-steady natural convection regime. This approach is 
followed in the present study. 

Conduction Regime. In the initial conduction regime, the 
solid/liquid interface is planar and parallel to the hot wall, so 
that the heat transfer through the liquid and solid regions is 
one dimensional. Consequently, the Nusselt numbers for 
regime 1 can be expressed as 
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N u W i l = — NuCil = 
1 

(4) 

where the subcooling parameter $ is defined as 
$ = (Tf—Tc)ks/(TH—TJ)kl. Equation (1) can now be written 
as 

* 

1 

ds 

~~dT 

With S"(T = 0) = 0, the solution to equation (5) is given by 

T = SSC-S$O.{\ - s/sc) + sl
c[\.5 + 0.5(1 - s/scf 

- 2 ( l - s / s c ) + ln(l-iAY)] 

(5) 

(6) 

where sc is the average melt region width at steady state, if the 
entire melting process were conduction dominated, and is 
given by 

^ 7 7 ¥ (7) 

It can immediately be seen that for the case of $ = 0 (i.e., no 
heat conduction in the solid, equation (6) reduces to 
S = (2T)W2, which is nothing else but Neumann's solution in 
the limit of Ste—0. It is interesting to note that for Ste = 0.1, 
the constant 21/2 is only 1.6 percent higher than for Ste—0. 
For Ste = 0.3, the difference increases to 4.6 percent. Virtually 
all previous studies of melting in enclosures have been per­
formed for Ste < 0.3 (Webb and Viskanta, 1985). 

Following the procedure proposed by Benard et al. (1985), 
the conduction regime ends at the time r0 when Nu f t l is equal 
to NuW3 , the average Nusselt number at the hot wall during 
the third quasi-steady convection regime. Consequently, the 
time T0 can be calculated by substituting i 0 = l /Nu / / 3 into 
equation (6). 

Convection Regime. In the third quasi-steady natural con­
vection regime, the solid/liquid interface is no longer planar, 
so that the heat transfer by conduction through the solid 
region is two (or three) dimensional. In the present study, the 
average Nusselt number at the cold wall during the third 
regime is approximated by 

Nu f ? ,= -
c$ 

1 - s 
(8) 

where c is not necessarily constant since the shape of the solid 
region can vary continuously. It will be shown, however, that 
for a reasonably wide range of the governing parameters, c 
can be taken as constant, if c is determined through ap­
propriate comparisons with experiments or numerical 
simulations. 

For the convection regime, equation (1) can now be rewrit­
ten as 

Nuf 
c$ 

1 - 5 

ds 

~dV (9) 

Note that Nu//i3 is constant throughout the quasi-steady 
natural convection regime, as has been established by many 
researchers for a large variety of physical situations (Viskanta, 
1985). With the initial condition S(T0) = S0 = l /NuH 3, equation 
(9) can be integrated to yield 

(s-s0) - (1 - sf)ln (-4-A-) = Nu„ i3 (r - r0) 
\S„—Sr/ 

(10) 
o • > / ' 

where S/ is the (final) average melt region width when melting 
ends, and is given by 

5,= 1-
c$ 

Nu, 
(11) 

No_te_that according to equation (11) and with the knowledge 
of Nuw 3 (see below), the constant c can be directly determined 
from final melt fraction data. Again, in the case of $ = 0 (i.e., 
no heat conduction in the solid), equation (10) reduces to 
s — i 0 =Nu H ] 3 (T — T0). This linear variation of the melt frac­
tion (i.e., s) with time is well known for melting of a solid at its 
fusion temperature during the quasi-steady convection regime 
(Webb and Viskanta, 1985; Benard et al., 1985; Jany and Be-
jan, 1988). For the case of $ = 0, an additional regime can be 
identified after part of the solid/liquid interface reaches the 
right ("cold") wall. This fourth "shrinking solid" (Jany and 
Bejan, 1988) regime has been considered in detail in other 
studies (Benard et al., 1985). Also, note that * = 0 not only im­
plies that Tc = Tp but that the entire solid is isothermally at 
the fusion temperature and, according to equations (4) and 
(8), that the Nusselt number at the cold wall is equal to zero. 
Consequently, the case of * = 0 applies to both, enclosures 
with Tc = Tf and enclosures with an adiabatic right ("cold") 
wall. 

For the case of * = 0, Jany and Bejan (1988) proposed to 
match the melt fraction (i.e., s) correlations for the conduc­
tion and convection regimes by combining them in a canonical 
relationship. The results of Benard et al. (1985), as well as the 
present comparisons (see below) indicate, however, that this is 
not necessary, because at T0 equations (6) and (10) match 
relatively smoothly. 

Nusselt Number Correlations. By specifying Nu// |3, the 
general melt fraction (i.e., s) correlation, equations (6) and 
(10), can be adapted to a particular physical situation. 
Theoretically, Nu// 3 is a function of the size and shape of the 
melt region, the orientation of the enclosure, and the Rayleigh 
and Prandtl numbers. It is known, however, that most cor­
relations for natural convection in rectangular enclosures also 
work if the enclosure has curved surfaces (Lienhard, 1973). 
This has prompted many researchers to calculate Nuw 3 from 
standard correlations for steady natural convection in rec­
tangular enclosures without phase change. The validity of the 
above approach has been demonstrated for a large variety of 
physical systems, including melting of paraffins and metals 
from the side without heat conduction in the solid (Benard et 
al., 1985; Viskanta, 1985; Webb and Viskanta, 1986a; Jany 
and Bejan, 1988), with heat conduction in the solid (Benard et 
al., 1986; Beckermann and Viskanta, 1989), as well as melting 
from below (Gau and Viskanta, 1986). Some investigators 
(Hale and Viskanta, 1980; Webb and Viskanta, 1986b) have 
calculated the Rayleigh number in such standard Nusselt 
number correlations by choosing the instantaneous average 
melt region width s as the characteristic length scale, instead 
of H. This results, however, in a continuously varying Nusselt 
number and contradicts the observed quasi-steady heat 
transfer behavior during the third regime. Furthermore, it is 
known that for vertical enclosures, the aspect ratio has only a 
minor effect on the Nusselt number, if the vertical dimension 
(i.e., H) is used as the characteristic length scale (Jany and Be­
jan, 1988). 

A number of investigators have measured quasi-steady 
Nusselt numbers directly, under melting conditions (Viskanta, 
1985). Interestingly, it has been found that a single Nu//3 cor­
relation can be used for melting of a paraffin (Pr » 50) inside a 
vertical cavity, regardless of whether there is heat conduction 
in the solid or not (Benard et al., 1985, 1986). Unfortunately, 
Benard et al. (1986) do not provide any melt fraction data for 
their experiment with * = 5.952, so that the present melt frac­
tion correlation cannot be tested for Pr > 1 and f> ^ 0. Further­
more, the Nu#i3 correlation by Benard et al. (1985, 1986) is in 
close agreement with standard Nusselt number correlations 
for steady natural convection in vertical cavities without phase 
change, indicating that_such standard correlations can general­
ly be used to calculate Nu# during the third regime. 
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Fig. 1 Comparison of the melt fraction correlation (lines) with previous 
numerical data (s and v: Webb and Vlskanta, 1986a; o, • , and A: 
Beckermann and Vlskanta, 1988) for melting of gallium (Pr = 0.021) in­
side a vertical cavity 

Example: Melting of Metals in Vertical Cavities 
For the case of melting of metals with heat conduction in 

the solid inside a vertical rectangular enclosure, Beckermann 
and Viskanta (1989) obtained the following NuW3 correlation: 

JVuWi3=0.5(RaPr)0-25 (12) 

The validity of the above correlation was tested for 
104<Ra<106, P r< l , 0.01<Ste<0.09, and *<2.5. Equa­
tion (12) is in good agreement with a similar correlation ob­
tained by Webb and Viskanta (1986a) for melting of gallium 
without heat conduction in the solid, as well as with Nusselt 
number data for steady natural convection (i.e., without 
melting) of tin and gallium in a vertical square enclosure 
(Wolff et al., 1988). These observations further support the 
simple treatment of the third regime proposed in the present 
study (see also the section Nusselt Number Correlations). 

Figure 1 shows a comparison of the present melt fraction 
(i.e., s) correlation with numerical data obtained by Webb and 
Viskanta (1989) ( • and v) and Beckermann and Viskanta 
(1989) (o , • , and A ) for melting of gallium (Pr = 0.021) in­
side vertical rectangular enclosures. It should be noted that the 
numerical results of the above two investigations were verified 
experimentally. The constant c in equation (11) was deter­
mined by Beckermann and Viskanta (1989), who found that 
with c= 1.19, equation (11) correlates the final melt fraction 
data (i.e., at steady state) to within 3 percent. It can be seen 
from Fig. 1 that the present melt fraction (i.e., s) correlation 
(lines) fits the numerical results (symbols) very well. Slightly 
better agreement could have been obtained by using the 
numerically determined Nusselt numbers in the melt fraction 
correlation, instead of calculating them from equation (12). 
For the three cases with heat conduction in the solid, some 
disagreement is due to inaccuracies in the constant c (= 1.19). 
As discussed earlier, c varies slightly during the third regime, 
because of variations in the shape of the solid region. It should 
also be noted that the numerical simulations for the case of no 
heat conduction in the solid (* = 0) were terminated before the 
solid/liquid interface reaches the right ("cold") wall (Webb 
and Viskanta, 1986a). This time instant also marks the end of 
the validity of the present melt fraction correlation. For $?^0, 
the interface does not come into contact with the cold wall, so 
that the present correlation works throughout the entire time 
domain. 

Conclusions 
A model has been presented for melting in rectangular 

enclosures with natural convection in the melt and heat con­
duction in the solid. By assuming negligible thermal inertia in 
the liquid and solid regions, and dividing the time domain into 
three heat transfer regimes, the model equation has been in­
tegrated to yield simple algebraic expressions for the time 

variation of the melt fraction. The expressions are indepen­
dent of the dimensionless parameters of the problem and can, 
therefore, be applied to any situation involving melting in dif­
ferentially heated rectangular enclosures. The present melt 
fraction correlation can be adapted to a particular physical 
system by specifying the average Nusselt number at the hot 
wall during the third, quasi-steady convection regime. Such 
Nusselt numbers can generally be obtained from standard cor­
relations for pure natural convection (i.e., without melting). 
As opposed to previous correlations, the present melt fraction 
correlation is equally valid for melting with and without heat 
conduction in the solid region. 

The usefulness and accuracy of the proposed melt fraction 
correlation have been demonstrated for melting of metals in 
vertical cavities. The correlation is found to agree to within a 
few percent with melt fraction data from previous two-
dimensional numerical simulations. Therefore, this correla­
tion represents the first one to predict the time variation of the 
melt fraction realistically during melting with natural convec­
tion in the melt and heat conduction in the solid. 

It is expected that the general melt fraction correlation 
derived in this study can equally well be applied to other con­
figurations. Correlations, similar to the present one in the 
limiting case of no heat conduction in the solid, have been 
found to work well, for example, for melting of paraffins at 
their fusion temperature inside vertical (Benard et al., 1985) 
inclined (Webb and Viskanta, 1986b), and horizontal (Hale 
and Viskanta, 1980) rectangular enclosures. Since Nusselt 
number correlations are available for these configurations, ex­
tension to melting with heat conduction in the solid would re­
quire determination of the constant c only (from final melt 
fraction data). However, the lack of melt fraction data for the 
case of melting with heat conduction in the solid makes a 
definite test of the present melt fraction correlation for other 
configurations impossible. 

It is possible to extend the present analysis to large Stefan 
numbers (i.e., large thermal inertia of the liquid and solid 
regions). For the case of $ = 0, Jany and Bejan (1988) pro­
posed a simple procedure for correlating the melting rate for 
large liquid thermal inertia [i.e., the Nusselt numbers are 
reduced by a factor of the order of 1/(1 + Ste)]. This pro­
cedure could easily be adapted to the present case of melting 
with heat conduction in the solid (i.e., #;*0). 

Finally, it should be mentioned that the present correlation 
is not directly applicable to solidification, because the heat 
transfer across the liquid does not proceed through the same 
three regimes as in melting and, in addition, may not be quasi-
steady. While some of the basic methods presented in this 
study may be utilized, correlation of solid fraction data for 
solidification represents a major challenge for future research. 
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Radiation View Factors From a Finite Rectangular 
Plate 

B. T. F. Chung1 and M. M. Kermani2 

Introduction 
The determination of radiation view factors from a dif­

ferential strip to a rectangular plate, or in more general cases, 
radiation from a rectangular plate to other finite geometries, 
has practical importance in many engineering applications. 
Examples are radiation exchange within the internal engine 
cavities of gas turbines, furnaces, kilns, reactors, and other 
devices that normally operate at high temperatures. Hamilton 
and Morgan (1952) determined view factors analytically for 
several cases regarding a differential element and a differential 
strip to a plate. Their formulations are restricted to special 
conditions in that the elements under consideration are in a 
particular orientation and location with respect to the plate. 
Other formulations reported by Hottel and Sarofim (1967), 
Sparrow and Cess (1978), and Siegel and Howell (1981) also 
apply to special cases in that either the surface under con­
sideration (plate, differential strip, or cylinder) is infinitely 
long, or there are two planar surfaces that share a common 
edge. To date, the general analytical expression for view factor 
from a rectangular plate with an arbitrary orientation and 
dimensions has not been available. 

This study attempts to develop an exact and general formula 
for shape factors: (1) from a differential element to an ar­
bitrary nonintersecting finite rectangular plate, and (2) from a 
differential strip to a rectangular plate with the former being 
in a plane that has parallel generating lines to the latter. This 
formula is then used to generate the view factors from a rec­
tangular plate to some finite geometries via single integration. 
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Fig. 1 Shape factor from a differential element to a rectangular plate 

Mathematical Analysis and General Formulation 
(a) Shape Factor From a Differential Element to a 

Nonintersecting Rectangle. Consider an element with the 
coordinates and orientation shown in the sketch of Fig. 1, 
such that the plane of the differential element dA2 does not in­
tersect the plate. The view factor given by Sparrow and Cess 
(1978) has the form 

FdA2 -Ai= /2/27r|[(z - z2)dy - (y -y2)dz)]/Le2 

+ m2/2ir$[(x-x2)dz - (z - z2)dx]/Le2 

+ n2/2ir$[((y-y2)dx- (x-x2)dy)]/Le2 

where the contour of integration consists of lines I to IV 
shown in the sketch; Le is the distance from the element to the 
appropriate contour, l2 = cos V, m2 = cos $, and n2 = cos d. 
Performing the integration and nondimensionalizing the result 
yields 

/2 r l / x-z , z \ 
FdA._Al = ——j , (tan"'—p~^ +tan~' , = - ) 

i / . x-z . z \\ 
— . .= - - ( t a n - ' - = ^ „ + t a n - 1 - = = „ I 

^i + (w^Y)2 \ 4Y+{w-Y)2 Vi + (w / -y ) 2 / J 

m2 ( \ ( .Y-W . W \ 
+ —— -p: _ (tan"1 . „ +tan- ' , „ ) 

2ir t^[T+Z}\ •JY+Z? VT+Z2/ 

1 / , Y-W \ . W N-) 
. ( t a n - ' - r ^ - ^ , ) + t a n " ' - F = - ) 

n2 r W / , X~Z , Z \ 
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