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Dendrite fragmentation in alloy solidification due to sidearm pinch-off
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Dendrite sidebranch detachment is an important fragmentation mechanism during the solidification of alloys.
The detachment occurs at the junction between a sidearm and its parent stem. While this pinching process is
driven by capillarity, the presence of solidification opposes the instability. Using a simple numerical model of
a single sidearm, we are able to capture the essential dynamics of dendrite sidebranch development and the
resulting morphological transitions. While shortly before pinch-off the neck itself obeys well-known universal
scaling relations, the overall evolution of the sidearm shape sensitively depends on its initial geometry and the
rate of solidification. It is found that pinch-off only occurs over limited ranges of geometrical parameters and
cooling rates and is generally bounded by sidearm retraction and coalescence regimes. Simple scaling relations
are identified that provide the bounds for the pinch-off regime. Pinching at the branching point is shown to be
faster than the Rayleigh-Plateau instability of an infinitely long cylinder.
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Fragmentation of dendrites is one of the major unresolved
questions in the field of solidification. The detachment of
dendrite sidebranches from a larger stem or the breakup of
dendrite arms are considered key mechanisms in the formation
of grain structure transitions (columnar to equiaxed) in metal
alloy castings [1,2], grain defects such as freckles in single
crystal components [1], and highly refined grain structures in
the solidification of undercooled melts [3,4]. Despite its tech-
nological importance, a systematic understanding of dendrite
fragmentation has been difficult to obtain due to the complexity
of the processes involved and the challenges associated with
its direct experimental observation. Sidebranch detachment
has first been noted in experiments with transparent alloys [1]
[Fig. 1(a)]. Directional solidification experiments have linked
its occurrence to certain transient conditions [1,5,6]. More
recently, sidebranch detachment events have been observed in
metal alloys using synchrotron and x-ray facilities [7–10].

Dendritic structures are characterized by a complex net-
work of primary, secondary, and higher order branches
[Fig. 1(a)]. After their initial growth in an undercooled melt,
the branches undergo a slower evolution near equilibrium that
involves both further solidification and capillary-driven coars-
ening. For this later stage, experimental observations have
revealed three different scenarios for fundamental changes in
the sidebranch morphology [11,12]: (i) retraction of small
sidebranches towards their parent stem [Fig. 1(a), red selec-
tion], (ii) pinch-off or detachment of sidebranches at the narrow
neck with the parent stem [Fig. 1(a), yellow selection], and (iii)
coalescence of neighboring sidebranches. In the present study,
pinch-off of sidebranches is investigated as a cause of dendrite
fragmentation. It will be seen that retraction and coalescence
bound the pinch-off regime to a rather limited parameter range.

Capillary-driven pinching occurs in numerous two-phase
systems. Elongated interface shapes are prone to a pinching
instability that results from a minimization of surface energy,
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with mass or heat transport occurring through the interior
and/or the embedding phase. Examples can be found in
hydrodynamics [13,14], material sciences [15–17], nanotech-
nology [18], and biology [19,20]. The final stage of pinching,
when the neck radius approaches zero, is characterized by
strong localization and acceleration of the neck dynamics,
leading to self-similar, universal behavior. Recently, this
phenomenon has been analyzed in the coarsening of metallic
alloys [16,17].

One well-known pinching mechanism is the Rayleigh-
Plateau instability (RPI) of an infinitely long, perturbed
cylindrical rod subject to capillarity. The RPI has been used to
explain grain refinement in the solidification of undercooled
melts [3,4]. Here, the sidebranches are assumed to be already
detached from the primary dendrite trunks, and the RPI then
acts on the remaining corrugated trunks to produce fragments.
While this mechanism can indeed be responsible for the grain
refined, fully equiaxed microstructures that are observed in so-
lidification of undercooled droplets, the present study focuses
on the initial sidebranch detachment process during columnar
growth. In the solidification of castings, the primary trunks
in the columnar zone usually do not fragment, but dendrite
sidearms can still detach and become equiaxed grains [1,2].
All previous direct experimental observations [1,5–9] confirm
this mechanism and reveal that the location for the pinch-off
is the narrow neck that naturally develops close to the junction
between a sidebranch and its parent stem [Fig. 1(a)].

Previous capillary pinching theories [4,15,17] are limited to
isothermal conditions. However, alloy solidification processes
such as metal casting involve a continuous decrease in
temperature, such that the overall fraction of solid in the system
increases. In the present study, the pinching dynamics are
investigated in the presence of cooling and net solidification.
Whereas capillarity results in a continual decrease in the neck
radius during pinching, solidification tends to increase the
radius of the neck.

The majority of the pinching process takes place in a
nonlinear regime that is neither accessible to a linear stability
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FIG. 1. (Color online) (a) Sidebranch evolution as shown in the
classical experiments by Jackson and Hunt [1] (black, solid): re-
traction (red) and fragmentation (yellow). (b) Axisymmetric sidearm
model and parameters of the initial geometry.

analysis nor to a self-similar description. Here, we introduce
a numerical model of concurrent growth and coarsening
of a simplified dendritic structure of a solidifying binary
alloy. It allows for quantitative predictions of characteristic
durations and parameter regimes for pinch-off, retraction,
and coalescence of dendrite sidearms. The model considers
a generic axisymmetric sidearm, connected at a right angle
to a larger parent stem. The initial geometry of the sidearm
[Fig. 1(b)] is given by a cylinder of radius R and length l that
is attached to a planar base. The sidearm tip and root sections
are circularly rounded. The sidearm and its base are contained
in a domain of longitudinal and radial dimensions of �1 and
�2, respectively, which can be thought of as half of the primary
and secondary dendrite arm spacings. The sidearm dimensions
relative to the domain size determine the initial fraction of
solid in the system. The initial solute concentrations in the
liquid and solid are c0

l and kc0
l , respectively, corresponding to

phase equilibrium at the initial temperature T = T0, where k is
the partition coefficient. The domain is sufficiently small that
it can be assumed to be at a uniform temperature T . This
temperature decreases over time with a specified constant
cooling rate Ṫ . The constant cooling rate assumption is
commonly made in the modeling of directional (columnar)
solidification. Diffusion of the solute in the melt (diffusion
of the solute in the solid is neglected), expressed as a scaled
supersaturation U = (c − c0

l )/�c0, and the dynamics of the
solid-liquid interface are governed by

∂tU = D∇2U, (1)

[1 + (1 − k)U |i]Vn = −D∂nU |+i , (2)

U |i = −d0κ + θ, (3)

where θ = (T0 − T )/|m|�c0 is the dimensionless temperature
scaled by the equilibrium concentration gap �c0 = c0

l (1 − k),
and t is time. D, m, Vn, and κ refer to the solute diffusivity in the
melt, liquidus slope, normal interface velocity, and sum of the
principal curvatures of the solid-liquid interface, respectively.
The normal vector n is oriented towards the liquid phase.
d0 = �/|m|�c0 is the chemical capillary length, with � being
the Gibbs-Thomson coefficient. The subscript i and superscript
+ denote the interface location and positive normal direction,
respectively. In order to represent a periodic array of equally
spaced and sized sidearms, no-flux conditions are applied on
all domain boundaries.

Additional insight can be gained by introducing the follow-
ing dimensionless length and time and change of variables for
the supersaturation,

r̃ = r/R, ˜t = tDd0/R
3, ˜U = (U − θ )R/d0. (4)

Herein, the initial sidearm radius R is taken as the characteristic
length and (without restrictions) R ∝ t1/3 is acknowledged as
an intrinsic scaling for coarsening dynamics [16,21]. Since
the initial growth of a sidearm is not considered, d0/R � 1
is generally true. Introducing the dimensionless variables of
Eq. (4) into Eqs. (1)–(3), and letting d0/R → 0, yields

θ̇ = ∇2U, (5)

[1 + (1 − k)θ ]Vn = −∂nU |+i , (6)

U |i = −κ. (7)

Here, and in the following, the tilde is omitted for convenience,
and θ̇ = −Ṫ R3/D� is the scaled cooling rate. We verify in
Ref. [22] that Eqs. (5)–(7) are accurate for d0/R � 10−4. This
limit is satisfied for all sidearm radii encountered in common
solidification processes and implies that the interface dynamics
are slow compared to the relaxation of the diffusion field.
As Eq. (5) shows, solute diffusion can then be treated as
quasistationary. Note that the scaled problem is independent
of D, d0, and R. For vanishing cooling rates θ̇ = θ = 0,
corresponding to isothermal coarsening, the sidearm evolution
is determined entirely by geometrical parameters. In the
presence of solidification (θ̇ > 0), the partition coefficient k

remains as the only material parameter and is taken as k = 0.14
(Al-Cu) for illustrative purposes, unless mentioned otherwise.

For the numerical implementation of the present problem,
Eqs. (5)–(7) were reformulated as a phase-field model [22,23]
in axisymmetric form. The phase-field model was solved
by an adaptive finite element code with semi-implicit time
integration [24]. A detailed study was performed to verify that
the present results are independent of the diffuse interface
thickness and other computational parameters used in the
phase-field model [22]. In addition, the calculated variation
of the neck radius near pinch-off is compared below to an
exact analytical solution and excellent agreement is obtained.

Figure 2(a) shows an example of the computed evolution
of the sidearm shape during a pinching process. Time is
measured relative to the pinch-off time tp. In this example,
the cooling rate is zero and interface motion is driven purely
by diffusive mass exchange between interface regions of
different curvatures due to the Gibbs-Thomson effect, Eq. (3).
The solid tends to melt in regions of higher curvature and
accumulate in regions of lower curvature. Mass exchange and
interface motion is generally promoted by either high curvature
contrasts or short diffusion paths. The diffusion processes can
be visualized well by the flux lines [25,26] plotted in Fig. 2(b).
Within a short time from the start of the simulation, a narrow
neck is formed immediately above the junction between the
sidearm and the parent stem. This can be attributed to the short
diffusion paths between the stem and the sidearm in this region.
The tip of the sidearm retracts due to its high curvature and
the sidearm evolves into a more evenly rounded shape. Later,
the sidearm pinches off at the neck and the resulting fragment
coarsens into a sphere.
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FIG. 2. (Color online) (a) Time evolution of the arm shape. (b) Flux lines of the diffusive transport during isothermal coarsening; solute
concentration: high (red), low (blue). (c) Curvature components and total curvature during pinching as a function of time.

The evolution of the neck in the region where the pinch-off
occurs is controlled by the local curvature components. The
computed variations of the circumferential curvature κz = r−1

n ,
where rn is the minimum neck radius, and the meridional
curvature κϕ , together with their sum κ , are plotted in Fig. 2(c).
While κz is always positive and promotes melting and pinch-
off, the negative κϕ counteracts this effect. During most of
the coarsening process, the magnitudes of κz and κϕ increase
slightly, while the sum of the two curvatures κ remains almost
constant and close to unity. Within a short period before pinch-
off, κz becomes suddenly dominant and the neck collapses.
These curvature evolutions demonstrate that the final stage of
the pinching process is very fast and localized.

This localized behavior has recently led to the development
of a general theory of curvature-driven pinching dynamics in
the presence of external volume diffusion [17]. The theory
shows that the pinching region eventually acquires a self-
similar shape that approaches a double cone with an angle
of 80◦. During this stage, the neck radius varies as rn(t) =
0.88(t − tp)1/3. Figure 3(a) shows that the present results for
the variation of the neck radius and the shape of the neck at
pinch-off (inset) indeed approach the theoretical predictions
of Ref. [17].

This agreement lends not only confidence to the present
computations but also provides additional insight into the

universality of the theory. Included in Fig. 3(a) are results
not only for purely curvature-driven pinching, but also for
two finite cooling rates. As expected, in the presence of net
solidification, the neck radius approaches zero more slowly
and the neck shape is generally wider. However, the very last
stage of pinching is still characterized by the same universal
dynamics as predicted by the theory, which was originally
developed for isothermal conditions. This indicates that the
localized nature of the pinch-off process effectively eliminates
any influence of the global geometry and even opposing effects
such as solidification. Nonetheless, the theory of Ref. [17] is
limited to a very short time interval before pinch-off, and
it cannot provide a full understanding of the entire sidearm
pinching process during solidification.

The effect of the competition between solidification and
coarsening on dendrite fragmentation is now demonstrated
for a typical initial sidearm geometry by varying the cooling
rate. Figure 3(b) shows the times obtained for certain events
to occur, together with the associated sidearm shapes. At low
cooling rates, including negative values, the sidearm retracts
towards the primary stem because remelting of the tip takes less
time than remelting of the neck. Although the time to retraction
increases with increasing cooling rate, coarsening dominates
over solidification in this regime. At high cooling rates, the
lateral growth of the sidearm above the neck is so rapid that
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FIG. 3. (Color online) (a) Evolution of the neck radius rn, and interface shape at pinch-off (inset) for three cooling rates and comparison
with the theory of Ref. [17]. (b) Durations of the different sidearm evolution scenarios as a function of cooling rate (�2 = 2, l = 5, �1 = 15);
dashed lines refer to the fragment itself.
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FIG. 4. (Color online) (a) Critical sidearm length for the retraction to pinch-off transition as a function of the spacing �2 for isothermal
coarsening; fitted by lr-p(�2) = [6.67 − 1.3 exp (−0.25�2)]. (b) Long sidearm limit: pinch-off time vs cooling rate (inset) and dependence of
the critical cooling rate for the pinch-off to coalescence transition on �2 for different k; fitted by θ̇p-c(�2,k = 0.5) = 0.446/(�2 + 1.86) + 0.023
(dashed line). All data points representing regime boundaries are obtained by an adaptive search scheme in the two-dimensional parameter
space. Cross symbols were excluded from fitted data.

it coalesces with a neighboring arm before any pinch-off can
occur. The pinch-off regime is limited to a relatively small
range of intermediate cooling rates. The time to fragmentation
increases slightly with increasing cooling rate, reflecting the
fact that solidification opposes the curvature-driven necking
process. The resulting fragment experiences either remelting
or coalescence, with the transition between the two being
characterized by a spherical fragment where solidification
exactly balances remelting due to the Gibbs-Thomson effect.

A more general characterization of the durations and
parameter ranges identified in Fig. 3(b) can be obtained by
analyzing some important limiting cases consisting of (i) the
isothermal limit (θ̇ = 0), where the fraction of solid in the
system remains constant and �1 has no influence, and (ii) the
limit of a long sidearm, where interactions between the tip and
neck regions are negligible.

Long arm, isothermal. In this most elementary case, �2 is
the only relevant parameter. With increasing �2, the pinch-
off time rapidly decreases towards an asymptotic value of
tp(�2 → ∞) = 0.52 [22]. It is interesting to note that this
equation, rewritten in dimensional form, is the same as Eq.
(4) in Ref. [3] for the breakup time of an infinitely long rod
undergoing a RPI, except that the constant in Ref. [3] is equal
to 3/2. We performed additional phase-field simulations for an
infinitely long rod and found that a perturbation at the fastest
growing wavelength and with an amplitude of 0.1R gives a
breakup time that is about four times larger than the value
of 0.52 for a branched shape. Hence, even for long sidearms
where the RPI could become an issue, dendrite fragmentation
is more likely to occur by pinching near the branching point.

Finite arm, isothermal. This case characterizes the com-
petition between retraction and pinching at low arm lengths.
Figure 4(a) shows the critical arm length lr-p as a function of
�2 above which a sidearm pinches off rather than retracts
[see Fig. 1(a)]. The critical arm length increases with a
larger sidearm spacing because the diffusive flux between the
retracting tip and the root region is less restricted, and lr-p

rapidly approaches an upper limit of 6.67. This limit for the
isothermal case also provides the upper arm length limit for

retraction in a solidifying system (θ̇ > 0), because sidearm
growth only reduces lr-p.

Long arm, varying cooling rate. Under nonisothermal
conditions, remelting due to high curvatures is opposed
by progressive solidification. Therefore, both retraction and
pinch-off are delayed or do not occur at all. Here, we
investigate the effect of this competition on the evolution of
the neck in the long sidearm limit. The inset in Fig. 4(b)
indicates that for a given �2, the pinch-off time increases with
cooling rate and tends to infinity at a critical value of the
cooling rate θ̇p-c, where curvature- and solidification-induced
effects at the neck are exactly balanced. At higher cooling
rates, the neck radius remains finite, no pinch-off occurs, and
the sidearm eventually coalesces with its neighbor. The two
curves in the inset of Fig. 4(b) show that a larger �2 results
in a smaller critical cooling rate θ̇p-c, for the pinch-off to
coalescence transition. This indicates that solidification effects
are stronger for large �2 and, hence, low fractions of solid in
the system. The fact that solidification rates are higher at low
solid fractions can be inferred from the Scheil equation [27].
At infinitely large spacings, the critical cooling rate for the
pinch-off to coalescence transition reaches a lower bound of
θ̇p-c = 0.023 (k = 0.5). This value is a general upper limit for
the cooling rate up to which pinch-off is possible. Also note
from Fig. 4(b) that the partition coefficient k has only a small
effect on θ̇p-c(�2). At early times, k plays a negligible role due
to a small θ in Eq. (6). During the final stage, when the neck
region approaches universal behavior [Fig. 3(a)], the influence
of k vanishes again. The fact that pinch-off is generally favored
by low spacings between the sidearms is a further interesting
outcome of the results in Fig. 4. Low �2 increases both the
sidearm length range [Fig. 4(a)] and the cooling rate range
[Fig. 4(b)] over which pinch-off can occur.

Curvature-driven coarsening and net solidification compete
in complex and heretofore largely unknown ways in shaping
the dendritic microstructure of an alloy. Using a simple
axisymmetric model of periodic sidearms, we were able to
derive fundamental characteristics and limits of the pinching
instability at the junction between a sidearm and its parent
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stem. Although the neck ultimately converges to a universal
self-similar shape at pinch-off, the pinch-off time is a strong
function of the initial arm geometry and cooling rate. Pinching
at the sidearm junction is shown to be more likely than the
RPI of an infinitely long rod. Two important limits have
been established, which can be summarized in physical units
as follows. A long sidearm will always pinch-off if Ṫ �
−0.023D�/R3. Retraction is only possible if l/R < 6.67 (for
Ṫ � 0). Generally, the tendency for pinch-off is enhanced for

smaller �2, i.e., higher initial solid fractions. These relations
may provide effective guidance for future experimental and
numerical studies on dendrite fragmentation. The effects of
more complex nonaxisymmetric and nonperiodic dendrite arm
geometries and of melt convection are deserving of additional
research attention.

This work was financially supported by the Helmholtz
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