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AbstractÐThe sidebranching behavior in free dendritic growth into a supercooled melt is investigated
through a detailed measurement of the sidebranch structure of succinonitrile (SCN) dendrites using images
from the microgravity experiment of Glicksman and co-workers. The measurements show that the side-
branching evolution is divided into two regimes: an initial linear regime and a subsequent non-linear coar-
sening regime. A simple model, based on the Mullins±Sekerka linear stability theory, is developed to
describe the initial sidebranching behavior. The excellent agreement of the model prediction with the exper-
imental results indicates that the initial sidebranch spacings are selected by the maximum instability wave-
length. In the non-linear regime, two new geometrical parameters, derived from the measurements, are
proposed to characterize the coarsening process of the sidebranches and to compare the measurements
with available coarsening theories. It is found that coarsening at the sidebranch roots follows closely classi-
cal laws for purely capillary-driven isothermal coarsening, but the overall coarsening process of the entire
sidebranching dendrite cannot be explained by these isothermal coarsening theories. # 1999 Acta Metallur-
gica Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

The sidebranching phenomenon in dendritic growth

has recently received increased research attention.

To metallurgical engineers sidebranches are import-

ant because they establish the length scales and pat-

tern of microsegregation, and therefore determine

the properties of solidi®ed materials. Due to its rich

behavior as a non-linear phase transformation pro-

cess, the sidebranching phenomenon is also of inter-

est to physicists. Here, we focus on sidebranching

in free dendritic growth into an essentially in®nite

volume of an initially uniformly supercooled melt

of a pure substance. A typical freely grown dendrite

branch is shown in Fig. 1.

The formation of dendritic sidebranches can gen-

erally be attributed to the Mullins±Sekerka

instability [1]. Based on this idea, Langer and

MuÈ ller-Krumbhaar developed the marginal stability

theory [2] that ascribes the sidebranching to an

intrinsic morphological instability of the needle

crystal Ð with the tip persisting in a marginal state

of interfacial stability. Later, Langer and co-

workers [3±5] investigated the thermal noise ampli®-

cation mechanism for sidebranching, which has

become the preferred explanation for the side-

branching phenomenon. In particular, Langer's

three-dimensional symmetric approach [4], based on

a paraboloidal needle crystal, predicts that the

amplitude of the perturbations grows with the dis-

tance Z from the dendrite tip exponentially as a
function of (Z1/4/s1/2) and the characteristic wave-

length, l, in units of the tip radius R, is given by

l=R � 21=4p
������
6s
p
�Z=R�1=411:29�Z=R�1=4 �1�

where s is the usual selection constant [10.02 for

succinonitrile (SCN)]. However, a comparison
between this model and the experimental results of

Huang and Glicksman [6] shows only approximate,
qualitative agreement and the experimentally

observed sidebranches have much larger amplitudes
than can be explained by purely thermal noise in

the model.
Brener and Temkin [7] have studied the time-

dependent behavior of sidebranch formation taking
into account the nonaxisymmetric, three-dimen-

sional needle crystal shape as proposed by
Brener [8]. This model predicts much faster-growing

sidebranch amplitudes than Langer's symmetric
model and the characteristic wavelength is given by

l=R � 2p�3=5�3=10
������
3s
p
�Z=R�1=511:32�Z=R�1=5: �2�

The predicted sidebranch amplitudes are found to
be in reasonable agreement with the experiment of

Bisang and Bilgram [9, 10] for xenon dendrites and
with the experiment of LaCombe et al. [11] for

SCN dendrites [10]. These studies con®rm that the
sidebranches are indeed triggered by thermal noise.

However, it is shown below that available measure-
ments of the initial sidebranch spacing are only ap-

proximately predicted by either equation (1) or
equation (2).
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The above-mentioned models only deal with the

initial, linear sidebranching behavior Ð a relatively

narrow regime near the tip. As is apparent from

Fig. 1, further away from the tip the sidebranches

lose their periodicity. Longer sidebranches continue

to grow into the supercooled melt, while shorter

ones dissolve or grow together and the primary

stem thickens. Experiments by HuÈ rlimann et al. [12]

using xenon and Dougherty and Chen [13] using a

NH4Cl solution, as well as the measurements of Li

and Beckermann [14] on SCN dendrites, have

demonstrated that the sidebranch structure far from

the tip is still self-similar and geometrical par-

ameters, such as the contour length and projection

area, can be scaled with the tip radius R. Brener

and Temkin [7] have shown that this strongly non-

linear growth regime is self-similar up to

Z=R� 1=Pe, where Pe is the tip Peclet number.

For the relatively low supercoolings present in

many dendritic growth experiments, the self-similar

regime can thus be several hundred tip radii long.

Brener and Temkin's scaling analysis indicates that

competitive growth between sidebranches leads to

the spacing between the active, longer sidebranches

increasing linearly with distance from the primary

dendrite tip. The inactive, shorter sidebranches

evolve in an essentially isothermal environment

between the active branches [6]. Their spacing and

diameter also increase as a function of distance

from the tip or time in a process that may be as-

sociated with classical isothermal coarsening driven

by a reduction in the surface free energy (or curva-

ture). Because the sidebranch spacing and diameter

are di�cult to de®ne in the non-linear regime,

HuÈ rlimann et al. [12] and Li and Beckermann [14]

have measured the contour length, U, and the pro-

jection area, F, in the sidebranch plane of the den-

drite as a function of the distance from the tip.

These measurements include both the growing and

shrinking sidebranches. Both studies ®nd that the

Fig. 1. Example of a sidebranching dendrite growing into a supercooled melt; the image is from the
microgravity experiment of Glicksman et al. [15] for SCN.
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projection area increases linearly with the contour
length and that the slope of F(U) normalized with

the tip radius R is a constant independent of the
supercooling. In other words, the ratio U/F, which
can be interpreted as an interfacial length concen-

tration, does not vary with distance from the tip or
time in the self-similar regime 1� Z=R� 1=Pe.
This astonishing linear behavior has not been

explained theoretically, although HuÈ rlimann et
al. [12] have proposed a simple rod model. The fact
that the normalized interfacial length concentration

is a constant would suggest that coarsening is
absent in the non-linear regime. More likely, an
increase in the interfacial length concentration due
to sidebranch growth into the supercooled melt

may be ``canceled'' by a decrease due to isothermal
coarsening. While the competitive growth of the
active sidebranches is well explained by Brener and

Temkin's theory [7], the role of capillary-driven
coarsening and the spacing adjustment mechanisms
for all sidebranches in free dendritic growth are

apparently in need of further investigation.
In this paper we continue our measurements [14]

of single SCN dendrites growing freely into a super-

cooled melt, using images from the microgravity ex-
periments of Glicksman et al. [15], and investigate
the evolution of the secondary dendrite arm spacing
and the coarsening of the sidearm structure. The

measurements clearly identify the linear and non-
linear sidebranching regimes mentioned above. A
simple model is developed to explain the behavior

of the initial nearly periodic sidebranches. The
model is then compared with the previous theories
[equations (1) and (2)] and our spacing measure-

ments. In the subsequent non-linear sidebranching
regime, none of the existing geometrical parameters
are found to be appropriate for comparison with
classical coarsening theories. We therefore propose

two new parameters in order to understand the
coarsening mechanisms of the dendritic side-
branches. One is the root radius, rr, which is

obtained from the measured arm spacings and rep-
resents the (inverse) curvature in the region near the
sidebranch roots. The other is a mean sidebranch

radius, rm, that is intended to characterize the aver-
age curvature of an entire sidebranch. Both radii
are compared to available coarsening theories.

2. MEASUREMENT PROCEDURES

The primary source of three-dimensional dendrite
information used in this investigation are photo-
graphs, in the form of orthogonal pairs of digitized

binary images, from the microgravity experiment of
Glicksman et al. [15] for free dendritic growth of
SCN into a uniformly supercooled melt (see Fig. 1

as an example). We use the same analysis technique
as in our previous work [14] to process these
images. After some steps, we obtain two-dimen-
sional reconstructions of the dendrite images

oriented in the sidebranch plane (see Fig. 2). Our

measurements of sidebranching dendrites are per-
formed on these reconstructed images.
The critical measurement in this investigation is

the secondary arm spacing, l, which is the most fre-
quently used, and perhaps most important, par-
ameter to describe the evolution and structure of

sidebranching dendrites. Unfortunately, it is not a
well-de®ned parameter due to the very irregular

nature of the sidebranch structure, particularly in
the non-linear regime. Two extreme methods can be
considered in measuring the spacing. One is to

count every existing branch, no matter whether it is
growing or shrinking. Another extreme is to count
only the actively growing branches which form the

envelope of the dendrite. In the latter method, the
spacing adjustment is controlled only by the com-

petitive branch growth mechanism discussed by
Brener and Temkin [7]. Since we are primarily inter-
ested in coarsening, we choose the ®rst method.

Due to the irregular nature of the dendrite struc-
ture, we measure the spacings for many dendrites
grown under di�erent supercoolings, normalize all

lengths by the tip radius, and analyze the results
statistically. The supercoolings vary from 0.23 to

0.78 K, which give tip radii ranging from 19 to
72 mm.
Figure 2 schematically illustrates the measure-

ments performed in the present study. For the spa-
cing, special care must be taken to perform the
measurements in a consistent and reproducible

manner. We propose a procedure that is based on
®rst determining the contour of the primary stem of

the dendrite, and then projecting every valley point
between sidebranches onto this stem contour line.
The sidebranch spacing is then de®ned as the dis-

tance between two neighboring points on the stem
contour (Fig. 2).
The primary stem contour in the initial side-

branching regime is simply a best ®t of all side-
branch valley coordinates. In the region far from

the tip, we de®ne the primary stem to be the envel-
ope of the inactive valleys only, where a valley is
judged to be inactive when it is deeper than its two

or three neighboring valleys (Fig. 2). According to
this de®nition, the area under the stem contour is
almost 100% solid.

In addition to the sidebranch spacing, we
measured a number of other geometrical parameters

that are used in the following analysis. They include
the envelope of the active or surviving sidebranch
tips, Xenv, the contour length, U, and the projection

area, F, all of which are illustrated in Fig. 2. A
detailed discussion of these three parameters can be
found in Ref. [14]. It should be noted, however,

that we repeated the measurements of Ref. [14]
using higher resolution images. All new measure-

ments agree with the ones of Ref. [14] to within our
stated measurement accuracy (see below), except for
the contour length, U. The higher resolution allows
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for a better identi®cation of the sidebranch valleys,
which resulted in a signi®cant change in the

measured contour length.

3. RESULTS AND DISCUSSION

Figures 3, 4 and 5 show the results of the present

sidebranch spacing, projection area and contour
length measurements, respectively, normalized by
the tip radius, in log±log plots. The measurements

clearly show that: (i) the dendrites are self-similar
and can be scaled with the tip radius (which varies
by about a factor of four in the present measure-

ments; see above) and (ii) there exist two di�erent
regimes that are divided at about Z=R � 30. The
two regimes correspond to the initial linear and the
subsequent non-linear sidebranching regimes men-

tioned in Section 1 and are analyzed in separate
sub-sections below.

3.1. Initial linear sidebranching regime

The initial sidebranching regime of a dendrite is

characterized by the growth of the ®rst few
branches newly formed near the dendrite tip. The
measured sidebranch spacings, projection area and
contour length in this regime all fall into a narrow

band in Figs 3±5, respectively, demonstrating that
the initial sidebranch formation is a well-de®ned
instability that can be scaled with the tip radius. A

power law ®t of the measured spacing data for
Z=R<30 gives the variation of the average spacing
hli with Z as

hli=R � �1:6920:16��Z=R�0:19820:015: �3�
Similar ®ts of the data for the projection area F for

Fig. 2. Schematic illustration of the measurements performed in the present investigation.
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Z=R<30 and the data for the contour length U for

Z=R<20 yield the following scaling relations:

F=R2 � �0:84720:04��Z=R�1:59820:03 �4�

U=R � �0:88720:03��Z=R�1:11620:03: �5�
The error bands for the pre-factors and the expo-

nents were obtained by considering the uncertainties

in both the present measurements and the tip radius

measurements [15]. It should be mentioned that the

experimental correlations for F and U provided in

Ref. [14] are di�erent because in our previous study

we only correlated the data for Z=R� 1.

Using the spacing measurement result

[equation (3)], we ®rst tested Langer's model

[equation (1)] and Brener and Temkin's model

[equation (2)], and found that both theories show a

discrepancy with the measurement that cannot be

explained by measurement error. Even for Brener

and Temkin's model, which is based on the more

realistic nonaxisymmetric needle crystal shape and

has previously shown good agreement with exper-

imental measurements of the sidebranch

amplitude [9], there still is a nearly 30% deviation

from the present SCN data for the sidebranch spa-

cings (see Fig. 3). In order to overcome this short-

coming of the previous models in the sidebranch

spacing prediction, we develop in the following a

simple model of the initial sidebranch spacing devel-

opment that is based on a Mullins±Sekerka instabil-

ity analysis performed on the needle crystal surface.

Although the analysis of Brener and Temkin is

much more sophisticated and rigorous, we believe

that some of the simpli®cations they made in their

analysis lead to the above noted discrepancy with

the measurements.

For a planar solidi®cation front growing into a

pure supercooled melt with a steady velocity V0,

Mullins±Sekerka's linear stability analysis [1] shows

that the evolution of a sinusoidal perturbation of

in®nitesimal amplitude d and wavenumber o on the

interface is determined by the following dispersion

relation:

_d
d
� ÿo

L
�ksGs � klGl � �ks � kl�Go 2� �6�

where _d � dd=dt, Gl and Gs are the thermal gradi-

ents at the unperturbed ¯at interface (d � 0) in the

liquid and solid, respectively, ks and kl are the solid

and liquid thermal conductivities, respectively, and

G � Tmgsl=L is the Gibbs±Thomson coe�cient in

which gsl is the surface free energy, Tm is the melt-

ing temperature, and L is the latent heat. The con-

dition for marginal stability of the interface (i.e.
_d=d � 0) gives the critical wavenumber as

o 2
c � ÿ

1

G
ksGs � klGl

ks � kl
� ÿ 1

G
�G �7�

Fig. 3. Measured normalized secondary arm spacings (symbols), l/R, as a function of the normalized
distance, Z/R, from the primary tip; the two solid lines represent a best ®t of the data for Z=R<30 and
Z=R > 30, respectively; the interrupted lines are model results for the initial linear sidebranching regime

(with s � 0:02).
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where

�G � ksGs � klGl

ks � kl

is the conductivity-weighted average thermal gradi-

ent at the ¯at crystal±melt interface. Equation (7)

shows that the solidi®cation front of a pure sub-

stance is unstable only if �G is negative. In the pre-

sent case of free growth into a supercooled melt,

the thermal gradient within the solid, Gs, is zero,

and the thermal conductivities of the solid and

liquid can be taken to be approximately equal, such

that �G � 1
2Gl. From an energy balance (or Stefan

condition) at the interface, the unperturbed thermal

Fig. 4. Normalized projection area, F/R2, vs normalized distance from the tip, Z/R; the two lines rep-
resent a best ®t of the data for Z=R<30 and Z=R > 30, respectively.

Fig. 5. Normalized contour length, U/R, vs normalized distance from the tip, Z/R; the two lines rep-
resent a best ®t of the data for Z=R<20 and Z=R > 40, respectively.
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gradient on the liquid side is found to be

Gl � ÿV0L=alcp, where al and cp are the thermal

di�usivity and speci®c heat, respectively, of the

liquid. Then equation (7) gives the critical wave-

length, lc, as

lc � 2p
o c
� 2p

�
2ald0
V0

�1=2

� 2p
���������
d0lth

p
�8�

which is simply the root-mean product of the two

relevant physical length scales. Here lth � 2al=V0 is

the thermal length and d0 is the capillary length

de®ned by d0 � gslcpTm=L
2. The maximum instabil-

ity wavelength, lm, which has the highest rate of

growth of the perturbations ( _d=d � maximum) and

establishes the length scale that is likely to be

observed experimentally, can be easily found to be

lm � 2p
om
� 2p

������������
3d0lth

p
�

���
3
p

lc: �9�

The Mullins±Sekerka instability is directly related

to the local thermal gradient at the interface (or the

interface velocity), which can be determined by a

linear approximation of the thermal ®eld near the

interface. Therefore, a curved interface can be

expected, within the present linear approximation,

to have the same critical and maximum instability

wavelengths as derived above for a planar interface.

This localizability of the Mullins±Sekerka instability

allows the use of the same stability analysis in the

study of dendritic sidebranching.

Let us now consider a steady-state needle crystal,

Z=R � x0�X=R, Y=R�, growing with a constant tip

velocity, Vt, and tip radius, R, into a supercooled

melt of in®nite extent. We treat the interface of the

needle crystal in the vicinity of an arbitrary point

X/R, Y/R, Z=R � x0�X=R, Y=R� as a piece of a tan-

gential plane moving with the normal velocity Vn,

which is equivalent to V0 in the previous linear

stability analysis. The characteristic wavelengths (lc
and lm) of a local instability on the needle crystal

surface hence depend only on the local normal

interfacial velocity, Vn, according to equations (8)

and (9). Obviously, di�erent needle crystal shapes

will result in di�erent relationships between Vt and

Vn. For an axisymmetric needle crystal (parabo-

loid), Z � �X 2 � Y 2�=�2R�, we have

Vn � Vt�1� 2Z=R�ÿ1=2: �10a�
For a nonaxisymmetric three-dimensional needle

crystal, only the four ridges of the crystal, where

the sidebranching occurs, need to be considered.

According to Brener [8], the contour of the ridges is

given by X=R � �s=s2�1=5�53Z=R�3=5. Omitting the

factor �s=s2�1=5, which is very close to unity, yields

the following expression for Vn along the ridges

Vn � Vt�1� �53Z=R�4=5�ÿ1=2: �10b�
Substituting equations (10a) and (10b) into

equations (8) and (9), and using the usual selection

criterion for the dendrite tip operating state

s � 2ald0=VtR
2, the variations of the local critical

wavelength lc and the local maximum instability

wavelength lm with distance away from the primary

tip, Z, for the two di�erent needle crystal shapes

are given by

axisymmetric needle crystal:

lc=R � 2p
���
s
p �1� 2Z=R�1=411:06�Z=R�1=4 �11a�

lm=R � 2p
������
3s
p
�1� 2Z=R�1=411:84�Z=R�1=4 �11b�

nonaxisymmetric needle crystal:

lc=R �2p
���
s
p �1� �53Z=R�4=5�1=4

10:99�Z=R�1=5 �12a�

lm=R �2p
������
3s
p
�1� �53Z=R�4=5�1=4

11:72�Z=R�1=5: �12b�

The approximate expressions are curve ®ts for

8<Z=R<30 and an experimental value of s � 0:02
for SCN [6]. The above analysis shows that the

direct incorporation of the Mullins±Sekerka linear

stability analysis for a planar interface into dendrite

growth models allows one to determine the side-

branch spacing for a given needle crystal shape in a

very simple way. This is the most appealing feature

of the present model.

Equations (11) and (12) are identical in form to

equation (1) from Langer's model [4] and equation

(2) from Brener and Temkin's model [7], respect-

ively, except for the value of the pre-factor. The

agreement with those more sophisticated models

implies that the present model, despite its simplicity,

is essentially correct. The pre-factors in both of the

previous models are between the pre-factors for the

critical, lc, and maximum, lm, instability wave-

lengths in the present model, but somewhat closer

to lc.
Since the present model, using lm, predicts a lar-

ger sidebranch spacing for both crystal shapes than

the previous models, the above noted discrepancy

in the sidebranch spacing between the previous

models and experiments can be reduced. For

example, at a distance of Z=R � 7±9, where the

®rst clear sidebranches can be observed in Huang

and Glicksman's earth-based experiments for

SCN [6], the dimensionless spacings, lm/R, pre-

dicted by the present model [equations (11b) and

(12b)] are 3.1 and 2.7 for the two crystal shapes.

Both of these values are in much better agreement

with the experimental value of 3.0 than the value of

l=R12:0±2:1 predicted by Langer's and Brener and

Temkin's models. HuÈ rlimann et al. [12] measured a

normalized initial sidebranch spacing near the tip of

3:220:4 (and a s of 0.02) in their experiments with

xenon dendrites, again indicating better agreement

with the present model than with Langer's and
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Brener and Temkin's predictions. These preliminary
comparisons with experiments for two di�erent sub-

stances suggest that the maximum instability wave-
length is indeed selected as the initial sidebranch
spacing. However, some uncertainties remain due to

the possible in¯uence of convection in the earth-
based experiments of Refs [6, 12].
The present arm spacing measurements, being

made on dendrites grown in a convection-free en-
vironment, allow for a more conclusive comparison
with the model over the entire linear sidebranching

regime, which is shown in Fig. 3. Both the exponent
of 0:19820:015 and the pre-factor of 1:6920:16 in
the experimental correlation, equation (3), are in
excellent agreement with the present model for the

maximum instability wavelength of the nonaxisym-
metric needle crystal [equation (12b)]. This good
agreement not only validates our simple model but

also con®rms that: (i) the maximum, and not the
critical, instability wavelength determines the
observed initial sidebranch spacing and (ii) the non-

axisymmetric needle crystal of Brener [8] gives a
more realistic dendrite shape. Furthermore, since
the present model relies directly on the Mullins±

Sekerka stability theory, the present comparison
can be regarded as an experimental validation of
this important theory.
While the selection mechanism of the initial side-

branch spacings is well clari®ed by the present spa-
cing measurement and model, the projection area
measurement allows us to demonstrate another im-

portant growth mechanism of dendritic crystals.
The nonaxisymmetric needle crystal model of
Brener [8] gives the following analytical result for

the projection area, F, in the sidebranch plane

F=R210:85�Z=R�1:6: �13�
The present correlation of the F(Z) measurements
[equation (4)] shows the same scaling exponent of
1.6 and the same pre-factor of 0.85 to within the

measurement uncertainty. The fact that real den-
drites with sidebranches and a needle crystal (with-
out sidebranches) have the same projection area

indicates that the theoretical steady-state solution is
preserved in some geometrical parameters (the pro-
jection area here) of the actual dendritic patterns.
Similar results have been reported by Couder et

al. [16] for two-dimensional dendritic growth, aniso-
tropic viscous ®ngering, and anisotropic di�usion-
limited aggregation. While the projection area is

exactly preserved in the initial linear regime, we can
see from Fig. 4 a small deviation of F(Z) from that
of the needle crystal in the non-linear regime. This

deviation may be attributed to coarsening, which is
discussed in the next section.

3.2. Non-linear regime

As the sidebranches evolve into a non-linear
regime far down from the tip, a coarsening

phenomenon occurs during which some side-

branches continue to grow as others are squeezed

out, resulting in a very irregular sidebranch struc-

ture. It is presently not clear whether this coarsen-

ing process can be described by available theories.

The classical description of coarsening by Lifshitz

and Slyozov [17] and Wagner [18] (LSW) assumes

an isothermal system, a vanishingly small solid

volume fraction, and spherical particles. Then, in

the limit of in®nite time, the steady-state particle

size distribution scaled by the mean particle size

was found to be time invariant, and the mean par-

ticle radius, �r, was shown to increase with the cube

root of time, t (i.e. �r0t1=3). None of the above

assumptions are satis®ed for the present dendrite

sidebranching system. More recent theories have

shown that the coarsening rate exponent of 1/3

remains unaltered for ®nite solid volume fractions

and certain non-spherical particle geometries, but

the constant of proportionality in the temporal

power law and the particle size distribution change.

The possible e�ect of non-isothermality and the

resulting net solidi®cation, as present in free dendri-

tic growth, has not been investigated theoretically.

Hence, the purpose of this section is simply to de-

®ne and measure meaningful geometrical par-

ameters of sidebranching dendrites in the non-linear

coarsening regime, and to assess the need to

develop new theories of coarsening of the side-

branch structure in free dendritic growth.

As can be seen from Fig. 3, the experimental

data for the sidebranch spacing become, after

Z=R � 30, very dispersed. The ¯uctuations in the

measured spacings re¯ect the dynamic adjustment

process of the arm spacing through competitive

growth and capillary-driven coarsening. In spite of

the ¯uctuations, we can still observe an increasing

trend in the spacing with Z in the experimental

data. A least-squares ®t of all data for Z=R > 30 by

a power law yields

hli=R � �0:57220:06��Z=R�0:47720:05

� �0:57220:06��Vtt=R�0:47720:05: �14�

The second equality simply states that Z � Vtt in

steady dendritic growth. The exponent of 0.477 is

much di�erent from the classical coarsening expo-

nent of 1/3 (i.e. l0t1=3). Likely, the disagreement in

the exponent is due to the fact that the arm spacing

is not an appropriate geometrical parameter for

comparison with available coarsening theories.

Another geometrical parameter that has been

used to characterize coarsening in the non-linear

regime is the projection area per unit contour length

in the sidebranch plane, normalized by the tip

radius, i.e. F/(UR) [12, 14]. By including both grow-

ing and shrinking sidebranches, this dimensionless

parameter can be associated with a normalized

mean branch radius [12]. The present measurement
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of the projection area F for Z=R > 30 is well corre-

lated by (Fig. 4)

F=R2 � �0:57820:04��Z=R�1:7220:03 �15�
which is in close agreement with our previous

result [14]. Similarly, our measurement of the con-

tour length U for Z=R > 40 is well correlated by

(Fig. 5)

U=R � �0:37820:04��Z=R�1:5020:05: �16�
The exponent of 1.5 in equation (16) should be con-

trasted with an exponent of 1.7 measured

previously [14]. Di�erences between equation (16)

and our previous result [14] are apparent only at

large Z/R, and we believe that the present measure-

ment is more accurate because it is based on higher

resolution images. Combining equations (15) and

(16) yields

F

UR
� 1:529�Z=R�0:22: �17�

As opposed to the previous studies [12, 14], the pre-

sent result for F/(UR) is not a constant in the non-

linear regime, but is a function of Z/R. As with the

sidebranch spacing, equation (14), the exponent of

0.22 is not close to the classical coarsening exponent

of 1/3, indicating that F/(UR) is not an appropriate

parameter for comparison with available coarsening

theories.

As discussed by Marsh and Glicksman [19], a

sidebranching dendrite has many (positive and

negative) curvatures and it is presently not clear

how the coarsening of a dendrite can be described

quantitatively. In the following we explore this issue

in more detail by proposing two new geometrical

parameters, both being characteristic branch radii,

that are intended to better characterize the mean

curvature and perhaps allow for a better compari-

son with coarsening theories.

3.2.1. Branch radius at the root rr. The reciprocal

of the radius of the branches deep inside the side-

branch structure near the junction between an arm

and the primary stem is likely to be a dominant

curvature controlled by isothermal coarsening. Due

to the di�culty of measuring such a root radius, rr,
directly from the images, we propose to calculate it

from the measured arm spacings and an estimate of

the local area fraction solid, fa, in the sidebranch

plane of Fig. 2. Since for an array of cylindrical

arms the diameter is equal to the spacing times the

area fraction of solid, we have that rr � fal=2, and
equation (14) can be converted to

hrri=R � 0:286fa�Z=R�0:477 � 0:286fa�Vtt=R�0:477:
�18�

The local area fraction fa may be estimated by

dividing an axial section of the (solid) area F in

Fig. 2 by the (liquid plus solid) area, Fenv, under

the sidebranch envelope for the same section.

The sidebranch envelope measurement,

Xenv=R � 0:668�Z=R�0:859 taken from Ref. [14] and

veri®ed here, allows for the calculation of the pro-

jection area of the sidebranch envelope, Fenv, as

Fenv=R
2 � 0:359�Z=R�1:859: �19�

Using equation (15) for the projection area F, the

local area fraction is then given by

fa � dF=dFenv � 1:488�Z=R�ÿ0:139: �20�
According to this equation, the local solid area frac-

tion varies from about 0.93 at Z=R � 30 to 0.74 at

Z=R � 150, which appears to be realistic looking at

Fig. 1. Substituting equation (20) into equation (18)

yields

hrri=R � 0:426�Z=R�0:338 � 0:426�Vtt=R�0:338: �21�
The above result shows a coarsening exponent very

close to the general coarsening exponent of 1/3 and

suggests that the branch radius at the root rr is a

suitable parameter for characterizing coarsening of

the sidebranches in the non-linear regime. In the

following, a preliminary comparison is made with

other theories regarding the value of the coarsening

rate constant (i.e. the pre-factor) and the radius dis-

tribution.

Classical LSW theory describes the coarsening

behavior of spherical particles in the limit of zero

volume fraction solid as

�r3�t� ÿ �r30 �
8

9
ald0t � KLSWt �22�

where �r0 is the initial mean particle radius, and

KLSW � 8
9 ald0 is the coarsening rate constant. At

long times, equation (22) attains the asymptotic

form �r�t�At1=3. In order to make a quantitative

comparison with the measured coarsening rate con-

stant, we rewrite our measurement result,

equation (21), as

hrri3 � 0:0773�R2Vt�t � 0:0773

�
2ald0
s

�
t

� 7:73ald0t: �23�

Not surprisingly, the above result shows a much

larger coarsening rate constant than LSW theory

[equation (22)]. More realistic models that take into

account the e�ect of ®nite volume fractions of solid

have been developed [20±22]. For example, at a

volume fraction of 0.8, a reasonable value in the

root region of the branches, Marsh and

Glicksman's model [21] predicts a coarsening rate

constant of 8.93ald0, which is quite close to the pre-

sent measurement value. Although this comparison

is preliminary, it does show that the sidebranch

root radius is likely to be a meaningful parameter

in describing coarsening during dendritic growth.

Converting the measured spacings l into the root

branch radius rr one by one according to the for-

LI and BECKERMANN: EVOLUTION OF SIDEBRANCH STRUCTURE 2353



mula rr � fal=2, we also examined the size distri-

bution of rr. The result, which is given in terms of

rr renormalized by the average radius hrri, is pre-

sented in Fig. 6. For comparison we also plot the

theoretical distribution functions obtained by

LSW [17, 18], Marsh and Glicksman [21] for three-

dimensional coarsening at a volume fraction

fv � 0:6, and Ardell [23] for two-dimensional coar-

sening at fv � 0:3.
It can be seen from Fig. 6 that our experimental

result shows a much broader distribution with a

much lower peak than the LSW prediction.

However, comparing with the models that take into

account the e�ect of ®nite volume fraction, the

agreement becomes better except that the measured

distribution is more symmetrical and the distri-

bution peak is closer to 1 (see Fig. 6). We can also

notice that the experimentally measured distribution

seems to be in better agreement with the two-

dimensional model than the three-dimensional

model. Considering that the sidebranches grow

along a row on the four ridges of the dendrite and

that the sidebranches on di�erent ridges may com-

municate only weakly, the coarsening at the root of

the sidebranches may indeed be more like a two-

dimensional process rather than a three-dimensional

process. Since there are, to the authors' knowledge,

no two-dimensional coarsening models available for

volume fractions beyond fv � 0:5, we cannot make

a more direct comparison with two-dimensional

coarsening theories.

3.2.2. Mean sidebranch radius rm. As indicated in

the previous section, the branch radius rr only

re¯ects the coarsening phenomenon near the branch

root. We therefore propose another parameter, a

mean sidebranch radius rm, to characterize the

overall coarsening process of a free dendrite

branch.

The mean sidebranch radius rm is not derived

from the branch spacing measurements, but from

measurements of the primary stem shape, its projec-

tion area Fps and its contour length Ups, and the

projection area F and the contour length U of a

dendrite (Fig. 2). The idea is based on the fact that

the quantity �DFÿ DFps�=�DUÿ DUps� is an area-

averaged radius of a sidebranch if we approximate

a branch as a cylindrical rod. The quantities DF,
DFps, DU and DUps are shown in Fig. 2 to illustrate

this concept. Since we have correlated all measure-

ments as continuous functions of Z, we can use the

following di�erential de®nition for the mean side-

branch radius rm:

rm � �dFÿ dFps�=�dUÿ dUps�: �24�

The present measurements of the primary stem

shape Xps/R are well correlated by (not plotted)

Xps=R ��2:2620:14��Z=R�0:31620:02

for Z=R > 30: �25�
From equation (25), we can determine Fps and Ups

of the primary stem as

Fig. 6. Comparison of size distributions derived from isothermal coarsening theories with the present
measurements of the distribution of the sidebranch radii at the root. The area under the distribution is

normalized to unity.
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Fps=R
2 � 1:72�Z=R�1:32 for Z=R > 30 �26a�

Ups=R11:02�Z=R�0:996 for Z=R > 30: �26b�
According to the de®nition of rm [equation (24)],
we then obtain

rm �
dFÿ dFps

dUÿ dUps

�
�

0:994�Z=R�0:72 ÿ 2:27�Z=R�0:32
0:567�Z=R�0:50 ÿ 1:016�Z=R�ÿ0:004

�
R: �27�

For 40<Z=R<200, the above equation can be well
approximated by a power law

rm=R10:801�Z=R�0:341 � 0:801�Vtt=R�0:341: �28�
Again, the exponent of 0.341 is in good agreement

with the classical coarsening exponent of 1/3. Using
a slightly less accurate cubic root approximation of
equation (28), given by rm=R10:830�Vtt=R�1=3, we
obtain

r3m � 0:572�R2Vt�t � 0:572�2ald0=s�t

� 57:2ald0t: �29�

The above equation shows a much larger coarsen-

ing rate constant than the one we obtained for the
root radius, equation (23). Such a large rate con-
stant cannot be explained using available theories

for isothermal two-phase coarsening at a ®nite solid
fraction, e.g. Refs [19±22]. A reason for the discre-
pancy could be that the sidebranches on a free den-

drite have close neighbors only in the Z direction,
while they are surrounded by supercooled melt in
the circumferential direction and in the tip region.
In particular in the tip region of the active (or

growing) sidebranches, coarsening is controlled by
heat transfer between the interface and the super-
cooled melt (net solidi®cation) and competitive

growth. Hence, the overall sidebranch coarsening
process in free dendritic growth is driven by the
combined e�ects of net solidi®cation and interfacial

energy reduction. Interestingly, the measured coar-
sening exponent shows excellent agreement with
theories of purely capillary-driven coarsening. Only

a more complete analysis of non-isothermal coar-
sening, with net solidi®cation, can clarify this mat-
ter.

4. CONCLUSIONS

A detailed measurement of the sidebranch struc-
ture of freely growing succinonitrile (SCN) den-

drites is performed using images from the
microgravity experiment of Glicksman and co-
workers. The measurements reveal two di�erent

regimes in the sidebranching evolution: an initial
linear regime and a subsequent non-linear coarsen-
ing regime. A simple model, based on the Mullins±
Sekerka linear stability theory, is developed to

describe the initial sidebranching behavior and is
found to be in excellent agreement with the exper-

imentally measured arm spacings. It is found that
the initial sidebranch spacings are selected by the
maximum instability wavelength. In addition, the

result of the projection area measurement suggests
preservation of the steady-state solution (needle
crystal) in the dendrite volume during three-dimen-

sional dendritic growth. In the non-linear regime,
the measured arm spacings demonstrate a coarsen-
ing behavior quite di�erent from classical laws for

purely capillary-driven isothermal coarsening. On
the other hand, the equivalent radius at the side-
branch root, obtained from the measured arm spa-
cings, appears to compare well with previous

isothermal coarsening theories for ®nite volume
fractions of solid. Another parameter, the mean
sidebranch radius, is developed to characterize the

coarsening process of a whole sidebranch in free
dendritic growth. It is obtained from measurements
of the projection area, the contour length and the

primary stem shape. While its coarsening behavior
follows the classical cube root of time law, the large
coarsening rate constant suggests that new theories

of non-isothermal coarsening need to be developed
to explain the measurements completely.
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