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Abstract. Porosity due to solidification shrinkage is a troublesome defect in all types of metal 

castings. It limits the performance of cast components by adversely affecting the material’s 

strength, fatigue and creep properties. By reliably predicting porosity in casting process 

simulation, it can be minimized or eliminated. Here, a newly developed model for predicting 

porosity is presented. The model is based on the recent discovery that all shrinkage porosity 

nucleates and grows in regions of a casting where the solid fraction is the lowest. It calculates 

the feeding flows and pressure distribution in the liquid while accounting for the liquid density 

variation during cooling and solidification. It predicts the location, extent and amount of all types 

of shrinkage porosity in a casting, including riser pipes and large internal holes, surface sinks, 

and distributed micro-shrinkage. The model is numerically implemented in a standard casting 

simulation code. Comparisons to measurements in specially made steel castings demonstrate the 

capability of the model to accurately predict various types of shrinkage porosity. 

1.  Introduction 

In metal casting, shrinkage porosity is a widespread problem. It forms during solidification, when liquid 

melt can no longer feed the loss of volume during contraction. This leads to defects (porosities) in the 

casting, which affect the quality and mechanical properties. In general, there are three types of porosity 

in a casting: surface sinks, internal macro-porosity and (internal) micro-porosity (see figure 1). We will 

present a mathematical model that can predict these types of defects adequately:  

• It accurately predicts location, amount and appearance of porosity. 

• It predicts locations of porosity nucleation and growth. 

• It predicts the stages of surface and internal porosity formation. 

This model is integrated into commercial simulation software. 

2.  Computational model 

In order to model the formation of porosities, we use the following physical concepts: 

• Porosity nucleates where solid fraction is the lowest. 

• Feeding flows are calculated. 

• Surface and internal porosity are calculated. 

A schematic diagram of a solidifying casting volume is shown in figure 2. Multiple regions of 

porosity can form simultaneously. The boundary conditions at the casting surface and on the porosity 

containing regions are indicated in figure 2(a) and figure 2(c), respectively. The model allows for a 

representative elementary volume to be composed of three phases: solid (𝑠), liquid (ℓ) and porosity (𝑝).  
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Figure 2. Schematic diagram of a solidifying casting with porosity: (a) casting volume with multiple 

porosity containing regions, (b) representative elementary volume containing solid, liquid and 

porosity, and (c) single porosity containing region 

Using “𝑔” to denote the volume fraction of a given phase, and the phases indicated by subscripts, the 

volume fractions must satisfy 𝑔ℓ + 𝑔𝑠 + 𝑔𝑝 = 1, as shown schematically in figure 2(b). 

Key assumptions in the model are: 

• Solid and porosity phases are stationary; they cannot move during solidification; however, solid 

may be replaced by porosity if the solid fraction is below a certain coherency limit. 

• Flow of the liquid melt is driven by mixture density changes only; buoyancy-driven flow during 

solidification is neglected. 

 
         (a)                                                 (b)                                                    (c) 

Figure 1. Various types of shrinkage porosity in castings: (a) a sink on the top surface of a cast 

aluminum block, (b) internal macro-shrinkage hole in a steel casting, and (c) distributed internal 

micro-shrinkage porosity. 
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• Density is temperature-dependent above the solidus temperature and assumed constant when 

the metal is solid; the density of the gases inside of shrinkage pores is neglected. 

The governing equations for the feeding flow and the procedures used for predicting the evolution 

of the pore volume fraction are given in the following sub-sections. The model assumes that the results 

from a standard thermal simulation of the casting are available. This includes the evolution of the 

temperature and solid fraction fields throughout the solidification process. The heat transfer is assumed 

to be unaffected by the porosity. 

2.1.  Continuity and momentum equations 

Mass is conserved according to a mixture continuity equation 

𝜕�̅�

𝜕𝑡
+ ∇ ⋅ (𝜌ℓ 𝒖ℓ) = 0 (1) 

where 𝑡 is time, 𝜌ℓ is the liquid density, and 𝑢ℓ is the superficial liquid velocity vector. The three-phase 

mixture density �̅� is defined as �̅� = 𝜌𝑠𝑔𝑠 + 𝜌ℓ𝑔ℓ + 𝜌𝑝𝑔𝑝. The feeding flow in the mushy zone is 

assumed to be a creeping flow in a porous medium of variable permeability. For such flows the 

momentum equation is given by Darcy’s law, 

∇𝑃ℓ,𝑡 = −
𝜇ℓ𝒖ℓ

𝐾
+ 𝜌ℓ 𝒈 (2) 

where 𝑃ℓ,𝘵 is the total liquid pressure, 𝜇ℓ is the dynamic viscosity of the melt, 𝐾 is the permeability of 

the mush, and 𝑔 is the gravity vector. Equation (2) is also used in the pure liquid regions, by setting the 

permeability to a sufficiently large value, 𝐾max. The total liquid pressure (𝑃ℓ,) is the sum of the dynamic 

liquid pressure (𝑃ℓ) and the hydrostatic pressure (𝑃ℎ), i.e., 𝑃ℓ, = 𝑃ℓ + 𝑃ℎ. Applying the gradient operator 

to this equation gives ∇𝑃ℓ, = ∇𝑃ℓ + ∇𝑃ℎ, where the hydrostatic pressure is given by ∇𝑃ℎ = 𝜌ℓ 𝑔. 

Combining this and equation (2), the gravity term cancels and equation (2) simplifies to 

∇𝑃ℓ = −
𝜇ℓ𝒖ℓ

𝐾
 (3) 

The permeability of the mush is a function of solid fraction (𝑔𝑠) according to the Kozeny–Carman 

equation 

𝐾 = 𝐾0

(1 − 𝑔𝑠)3

𝑔𝑠
2  (4) 

where 𝐾0 is an adjustable constant permeability coefficient. To avoid division by zero in equation (3), a 

suitable minimum allowable value for the permeability, 𝐾min, is introduced. To ensure well-posedness 

of equation (4), suitable boundary conditions are needed. Here it is assumed that 𝑃ℓ within regions 

having porosity is equal to the pore pressure: 𝑃ℓ|Porosity = 𝑃𝑝, implying that surface tension effects are 

neglected. The value of the pore pressure 𝑃𝑝 depends on the location in the casting. At an atmosphere-

metal interface the pore pressure is assumed to be atmospheric: 𝑃𝑝 = 𝑃atm, at a mold-metal interface it 

is equal to some pre-defined mold atmosphere pressure: 𝑃𝑝 = 𝑃mold and for internal porosity, the pores 

are assumed to be vacuum (negligible density), 𝑃𝑝 = 0. By forcing the dynamic pressure to a uniform 

value, the liquid velocities vanish inside of porosity forming regions. Assuming for simplicity that 𝜌ℓ in 

equations (1) and (2) is constant, equations (1) and (3) can be combined to form an equation for 

determining the pressure 𝑃ℓ throughout the casting during solidification 

∇ ⋅ (
𝐾

𝜇ℓ
∇𝑃ℓ) =

1

𝜌ℓ

𝜕�̅�

𝜕𝑡
 (5) 
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As shown in figure 3, the boundary condition for the above equation is given by a zero-mass flux 

condition at the casting surface, which can be written as (𝑢ℓ · 𝑛)surface = (∇𝑃ℓ · 𝑛)surface, where 𝑛 is the 

normal vector on the surface. Using this boundary condition and forcing the pressure in the porosity 

containing regions to 𝑃ℓ|Porosity = 𝑃𝑝, the pressure distribution 𝑃ℓ in the casting can be determined by 

solving equation (5). 

2.2.  Pore nucleation model 

The presented pore nucleation model is based on the one developed by Khalajzadeh et al. [1]. Surface 

sinks and internal porosity do not evolve at the same time. Surface sinks develop first and internal 

porosity forms in a second stage. The transition between the two stages is modeled by introducing the 

critical solid fraction 𝑔𝑠,sur. When the solid fraction at the surface is below this critical value, a surface 

sink can form. Once the solid fraction everywhere on the surface is above 𝑔𝑠,sur the surface becomes 

rigid and internal porosity can nucleate. The pore nucleation model is based on the inequality form of 

the Young-Laplace equation, which is given in the present study by 

𝑃𝑝 − 𝑃ℓ,𝑡 ≥ 𝑃𝜎 (6) 

where 𝑃𝝈 is a capillary pressure due to surface tension. As found by Khalajzadeh et al. [1], the capillary 

pressure 𝑃𝝈 in equation (6) can be taken as a linear function of the solid fraction as 

𝑃𝜎 = 𝑃𝜎,0 𝑔𝑠, (7) 

where 𝑃𝝈,0 is a reference capillary pressure at a solid fraction of unity. As in Khalajzadeh et al. [1], the 

Young-Laplace inequality is implemented in the model through a so-called Π parameter, which is 

defined as 

Π = 𝑃ℓ,𝑡 − (𝑃𝑝 − 𝑃𝜎) (8) 

Porosity is thus nucleated where the Π parameter is the lowest. To make the nucleation calculations 

numerically robust, porosity is nucleated where the Π value falls within a small dimensionless interval 

𝜀nuc according to: 

|
Π − Πmin

Πmax − Πmin
| < 𝜀nuc (9) 

where Πmin is the instantaneous minimum Π value in the computational domain and Πmax is the maximum 

possible Π value. Physically, the adjustable parameter 𝜀nuc controls the initial size of a newly nucleated 

porosity region. Other details of the pore nucleation model can be found in [1]. 

2.3.  Pore growth model 

As shown in figure 3(a), multiple regions of porosity can nucleate and grow in a casting simultaneously. 

Each region is a grouping of connected computational cells having 𝑔𝑝 > 0. The volume and surface area 

of each porosity forming region are denoted by 𝑉𝑝 and 𝐴𝑝, respectively, as shown in figure 3(c). The 

average pore growth rate (𝑑�̅�𝑝/𝑑𝑡) for each porosity containing region is calculated by integrating the 

mass conservation equation, equation (1), over 𝑉𝑝. Using the divergence theorem for the second term in 

equation (1) yields 

∫ (
𝜕�̅�

𝜕𝑡
) 𝑑𝑉 +  ∫ (𝜌ℓ𝒖ℓ) ⋅ 𝒏 𝑑𝐴 = 0

𝐴𝑝𝑉𝑝

 (10) 

The density �̅� should be distinguished from the solid-liquid mixture density in the absence of porosity, 

which is given by, �̅�𝑆𝐿 = 𝜌𝑠, 𝑔𝑠
𝑆𝐿 + 𝜌ℓ𝑔ℓ

𝑆𝐿, where 𝑔𝑠
𝑆𝐿 + 𝑔ℓ

𝑆𝐿 = 1. The density �̅�SL is assumed to be 

known as a function of temperature for a given metal alloy. Assuming that 𝑔𝑠
𝑆𝐿 = 𝑔𝑠 and 𝜌𝑝 ≪ 𝜌𝑠, 𝜌ℓ 

yields the following equation for the three-phase density 
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�̅� = �̅�𝑆𝐿 − 𝜌ℓ𝑔𝑝 (11) 

Assuming that 𝜌ℓ in equation (11) is constant and that the pore growth rate is uniform within each 𝑉𝑝, 

substitution of equation (11) into equation (10) results in  

𝑑�̅�𝑝

𝑑𝑡
=

1

𝜌ℓ|𝑉𝑝|
∫ (

𝜕�̅�𝑆𝐿

𝜕𝑡
)

𝑉𝑝

𝑑𝑉 +
1

|𝑉𝑝|
∫ 𝒖ℓ ⋅ 𝒏 𝑑𝐴

𝐴𝑝

 (12) 

Equation (12) allows for the calculation of the average pore growth rate in each porosity forming 

region from the knowledge of the average solid-liquid mixture density variation within 𝑉𝑝 and the 

feeding flow velocities normal to the boundary 𝐴𝑝. The average porosity increase from equation (12) is 

then evenly distributed over all active computational cells within each 𝑉𝑝 to determine the local time 

rate of change in the pore fraction according to [1].  

The pore volume fraction is typically allowed to increase until a computational cell becomes empty 

of liquid, i.e., when 𝑔𝑠 + 𝑔𝑝 = 1. This condition, however, would often result in the local pore fraction 

never being able to approach unity. A pore fraction of unity occurs, for example, when a surface sink or 

internal hole is free of solid. For the pore volume fraction to reach unity, the previously grown solid at 

that location must have moved or been pushed away by the growing porosity, which is frequently 

referred to as mass feeding. As in Khalajzadeh et al. [1], mass feeding is modeled by introducing an 

adjustable parameter called the coherency solid fraction 𝑔𝑠,coh. The maximum pore volume fraction, 

𝑔𝑝,max, is then given by 

𝑔𝑝, max = {
1,           𝑔𝑠 < 𝑔𝑠, coh

1 − 𝑔𝑠, 𝑔𝑠 ≥ 𝑔𝑠, coh
 (13) 

The two critical solid fractions 𝑔𝑠,sur and 𝑔𝑠,coh take typically the same value [1]. When a computation 

cell reaches the maximum pore fraction, it is designated as inactive. Once a pore forming region has no 

more active cells, but solidification is not yet complete, porosity can spread beyond the originally 

nucleated volume. As in Khalajzadeh et al. [1], such spreading of pore forming regions is modeled using 

the same Π parameter introduced in the previous subsection. Computational cells that neighbor a cell 

with porosity already present are activated when their Π parameter falls within the interval 

|
Π − Πmin

Πmax − Πmin
| < 𝜀layer (14) 

The small dimensionless number 𝜀layer is an adjustable model parameter that controls the rate of 

spreading of porosity regions. It is emphasized here that the use of the Π parameter in both the pore 

nucleation and growth models was developed by some of the authors through careful comparisons with 

real-time video radiography experiments [1]. 

3.  Experiments and simulation 

To validate the model, castings were made from high manganese (Mn) steel in chemically bonded 

olivine sand [2]. The geometry is shown in figure 3. It consists of a gating system, a riser, two steps of 

different thickness, a thinner plate section, and a thick end block. The thermal simulation was calibrated 

with the help of thermocouples [3].  

The experimentally observed porosity is shown in figure 4, while the porosity predicted by the 

present model, using the parameters listed in table 1, is shown in figure 5. We see in general good 

agreement of the model predictions with the porosity observed in the casting. 
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Figure 3. Mn-steel casting geometry used in the experiments; the dimensions are in millimeter (mm). 

 

 

Figure 4. Porosity distribution observed in the Mn-steel casting: vertical slices through the casting at 

mid-width, with the red areas showing microporosity that is visualized using dye penetration testing. 

 

Figure 5. Porosity predictions obtained by the present model for  

the Mn-steel casting shown in figure 4. 
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Table 1. Material properties and model parameter used in the simulation 

Parameter  Value 

𝛫0 (m3)  1.7e-9 

𝛫min (m3)  1.0e-16 

𝛫max (m3)  1.0e-6 

𝑔𝑠,sur (-)  0.625 

𝑔𝑠,coh (-)  0.625 

𝜀layer (-)  5.0e-2 

𝜀nuc (-)  5.0e-3 

𝑃atm (bar)  1.101325 

𝑃𝜎,0 (bar)  𝑃atm 

𝑃mold (bar)  0.4 𝑃atm 

ρ𝑠 (kg/m3)  7124 

ρℓ (kg/m3)  6894 

𝜇ℓ (Pa.s)  8.57e-3 

 

  

  

 

Figure 6. Fraction solid (50%, 75%, 90% 

solidified). 

 

Figure 7. Total pressure and feeding velocity 

vectors (50%, 75%, 90% solidified). 

Other results of the simulation are shown in figure 6 and figure 7. These show the evolution of the 

fraction solid 𝑔𝑠 from the thermal simulation (figure 6) and the total pressure 𝑃ℓ and feeding velocity 

vectors 𝑢ℓ from the present model (figure 7). The results are shown at the states of 50%, 75%, 90% 

solidified cells in all casting materials. Until almost 50%, all shrinkage of the metal during cooling and 

solidification is fed by the gating system. The total pressure distribution is mostly hydrostatic, because 

the dynamic pressure variations are still very small. The top of the riser is connected to the atmosphere 

through a small vent that induces a shrinkage pipe at that location once the pressure falls below 

atmospheric pressure. At 50% solidified cells, the permeability in the thin plate section is low enough 

that the liquid flow feeding the end block from the riser creates a large pressure drop. Eventually, the 

pressure in the end block approaches vacuum and porosity nucleates in the thermal center of the end 

block where the solid fraction is lowest. At 75%, the thin plate section between the riser and the end 
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block is fully solidified and the pressure inside the block is forced by the internal porosity in the center 

of the block. Small areas of microporosity can be observed in the thin plate section. The rest of the 

casting continues to be fed by the downward growing hole at the top of the riser. At 90%, the riser pipe 

acquires a more conical shape and extends over the top one-third of the riser. Eventually, microporosity 

forms next to and below the open riser pipe and in the larger step (figure 5). 

4.  Conclusions 

A model for the prediction of shrinkage porosity in metal castings is developed. It is based on the 

solution of the basic equations for the feeding flow and pressure distribution during solidification and 

an extended version of the pore nucleation and growth model of Khalajzadeh et al. [1]. The model uses 

the temperature and solid fraction results from a thermal simulation and predicts all kinds of shrinkage 

porosity, including surface sinks and riser pipes, open shrinkage holes internal to the casting, and micro 

porosity dispersed between dendrite arms. Good agreement is obtained with observations made in an 

experimental Mn-steel sand casting. The shape of the riser pipe, the open shrinkage hole in the thermal 

center of the end block, and the microporosity in the thin plate section and around the larger holes are 

all predicted correctly. No surface sinks were observed or predicted to form. Results from another test 

casting with surface sinks, including quantitative comparisons between measured and predicted pore 

fraction values, can be found in Khalajzadeh et al. [1, 2]. 
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