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1. ABSTRACT 

The mesoscopic solidification model is based on a simplified representation of dendritic 
structures by their envelopes. It provides quantitative predictions of dendritic growth over a wide 
range of solidification conditions. Because of its low computational cost compared to microscopic 
(e.g., phase-field) methods, parametric studies can be performed on a scale that corresponds to 
the Representative Elementary Volume (REV) used in deriving volume-averaged macroscopic 
models of solidification processes. In the present study, the mesoscopic model is applied to 
dendritic solidification of up to 100 interacting equiaxed grains. The results are averaged over the 
volume containing the grains and then used to obtain constitutive relations for macroscopic mod-
els. We present relations for the specific surface area of the grain envelopes and the solute diffu-
sion length from the grains into the extra-dendritic liquid. It is shown that the present computa-
tional upscaling approach can be used to obtain improved constitutive relations. 
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2. INTRODUCTION 

The growth of dendritic grains is governed by an intricate interplay between diffusion and 
convection of heat and solute as well as capillary and surface effects. The growth is also influ-
enced by adjacent grains. These can “feel” each other due to the overlap of thermal and solutal 
fields surrounding each grain. Dendritic structures can be simulated by (microscopic) phase-field 
methods. However, computing and memory requirements for these methods are heavy. It is only 
possible to apply them on the scale of a few dendrites and for purely diffusive situations on 
standard computers. Cellular-automaton modeling [1] is a common mesoscopic approach that 
can simulate the growth of multiple dendrites on a larger scale at the expense of simplifications. 
However, it is not able to predict accurate grain shapes and relies on very approximate relations 
for modeling grain interactions. 

The mesoscopic envelope model [2] offers a complementary tool for the study of dendritic 
solidification. This model consists of the description of a dendritic grain by its envelope. The 
driving force for the envelope growth is linked to the solute concentration at a certain distance 
ahead of the envelope, the stagnant-film thickness. The branched dendritic structure inside the 
envelope is only implied and its details are not resolved; the interior of the envelope is rather 
described in a volume-averaged sense by fields of solid fraction and averaged phase concentra-
tions (Fig. 1). This model has been validated and shown to provide physically realistic results for 
both equiaxed [3,4] and columnar [5,6] dendritic growth. It provides an accurate description of the 
envelope shape and growth velocity. The detailed level of the representation of grain interactions 
combined with the low computational cost makes the mesoscopic envelope model a promising 
tool for scale bridging approaches that would provide constitutive relations for macroscopic mod-
els. In this paper we show a first application of such an approach. 
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Fig. 1: Example of results of a simulation with the mesoscopic model. Left: four interacting equi-
axed grain envelopes growing in an enclosure. Right: a slice across the enclosure showing the 
liquid fraction field in the interior of the envelopes and the concentration field in the liquid outside 
the envelopes. The initial supersaturation of the melt is Ω0 = 0.05 and the composition is SCN-0.5 
%acetone. 

 
 

3. RESULTS 

We used the mesoscopic envelope model to simulate a Representative Elementary Volume 
(REV) used in deriving volume-averaged macroscopic models of solidification. The results are 
averaged over the volume containing the grains and then used to obtain constitutive relations for 
macroscopic models. Fig. 2 shows simulations of randomly distributed and oriented grains grow-
ing isothermally in a cubic enclosure (the REV) at an initial supersaturation of Ω0 = 0.05. Three 
different grain densities are considered. The dimensionless grain density, NV

ldiff represents the 
mean number of grains in a volume of ldiff

3, where the characteristic length ldiff = Dl/VLGK is the 
diffusion length at the primary tip growing at the theoretical speed, VLGK, at the initial supersatura-
tion Ω0. The theoretical tip speed is obtained from the Ivantsov solution combined with a tip selec-
tion criterion of the type Rtip

2Vtip=const. In the presented simulations the mean distance between 
the grain centers, d0, varies from 22 ldiff to 7 ldiff, resulting in different levels of solutal interaction. It 
is estimated based on a close regular packing arrangement (FCC or HCP) of the grains: d0=(NV

ldiff 
/√2)-1/3 ldiff. Note that in an isothermal configuration Ω0 and NV

ldiff are the only physical parameters 
and fully characterize the conditions of the system. As we can see in Fig. 2, the grains first grow 
freely. Later on, the overlap of diffusion fields slows down the primary tips and the envelopes 
continue to grow laterally, adapting to the adjacent grains. At a smaller mean distance between 
grains the interactions start earlier. The liquid between the envelopes (extradendritic liquid) is 
continuously enriched by the solute rejected from the envelopes. Finally, the concentration of the 
extradendritic liquid reaches the equilibrium liquid concentration and the growth of the envelopes 
stops. 
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(a) 27 
grains in a cubic enclosure of volume (60 ldiff)3: NV

ldiff
 = 1.25·10−3 (d0 = 22 ldiff). 

 
(b) 27 grains in a cubic enclosure of volume (30 ldiff)3: NV

ldiff
 = 10−3 (d0 = 11 ldiff). 

 
(c) 108 grains in a cubic enclosure of volume (30 ldiff)3: NV

ldiff
 = 4·10−3 (d0 = 7 ldiff). 

Fig. 2: Simulations of randomly distributed and oriented grains growing isothermally in a cubic enclosure at 
an initial supersaturation of Ω0 = 0.05 and at three different dimensionless grain densities NV

ldiff (or three 
different mean grain distances d0).  
 
 

In a volume-averaged model such an overlap of diffusion fields is represented by a decrease of the 
average solute gradients at the grain envelopes. These are approximated by the difference of the concentra-
tion of the liquid at the envelope, Cl*, and the average concentration of the extradendritic liquid, 〈Cl〉

e, divided 
by a diffusion length, δl. The evolution of the average concentration of the extradendritic liquid is given by an 
averaged conservation equation of the following form: 
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where ge is the volume fraction of the extradendritic liquid, SV,env is the the specific surface area of 
the envelopes per unit volume of the REV, and Dl is the diffusion coefficient. If we assume iso-
thermal conditions, where Cl* is constant, and introduce the average supersaturation of the extra-
dendritic liquid, 〈Ωl〉

e =(Cl*–〈Cl〉
e)/[(1–k) Cl*], as a dimensionless concentration, Eq. (1) is rewritten 

as: 

 
  

∂(ge Ωl
e )

∂t
= −DlSV ,env

Ωl
e

δ l
, (2) 

where k is the equilibrium partition coefficient. In macroscopic volume-averaged models the 
evolution of the volume fraction of the extradendritic liquid, ge, directly depends on the average 
supersaturation 〈Ωl〉

e. SV,env and δl are parameters essential for an accurate representation of the 
envelope growth kinetics. Both are usually modeled by simplistic analytical or empirical relations. 
Now they can be determined directly by averaging of the mesoscopic simulations, which repre-
sent the phenomena at the scale of the macroscopic REV in detail. The challenge is to find gen-
eral relations, valid in a wide range of solidification conditions. 

Such an attempt for the extreme situation of isothermal growth is illustrated in Figs. 3–4. 
The averaging was made with the simulations shown in Fig. 2 and with an additional set of simu-
lations performed for an initial supersaturation of Ω0 = 0.15 and with all other parameters kept 
identical. Fig. 3 shows the evolution of the average supersaturation of the extradendritic liquid, 
〈Ωl〉

e, and of the envelope fraction (genv=1–ge) with time. Note that the envelopes stop growing 
when 〈Ωl〉

e becomes zero. We can see that with a proper choice of scalings, a generalized evolu-
tion can be obtained that depends neither on the initial supersaturation nor on the grain density. 
The time evolutions of both the supersaturation and the envelope fraction are scaled with a time 
scale of Dl

-1 ldiff
2 (NV

ldiff)-2/3, which is proportional to the diffusion time across the mean distance 
between grains, d0

2/Dl. Fig. 4 shows the evolution of the dimensionless averaged diffusion length 
scaled by the tip diffusion length, δl/ldiff, and of the dimensionless specific surface of the enve-
lopes scaled by the mean grain distance, SV,env ldiff (NV

ldiff)-1/3. Both are best characterized using 
time scales of ldiff VLGK

-1 and ldiff VLGK
-1 (NV

ldiff)-1/3 ~ d0/VLGK, respectively. The first of these time 
scales is the time needed for a primary tip to traverse the diffusion layer in front of the tip and the 
second is proportional to the time needed to traverse the mean distance between the grains. 

     
Fig. 3: Left: Evolution of the supersaturation of the extradendritic liquid. Right: Evolution of the envelope 
volume fraction over the dimensionless time. Both are presented in terms of dimensionless time, scaled by 
the characteristic diffusion time across the mean distance between grains: Dl

-1
 ldiff

2 (NV
ldiff)-2/3 ~ d0

2/Dl.  
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Fig. 4: Left: Evolution of the dimensionless volume-averaged diffusion length over the dimension-
less time scaled by ldiff VLGK

-1. Right: Evolution of the dimensionless specific envelope surface 
area over the dimensionless time scaled by ldiff VLGK

-1 (NV
ldiff)-1/3 ~ d0/VLGK.  

 
 
4. CONCLUSION 

We used the mesoscopic envelope model of solidification to simulate the growth of large 
ensembles of equiaxed grains in the presence of solutal interactions. The configurations ranged 
from weakly to strongly interacting. We calculated representative volume-averaged quantities for 
the simulated ensembles in order to extract parameters that can be used in macroscopic models. 
We have shown examples of the temporal evolution of the volume-averaged envelope surface 
area and of the volume-averaged diffusion length in the liquid at the envelope surface. With these 
examples we have shown that the proper choice of scalings can lead to generalized correlations 
that can be implemented in volume-averaged multiscale models of processes, which are used at 
the industrial scale. This work should be extended to more generally applicable solidification 
conditions that account for heat extraction from the REV and for convection. 
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