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Deformation of the semisolid mush during solidification is a common phe-
nomenon in metal casting and can lead to defects such as hot tears, macro-
segregation, and porosity. The morphology of the solidifying mush, including
the shape of the dendrites and the distribution of grain boundaries, plays a
key role in determining its mechanical behavior. In the current study, a
polycrystalline phase-field model is combined with a material point method
stress analysis to numerically simulate the fully coupled dendritic solidifica-
tion and elasto-viscoplastic deformation behavior of a pure substance in two
dimensions. It is shown that solid compressive and shear deformations result
in variations in the crystallographic orientation angle within a single dendrite
that, in turn, affect the subsequent solidification behavior. Shearing of a
dendritic structure occurs primarily in relatively narrow bands near or inside
the grain boundaries or the thin junctions between different dendrite arms.
The deformations can cause the formation of low-angle tilt grain boundaries
inside of individual dendrite arms. In addition, grain boundaries form when
different arms of a deformed single dendrite impinge. During compression of a
high-solid-fraction dendritic structure, the deformations are limited to a rel-
atively thin layer along the compressing boundary. The compression causes
consolidation of this layer into a fully solid structure that consists of numerous
subgrains.

INTRODUCTION

Deformation of the solid is a common occurrence
during metal casting processes.1,2 Often, the solid
deforms simply due to thermal stresses, but some-
times the deformation is caused by external forces,
for example through the rolls in continuous casting,
mold wall movement, or an applied pressure. When
the casting is still solidifying, the deformations can
extend into the semisolid mushy zone. This mushy
zone is typically composed of solid dendrites sur-
rounded by liquid. Deformation of the mush can
lead to numerous defects in a solidified casting,
including hot tears, macrosegregation, and porosity.
Therefore, understanding the mechanical behavior
of the mush is of great interest for advancing cast-
ing simulations incorporating a stress analysis3

and, ultimately, for preventing defects in castings.
In the current study, a numerical method is

developed for simulating the deformation of a
solidifying mush on the scale of the evolving

microstructure. Such direct numerical simulations
may lead to improved constitutive models for use in
macroscopic stress simulations. Mush deformation
is a complex process involving multiple physical
phenomena: solidification and formation of bridges
or grain boundaries between dendrites, large
inelastic solid deformation with contacts, liquid
flow, etc. Simulating all of these processes simulta-
neously would be a very challenging task. A few
researchers have developed models to investigate
the mechanical behavior of mush. Phillion et al.4

and Fuloria and Lee5 calculated inelastic deforma-
tion of multigrain and dendritic microstructures,
respectively, without considering solidification. Ue-
hara et al.6 performed thermal stress simulations in
a confined solidifying microstructure. Fully coupled
solidification and deformation simulations of den-
dritic microstructures have not been performed in
the past. The coupling of the solidification and
deformation calculations is important not only
because the deformations are a function of the
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morphology of the evolving solid but also because
the solidification patterns are affected by the
deformations.

Grain boundaries play an important role in the
deformation of a mush, especially at high volume
fractions of solid. For example, they can delay the
formation of solid bridges between dendrites. Not
surprisingly, hot tears due to tensile strains in a
mushy zone usually form at grain boundaries.7,8

Although Phillion et al.4 simulated deformation of
multiple grains, they did not consider the dynamics
of grain boundaries. Sistaninia et al.9 developed a
three-dimensional (3-D) granular model to study
the mechanical behavior of a semisolid mush at high
fractions of solid. Although solidification of the ini-
tial grain structure was simulated in Ref. 9, the
subsequent stress analysis was uncoupled. Clearly,
the microstructure of the solid plays a key role in
the mechanical behavior of a mush. But solid
deformations can also affect the evolution of the
solid morphology by solidification and grain
boundary dynamics. For example, a new grain
boundary can form when a severely deformed den-
drite arm grows into an undeformed portion of the
same dendrite. New tilt grain boundaries can form
when a dendrite arm is bent.

This article summarizes the research originally
presented by the authors in Refs. 10, 11, highlights
potential shortcomings, and points out the areas
where additional developments are needed. The
reader is referred to these references for the gov-
erning equations, the numerical procedures
and settings, and the validation of the simulation
results.

MODEL DESCRIPTION

To simplify the problem, the current study focuses
on dendritic solidification and elasto-viscoplastic
deformation of a pure substance in two dimensions.
Stresses that are exerted by the liquid on the solid
are neglected. This assumption is realistic when the
liquid can ‘‘drain’’ freely. In fact, the flow of the li-
quid is not modeled at all. Transformation stresses/
strains, stress-induced phase transformations, and
heat generation due to inelastic deformation are not
considered. These assumptions are all appropriate
for a slowly deforming mush.

The simulation of dendritic solidification with
large solid deformations necessitates numerous
choices regarding the models to be used and the
numerical methods to be employed. Solidification,
including the presence of multiple crystals with
different crystallographic orientations, and the for-
mation and motion of grain boundaries is simulated
in the current study using the polycrystalline
phase-field model of Warren et al.12 Because the
phase-field method employs a diffuse interface con-
cept, it is especially well suited for handling mor-
phological changes and singularities, such as those
caused by portions of a dendrite impinging on one

another. Such wetting and bridging phenomena are
not well handled by traditional sharp interface ap-
proaches. As in all phase-field models, the phase-
field parameter / is used to indicate the local crys-
talline order, with / = ± 1 inside of the bulk solid
and liquid phases, respectively. The solid–liquid
interface is treated as a diffuse layer of small but
finite thickness over which the phase field varies
smoothly between / = ± 1. The grain boundary be-
tween two solid grains is also treated as a diffuse
interface. Because the crystalline order inside of a
grain boundary is reduced, the phase field assumes
values below unity (solid) within the grain bound-
ary. An additional order parameter, the crystal
orientation angle field a is introduced to measure
the local crystallographic orientation of the solid
with respect to a fixed coordinate system. If two
neighboring grains are misoriented, then the ori-
entation angle varies smoothly across the diffuse
grain boundary from the value in one grain to the
value in the other grain. The misorientation Da is
given by the integral of the orientation angle gra-
dient ra across the grain boundary. The phase field
and the orientation angle are closely coupled inside
of a grain boundary. The larger the angle gradient
(or misorientation), the lower the minimum value of
the phase field. At some critical misorientation, the
minimum value of the phase field reaches / = �1
and the grain boundary is fully wet. The model of
Warren et al.12 also considers the anisotropy in the
interfacial energy, which is essential for modeling
dendritic solidification. They demonstrated that the
model correctly predicts phenomena such as triple
junction behavior, the wetting condition for a grain
boundary, curvature-driven grain boundary motion,
and grain rotation. The main new feature of the
current phase-field calculations is that because of
the deformation of the solid, the crystallographic
orientation angle is no longer uniform within a
single dendrite and continuously evolves. Further-
more, the phase field and the temperature field are
advected by the deformation velocity.

The stress model for simulating the elasto-visco-
plastic deformation of the solid assumes that the
solid–liquid interface is sharp. The zero contour line
of the phase field is used to identify the interface.
The stress model is solved only in the solid and the
solid–liquid interface is taken as stress free. The
numerical method employed in the solution of the
stress model needs to be able to handle large
strains, self-contact, and impingement of solid.
Particle methods or meshless methods are attrac-
tive for this purpose because they do not suffer from
the mesh collapse or entanglement problems typical
of Lagrangian finite-element methods. In the cur-
rent study, the material point method13 is selected.
The main feature of this method is that it uses, as in
a particle method, a Lagrangian description for the
motion of material points, and a fixed Eulerian
background mesh for solving the equation of motion.
The latter feature makes the material point method
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well suited for coupling with the (Eulerian) phase-
field method.

Special consideration must be given to the
mechanical behavior of a grain boundary. It is
known that the strength of low-angle grain bound-
aries (Da less than about 11�) decreases with
increasing misorientation between the grains. For
high-angle grain boundaries (Da greater than about
11�), the bonds between the grains are weakened
further, but the properties are normally unrelated
to the misorientation. In both cases, the reductions
in the strength can be attributed to the reduced
crystalline order inside of a grain boundary. Above a
certain critical misorientation Dac, the grain
boundary is wet and has no strength. The crystals
separated by a wet grain boundary would be able to
slide against each other and could be pulled apart
easily. Based on these considerations, the local
mechanical properties inside of a grain boundary
may be related directly to the value of the phase
field / because it is a measure of the local crystalline
order. Recall that inside of a grain boundary, the
phase field assumes values below unity. However,
quantitative relations between mechanical proper-
ties, such as the elastic modulus or the yield
strength, and the value of the phase field inside of a
grain boundary are currently not available. There-
fore, a highly simplified procedure is adopted in the
current study to model these effects. When the va-
lue of the phase field is greater than zero (/ > 0),
the material inside of a grain boundary is assumed
to behave mechanically like a solid, and material
points are assigned to that computational cell in the
material point method stress analysis. Hence, a
grain boundary becomes mechanically bridged (by
solid) as soon as the minimum value of the phase
field inside of the grain boundary exceeds zero.
Conversely, for /< 0 the material is treated in the
stress analysis as a liquid. In other words, a grain
boundary is assumed to behave mechanically like a
liquid when the minimum value of the phase field
inside of the grain boundary is below zero, even
though it is not fully wetted until the minimum
value reaches / = �1. In the presence of liquid-like
material (�1< /< 0) inside of a grain boundary,
no stresses are transmitted between the two

crystals because the stress model is solved only in
cells that are solid and the stresses in the liquid are
not calculated (i.e., they are zero). Clearly, a more
sophisticated model should be developed that solves
for the stresses not only in the solid but also in the
liquid. Such a model could incorporate phase-field-
dependent mechanical properties reflecting the
weakening of the solid due to reduced crystalline
order inside of a grain boundary.

RESULTS AND DISCUSSION

Compression of a Single Dendrite

An initial simulation is performed of the com-
pression of a single dendrite without considering the
formation of grain boundaries. As illustrated in
Fig. 1, the dendrite is compressed in a rectangular
domain that is bounded by adiabatic walls. Initially,
the domain contains an undercooled liquid, except
for a solid seed at the center. The seed grows freely
into the undercooled melt and develops into a den-
drite. Once the vertical dendrite arms reach the top
and bottom walls, the walls start to move inward at
a prescribed rate. This imposes a compression
loading on the growing dendrite. In order for some
solidification to occur during the compression, the
displacement rate of the top and bottom walls was
chosen to be approximately equal to the dendrite tip
growth velocity. This can be best observed in Fig. 2
below by the movement of the tips of the horizon-
tally growing dendrite arms relative to the changes
in the position of the top and bottom walls. The
mechanical properties for the solid dendrite were
chosen to approximately represent the mechanical
properties of metals near the melting point.3

The results of the initial simulation are shown in
Fig. 2. The rows of plots represent results at four
different times corresponding to when the vertical
dendrite arms have just touched the top and bottom
walls, 10% compression, 20% compression, and 30%
compression. The phase-field contours in the upper
left corner of Fig. 2 indicate that before compression
is initiated, the dendrite has a relatively slender
shape with small sidebranches. At 10% compres-
sion, the phase-field contours (left column) and the
equivalent plastic strain fields (center right column)
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Fig. 1. Schematic of the computational setup for the simulation of the compression of a single dendrite.
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indicate that the deformation of the dendrite is still
limited to the vertical growing dendrite arms near
the top and bottom moving walls. In these portions
of the dendrite, the yield stress of 5 MPa is reached
and plastic strains in excess of 100% can be ob-
served. As expected, the shape of the horizontally
growing dendrite arms is unaffected by the com-
pression. With increasing compression, the regions
in the vertically growing dendrite arms that exhibit
plastic deformation extend further toward the cen-
ter of the dendrite. Furthermore, the (elastic)
stresses in the center portion of the dendrite con-
tinually increase. Small stress concentrations be-
come apparent in the valleys between the
sidebranches and at the necks between the verti-
cally growing arms and the dendrite core. At 20%
compression (third row in Fig. 2), the center portion
of the dendrite is starting to yield. At 30% com-
pression (last row in Fig. 2), elastic stresses propa-
gate even into the uncompressed horizontally
growing dendrite arms. Because of the movement of
the top and bottom walls, a large amount of solid

mass is advected inward and the vertically growing
dendrite arms are much thicker than without com-
pression. The predicted evolution of the crystallo-
graphic orientation angle field is shown in the
rightmost column of Fig. 2. Bending of the dendrite
occurs primarily in a thin layer at the edges of the
regions with large plastic deformations, while the
center portions of the vertically growing dendrite
arms do not experience any crystallographic angle
changes due to symmetry. These results clearly
illustrate that solid deformation can induce a non-
uniform crystallographic orientation angle field
within a single dendrite.

Shearing of a Dendritic Crystal

In the second example, shearing of a dendritic
structure is simulated, including the formation and
motion of grain boundaries. Initially, undercooled
melt is contained in a rectangular domain that has
adiabatic boundaries. Three solid seeds having the
same crystallographic orientation (a = 0) are placed

Phase-field: Von Mises stress [Pa]: Equivalent plastic strain: Orientation:

-0.4 0.40 1.20 5E+06-1 1

Fig. 2. Predicted phase field (left column), von Mises stress (center left column), equivalent plastic strain (center right column), and crystallo-
graphic orientation angle relative to an arbitrary coordinate system (right column) contours for elasto-perfectly plastic compression of a single
dendrite growing into an undercooled melt. The results are shown for when the vertically growing dendrite tips just touched the walls and
compression is initiated (first row), at 10% compression (second row), at 20% compression (third row), and at 30% compression (fourth row).
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along the bottom wall. As shown in Fig. 3, the seeds
evolve into a complex dendritic structure with
numerous relatively slender sidearms. The den-
dritic structure is a single crystal because the ori-
entation angle is the same everywhere (see Fig. 4b
below). Shearing is initiated when the solid reaches
the upper wall of the domain. The shearing is
accomplished by translating the upper and lower
domain walls to the right and left, respectively, as
illustrated in Fig. 3. The (constant) translation
speed is chosen low enough that considerable addi-
tional solidification occurs during the shearing.

The three rows of panels in Fig. 4 show the com-
puted phase field and crystallographic orientation

Fig. 3. Mechanical boundary conditions for the simulation of coupled
solidification and shear deformation of a dendritic structure.

-1.0 1.0 -0.25 0.1

(a) (b)
Fig. 4. Computed phase field (a) and crystallographic orientation angle (b) contours during solidification and shear deformation of a dendritic
crystal. From top to bottom, the rows of plots correspond to 0%, 15%, and 30% shear.

0.0 1.00 5.0E+06 [Pa]

(a) (b)
Fig. 5. Computed von Mises stress (a) and equivalent plastic strain (b) contours in the solid during solidification and shear deformation of a
dendritic crystal. From top to bottom, the rows of plots correspond to 0%, 15%, and 30% shear.
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angle contours at 0%, 15%, and 30% shear. A 15%
(30%) shear implies a translation of both the upper
and lower walls by an amount equal to 15% (30%) of
the height of the domain. The corresponding von
Mises stress and equivalent plastic strain contours
in the solid are displayed in Fig. 5. At 15% shear,
the continuous layers of solid along the upper and
lower domain walls have reached the yield stress
and are deforming plastically (Fig. 5). The plastic
strain is mostly limited to horizontal shear bands at
the relatively thin junctions between the three
vertical dendrite arms and the solid layers along the
horizontal walls. Several shear bands are also
present in the solid directly adjacent to the moving
horizontal walls. The stresses propagate into the
three vertical dendrite arms, but most of the center
portion of the dendrite does not yield. At 30% shear,

the solid has continued to grow and deform, but the
overall stress and plastic strain patterns are similar
to the ones at 15% shear. Some of the higher order
dendrite arms from the horizontally growing den-
drite branches in the center of the domain are
beginning to form bridges to the solid layers along
the top and bottom walls. These very small bridges
are also yielding. In general, the strain is localized
in thin shear bands in the thin junctions between
dendrite branches.

The computed deformations of the solid have a
profound effect on the crystallographic orientation
angle field in the dendrite, as displayed in Fig. 4b.
The shearing causes several distinct subgrains to
form within the solid layers along the top and bot-
tom walls. The formation of the subgrain bound-
aries can be explained by the standard tilting
mechanism. The subgrain boundaries in the solid
layers along the top and bottom walls can all be
characterized as low angle because the misorienta-
tions between the subgrains are always much below
Da � 0.2 (�11�). Furthermore, the values of the
phase field inside of the subgrain boundaries re-
main very close to unity (Fig. 4a), implying that the
solid layers along the top and bottom walls behave
mechanically as a single solid structure. Over time,
the subgrains undergo some coarsening, but the
shearing continues to create new subgrains. High-
angle grain boundaries can be observed between
some of the subgrains in the solid layers and the
horizontally growing dendrite branches in the cen-
ter of the domain, which are essentially undistorted
(a = 0). Hence, in addition to the formation of tilt
grain boundaries inside of individual dendrite arms,
impingement of different arms of a deformed single
dendrite can also lead to grain boundaries. While
these phenomena are well known in the manufac-
ture of single crystals, they have not been simulated
previously.

Fig. 6. Mechanical boundary conditions for the simulation of coupled
solidification and compression of a dendritic network.

-1 1

-0.01 0.04

(a) (b) (c) (d)
Fig. 7. Computed phase field (upper row) and crystallographic orientation angle (lower row) contours during solidification and compression of a
dendritic network: (a) 0% compression, (b) 5% compression, (c) 10% compression, and (d) 20% compression.
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Compression of a Dendritic Network

The third simulation example involves compres-
sion of a single-crystal dendritic network at a high
volume fraction of solid. Initially, a single seed with
a = 0 is placed in the lower left corner of a rectan-
gular domain with adiabatic boundaries. After some
time, the vertically growing dendrite arm along the
left wall reaches the upper boundary of the domain.
As shown in Fig. 6, at that time a complex single-
crystal dendritic network is established over much
of the domain and compression is initiated. Inside of
the dendritic network, the solid fraction is about
80%. During the compression, the upper domain
wall is moved downward, while frictionless sliding
is allowed along all other walls (Fig. 6). The com-
pression rate is chosen such that at 20% compres-
sion, the horizontally growing dendrite arm along
the lower domain wall increases in length by about
150%.

Figure 7 shows the computed phase field and
crystallographic orientation angle contours at 0%,
5%, 10%, and 20% compression. The corresponding
von Mises stress and equivalent plastic strain con-
tours in the solid are displayed in Fig. 8. It can be
seen that the yield stress in the solid is first reached
in the upper left corner of the domain. With
increasing compression, the region of plastic defor-
mation propagates downward and to the right in-
side of the dendrite arms that are directly adjacent
to the left vertical and upper horizontal domain
walls. The compression causes some of the interior
dendrite arms in the upper portion of the domain to
impinge and merge. Yielding can be observed in the
relatively thin rows of bridges between impinging
dendrite arms. At 20% compression, a continuous,
fully solid region exists in approximately the upper
25% of the solid network (upper panels of Fig. 7). On
the other hand, the dendrite arms in the lower

portion of the domain are essentially undeformed.
The lower panels of Fig. 7 indicate that the plastic
deformation of the dendritic network causes again
the formation of numerous subgrains that are sep-
arated by low-angle grain boundaries. As in the
previous example, these grain boundaries exist both
within individual dendrite arms and between de-
formed dendrite arms that have impinged.

CONCLUSION AND OUTLOOK

A model has been developed to numerically sim-
ulate coupled solidification and deformation of
dendritic structures. Solidification and grain
boundary dynamics are modeled using the poly-
crystalline phase-field model of Warren et al.12 This
model is modified to account for the advection of the
phase field, temperature, and crystallographic ori-
entation angle by solid deformation. The stresses
and elasto-viscoplastic strains in the solid are com-
puted using the material point method.13 The
mechanical behavior of a grain boundary is modeled
using a highly approximate procedure that is based
on the local value of the phase field. Fully solid
behavior is assumed when / > 0 everywhere inside
of a grain boundary. Conversely, for values of /< 0,
the grain boundary is assumed to contain sufficient
liquid-like material that no stresses are transmit-
ted.

Three examples are presented to demonstrate the
suitability of the current model to simulate the
coupled solidification and deformation of dendritic
structures. The results show that complex stress
and strain distributions develop in a compressed
dendrite. The deformations result in variations in
the crystallographic orientation angle within a sin-
gle dendrite that, in turn, affect the subsequent
solidification behavior. Shearing of a dendritic
structure occurs primarily in relatively narrow

0 5E+06 [Pa]

0 0.5

(a) (b) (c) (d) 
Fig. 8. Computed von Mises stress (upper row) and equivalent plastic strain (lower row) contours in the solid during solidification and com-
pression of a dendritic network: (a) 0% compression, (b) 5% compression, (c) 10% compression, and (d) 20% compression.
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bands near or inside grain boundaries or the thin
junctions between different dendrite arms. The
deformations can cause the formation of low-angle
tilt grain boundaries inside of individual dendrite
arms. In addition, grain boundaries form when dif-
ferent arms of a deformed single dendrite impinge.
During compression of a high solid fraction single-
crystal dendritic structure, the deformations are
limited to a relatively thin layer along the com-
pressing boundary. The compression causes consol-
idation of this layer into a fully solid structure that
consists of numerous subgrains.

The simulations in this article are limited to two
dimensions and dendritic growth conditions that
would be difficult to achieve in an experiment.
These choices were made to achieve reasonable
computational times (of the order of 1 day) on a
standard single processor computer workstation.
More realistic, three-dimensional simulations
would be needed to allow for an investigation into
the constitutive behavior of semisolid mushy zones
in casting processes. Three-dimensional simula-
tions are possible because three-dimensional ver-
sions of both the polycrystalline phase-field
model14 and the material point method15 are
available. However, such simulations would re-
quire large computer resources. In addition, the
parameters in the polycrystalline phase-field model
should be adjusted to more closely correspond to
real materials.

Future work should also include modeling of the
flow of the liquid surrounding the deforming solid.
In this respect, it would be desirable to solve a
unified, phase-field-dependent equation of motion
for both the solid and the liquid. The main difficulty
with such an equation would be to realistically
model the transition from solid to liquid mechanical
behavior inside of the diffuse interface. In the
phase-field model of melt convection during solidi-
fication by Beckermann et al.,16 the solid was as-
sumed to be rigid and stationary so that only a

liquid momentum equation needed to be considered.
Sun and Beckermann17,18 extended this model to
two immiscible Newtonian fluids having large vis-
cosity contrasts. A phase-field model for simulta-
neous solid deformation and liquid flow is still not
available. A unified equation of motion would also
need to better account for the mechanics of grain
boundaries. It should take into account the depen-
dence of the mechanical behavior of a grain bound-
ary on the local crystalline order.
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