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Abstract

Two-dimensional phase-field simulations are used to test standard theories for free dendritic growth of alloys. While the trans-

port of heat and solute in the melt is predicted well by the theories, the selection criterion for the operating state of the dendrite tip is

found to break down in several respects. The selection parameter, r*, computed from the phase-field simulations varies strongly

with alloy composition, Lewis number, and imposed undercooling, whereas the theories assume r* to be independent of these

parameters. While the computed r* is the same for purely thermal and solutal dendrites, it experiences a minimum at a small

but finite solute concentration where thermal and solutal effects are both important. A pronounced growth velocity maximum at

this composition is therefore not found in the simulations. The high Péclet number corrections of the LKT theory are found to

be ineffective for the present range of undercoolings.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The free growth of a single dendrite into an under-

cooled melt is not only one of the most fundamental
problems in solidification science, but is also of great rel-

evance as a precursor to the more complex solidification

phenomena occurring in metal casting [1–3]. Dendritic

pattern formation is generally characterized by a com-

plex interplay of heat/solute diffusion processes and

interface curvature effects that are all occurring on dif-

ferent length scales. In free growth, the latent heat and

the solute (in the case of an alloy) are both rejected into
a uniformly undercooled liquid surrounding the growing

dendrite. Although free dendritic growth appears to be

well understood in many respects [1,2], its direct numer-
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ical simulation still represents a major challenge, even in

two dimensions. If successful, however, such numerical

simulation offers the possibility of testing existing den-

dritic growth theories for much larger parameter ranges
than would be possible in experiments.

There exist two important limiting cases in free den-

dritic growth. For pure substances, the growth is limited

by the diffusion of heat in the liquid only (purely thermal

growth) (e.g. [4–7]). On the other hand, for concentrated

alloys the large ratio of the thermal to the solutal diffu-

sivities (of the order of 100–104) makes it often possible

to assume that the growth occurs isothermally. Then,
solute diffusion solely controls the growth (purely solu-

tal growth) (e.g. [8–10]). This work is concerned with

the more general case where heat and solute diffusion

simultaneously limit the growth. Such thermosolutal

growth is important in solidification of relatively dilute

binary alloys, even though the thermal diffusivity may

be much larger than the solutal diffusivity. Two interest-

ing effects arise during free dendritic growth when
ll rights reserved.
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increasing the solute content from zero. Small solute

additions tend to destabilize the dendrite tip, which re-

duces the radius of curvature of the tip and thus in-

creases the tip growth velocity. Upon further solute

addition, the growth becomes increasingly controlled

by solute diffusion, which tends to reduce the tip velocity
due to the much slower diffusion rate of the solute rela-

tive to heat. The result of these two competing effects is a

pronounced maximum in the tip velocity at small but fi-

nite solute concentrations that has been observed in

experiments [11]. The theoretical models due to Lipton,

Glicksman and Kurz (LGK) [12,13] or Lipton, Kurz

and Trivedi (LKT) [14] are widely employed to predict

this phenomenon. These models provide a theory of
steady-state free dendritic growth that is valid for any

solute concentration, including the transition from

purely thermal to purely solutal growth (neglecting sol-

ute trapping and kinetic effects). It is the objective of the

present study to test these models using direct numerical

simulations.

Computational modeling of pattern formation in

solidification with coupled heat and solute diffusion
has been of long-standing interest [15–17]. However,

the numerical simulation of thermosolutal growth of

dendrites has only been attempted in the past few years

[18–24]. Udaykumar and Mao [18] used a mixed Eule-

rian–Lagrangian framework that treats the immersed

phase boundary as a sharp solid–liquid interface. The

spatial discretization is performed with the finite volume

method. Special care is required for the treatment of the
interface, including the numerical calculation of its

velocity and curvature. They show the importance of

the effects of non-homogeneous thermal and solutal

fields. Beltran-Sanchez and Stefanescu [19] present a cel-

lular automaton (CA) model for free growth of alloy

dendrites. They address some of the issues that have typ-

ically plagued CA models, the most salient of which is

the mesh-dependent non-physical anisotropy. Zhao
et al. [20] performed sharp-interface, two-dimensional

simulations of thermosolutal dendritic growth. The heat

and solute conservation equations are solved using the

finite element method. They use an adaptive grid that

is very fine near the interface and has increasingly larger

elements away from it. This is done in order to resolve

the steep gradients associated with the solutal boundary

layer. The mesh is adapted at each time step in order to
avoid problems associated with excessive deformation of

the elements and the consequent degradation of mesh

quality.

Only a few studies have been reported in the literature

where the phase-field method is used to simulate den-

dritic growth with coupled heat and solute diffusion, de-

spite the popularity of this method for other dendritic

solidification problems [6]. Loginova et al. [21] extended
the phase-field model of Warren and Boettinger [8] to

thermosolutal dendritic growth, but the numerical re-
sults are influenced by abnormally high solute trapping

and interface width dependencies. Lan et al. [22] used

the model of [21] together with an adaptive finite volume

mesh that allows the dendrites to grow without the ther-

mal boundary layer reaching the domain boundaries.

However, no solution is proposed to remedy the exces-
sive solute trapping and interface width dependencies.

Karma [9] has recently proposed a remedy for the prob-

lem of artificially high solute trapping in phase-field

models by introducing an anti-trapping current in the

solute conservation equation. Lan and Shih [23,24]

adopted this anti-trapping current concept for phase-

field simulations of non-isothermal dendritic growth of

binary alloys with forced convection in the melt. Of all
the numerical studies of thermosolutal free dendritic

growth reviewed above, only [19] presents some limited

comparisons of the results to available theories [12–14].

In this study, the phase-field model recently derived

by the present authors and co-workers [25] is used to

accurately simulate free dendritic growth with coupled

heat and solute diffusion in two dimensions. The model

of [25] employs a thin-interface analysis and the anti-
trapping current concept to allow interface width inde-

pendent results to be obtained in the absence of solute

trapping and interface kinetic effects. The influence of

the relevant physical parameters on the characteristics

of thermosolutal free dendritic growth is examined,

and a detailed comparison of the results with available

theories is presented. The paper is organized as follows.

In Section 2, the basic theories of free dendritic growth
of alloys are reviewed. Section 3 introduces the phase-

field model. Section 4 describes various numerical issues

associated with the solution of the model equations,

including discretization, nonlinear preconditioning,

and convergence studies. In Section 5, numerically pre-

dicted steady-state dendrite tip velocities and radii,

growth Péclet numbers, and tip selection parameters

are compared with the theories. Their dependence on
the solute concentration, Lewis number (i.e., the ratio

of thermal to solutal liquid diffusivities), and imposed

melt undercooling is investigated. The conclusions are

summarized in Section 6.
2. Review of free dendritic growth theories

The basic theories of free dendritic growth attempt to

predict the steady-state tip velocity V and tip radius q of

a branchless needle crystal growing into an infinite melt

of solute concentration c1, that is at a temperature be-

low its equilibrium liquidus temperature by an

amount DT, known as the imposed total undercooling.

The first such theories are due to Langer [26], Lipton,

Glicksman and Kurz (LGK) [12,13], and Karma and
Langer [27]. Lipton, Kurz and Trivedi (LKT) [14] ex-

tended the LGK model to high growth rates and Boett-
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inger, Coriell and Trivedi (BCT) [28] extended the LKT

model to include solute trapping and kinetic effects. Li

and Beckermann [29] added the effects of melt convec-

tion to the LGK model using simple correlations for

the convective heat and solute transport at the tip.

Karma and Kotliar [30] developed a microscopic
solvability theory (MST) for alloys, based on boundary

layer approximations for the thermal and solutal

diffusion fields.

The free dendritic growth theories examined here

are two-dimensional versions of the LGK and LKT

models, which are closely related. Solute trapping

and kinetic effects are not considered. The theories

consider thermal and solutal transport at the tip of
a parabolic dendrite of a dilute binary alloy with con-

stant partition coefficient k and liquidus line of con-

stant slope m. The total imposed undercooling, DT is

given by

DT ¼ L
Cp

� �
DT þ

kDT 0DC

1� ð1� kÞDC

þ C
q
; ð1Þ

where the three terms on the right-hand side represent

the thermal, solutal, and capillary contributions to the

total undercooling, respectively. In the above equation,

L is the latent heat of fusion, Cp is the specific heat of

the liquid, DT0 = |m|c1(1 � k)/k is the equilibrium freez-
ing temperature range corresponding to c1, and C is the

Gibbs–Thomson coefficient. The tip radius is denoted as

q and corresponds to the radius of curvature at the tip of

the parabolic dendrite. Note that for a three-dimen-

sional case, where the dendrite is modeled as a parabo-

loid of revolution, the capillary contribution to the total

undercooling in Eq. (1) would be given by 2C/q, which is

twice the amount in the present two-dimensional case.
The dimensionless thermal and solutal undercoolings

are defined as

DT ¼ T � � T1

L=Cp

ð2Þ

and

DC ¼ c� � c1
ð1� kÞc� ; ð3Þ

respectively, where T* and c* are the temperature and
solute concentration in the liquid at the dendrite tip,

respectively. It should be pointed out that T* and c*

are unknown a priori. In the LGK and LKT models

for diffusion-controlled growth, the dimensionless

undercoolings are calculated from the Ivantsov solu-

tions for steady-state heat and solute diffusion around

a parabolic dendrite, i.e., DT = Iv(Pe) and DC = Iv

(Le Pe), where Pe = Vq/(2a) is the thermal Péclet num-
ber, a is the thermal diffusivity of the liquid, Le = a/D
is the Lewis number and D is the liquid mass diffusiv-

ity. The group Le Pe = Vq/(2D) is also known as the

solutal Péclet number, PeC. The Ivantsov function
for a two-dimensional parabolic ‘‘plate’’ dendrite

was obtained by Horvay and Cahn [31] and is given

by

IvðxÞ ¼
ffiffiffiffiffi
px

p
expðxÞerfcð

ffiffiffi
x

p
Þ; ð4Þ

where erfc( ) is the complementary error function. The

Ivantsov function solution assumes an isothermal

interface, yet the capillarity effect (i.e., the curvature)

varies along the interface, making it non-isothermal.
Therefore, the capillarity contribution to the underco-

oling in Eq. (1) can only be interpreted as a first

approximation. Trivedi [32,33] has proposed improved

models that account for the non-isothermal nature of

the interface. Eq. (1) can be non-dimensionalized by

dividing it by the unit undercooling, L/Cp, which

yields

D ¼ IvðPeÞ þ Mc1IvðLePeÞ
1� ð1� kÞIvðLePeÞ þ Dq; ð5Þ

where M = �m(1 � k)/(L/Cp) is a scaled liquidus slope,

Dq = CCp/(qL) = d0/q is the dimensionless capillary und-

ercooling, and d0 is the capillary length.

Eq. (5) is the transport part of the LGK and LKT

models. It is one equation with two unknowns, namely

the tip radius and the tip velocity; thus Eq. (5) only fixes
the product qV (i.e., the Péclet number). Closure to the

problem is provided by a selection criterion, which can

be interpreted as a balance between the destabilizing ef-

fects of thermal and solutal gradients and the stabilizing

effect of interfacial energy [1]. For the case of no solute

diffusion in the solid and equal thermal conductivities in

the solid and liquid, the LKT selection criterion can be

written as follows:

r� ¼ d0

qPe nT þ 2nCLe
kDT 0=ðL=CpÞ
1�ð1�kÞDC

� �h i ; ð6Þ

where r* is a selection parameter that is supposed to be

constant for a given alloy system (i.e., a given anisotropy

strength) and independent of the Péclet number (i.e., the

imposed undercooling), the Lewis number, and the sol-

ute concentration [1]. In other words, a single value of

the selection parameter can be used for purely thermal
and purely solutal growth, as well as for the transition

from thermal to solutal growth during which the maxi-

mum in the dendrite tip velocity is predicted. The square

bracket in the denominator of Eq. (6) consists of two

terms representing the effects of thermal and solutal gra-

dients at the tip. The factor of two multiplying the solu-

tal part is absent from the thermal part because of the

equal thermal conductivities in the solid and liquid
and the vanishing solute diffusivity in the solid [12].

The parameters nT and nC in Eq. (6) are corrections

for high Péclet numbers [14] that are simply set to unity

in the LGK model. In the LKT model, the corrections

are given by:
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nC ¼ 1þ 2k

1� 2k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

r�ðLePeÞ2
q ð7Þ

and

nT ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

r�ðPeÞ2
q : ð8Þ

The above dendrite growth theory is used extensively in

various models of grain structure development in metal

castings [34]. Nonetheless, it is not well validated over

the entire ranges of the governing parameters that are

relevant in various solidification processes. Li and Bec-

kermann [29] compared the results from the LGK theory

(modified to include convection) to the experimental

data of Chopra et al. [11] for the transparent alloy system
succinonitrile–acetone (SCN–ACE). Even though the

measured dendrite tip velocity maximum at small solute

concentrations is predicted reasonably well by the the-

ory, a significant scatter in the measured selection

parameter r* was observed at higher concentrations

(c1 P 0.1 mol%). This scatter is in obvious disagree-

ment with the theory, since the theory assumes that r*
is independent of the solute concentration, as noted
above. Other attempts to experimentally validate the the-

ory are also inconclusive [1,29]. Therefore, an attempt is

made in the present study to validate the LGK/LKT the-

ories using numerical simulation. All simulations employ

the same values for the partition coefficient, liquidus

slope, and anisotropy strength, while the solute concen-

tration, Lewis number, and imposed undercooling are

varied in a parametric study.
3. Phase-field model

The phase-field model employed here allows simula-

tion of microstructural pattern formation in solidifica-

tion of dilute binary alloys with coupled heat and

solute diffusion. It is derived and extensively validated
in [25]. The model is valid for substances with equal

thermal diffusivities in the solid and liquid phases, and

vanishing solutal diffusivity in the solid. All material

properties are assumed constant. The model reduces to

the sharp-interface equations in a thin interface limit

where the width of the diffuse interface is smaller than

the radius of curvature of the interface but larger than

the real width of a solid–liquid interface, and when ki-
netic effects are negligible. The model employs the

anti-trapping current concept of Karma [9] to recover

local equilibrium at the interface and eliminate interface

stretching and surface diffusion effects that arise when

the solutal diffusivities are unequal in the solid and

liquid.

Let / represent the phase field, where / = 1 in the

bulk solid phase and / = �1 in the bulk liquid phase.
The phase field varies smoothly between these bulk val-

ues within the diffuse interface region. The anisotropic

and dimensionless forms of the phase-field, species and

energy equations, for a vanishing kinetic effect, are gi-

ven, respectively, by [25]

Aðn̂Þ½ �2 1

Le
þMc1 1þ ð1þ kÞU½ �

� �
o/
ot

¼ /ð1� /2Þ � kð1� /2Þ2ðhþMc1UÞ

þ ~r � ð Aðn̂Þ½ �2 ~r/Þ � o

ox
Aðn̂ÞA0ðn̂Þ o/

oy

� �

þ o

oy
Aðn̂ÞA0ðn̂Þ o/

ox

� �
; ð9Þ

1þ k
2

oU
ot

¼ ~r � ~D
1� /
2

~rU þ~jat

� �

þ 1

2

o

ot
ð/½1þ ð1� kÞU �Þ; ð10Þ

oh
ot

¼ ðLe~DÞr2hþ 1

2

o/
ot

; ð11Þ

where n̂ ¼ � ~r/= j ~r/ j is the unit vector normal to the

interface, Aðn̂Þ ¼ 1þ e cos 4u is a function that describes

the surface energy anisotropy, u = arctan(oy//ox/) is

the angle between the direction normal to the interface

and the horizontal axis, and e is a dimensionless param-

eter that characterizes the anisotropy strength. The anti-
trapping current~jat is given by [9]

~jat ¼
1

2
ffiffiffi
2

p ½1þ ð1� kÞU � o/
ot

~r/

j ~r/ j
; ð12Þ

which is non-zero only inside the diffuse interface region.

The time and length scales used to non-dimensional-

ize Eqs. (9)–(11) are s0 and W0, which represent a relax-
ation time and a measure of the interface width,

respectively. The dimensionless solute diffusivity is
~D ¼ Ds0=W 2

0 and k is a dimensionless coupling parame-

ter, which is chosen as k ¼ ~D=a2 to simulate kinetics-free

growth (a2 = 0.6267) [25]. The dimensionless tempera-

ture and concentration are given, respectively, by

h ¼ T � Tm � mc1
L=Cp

; ð13Þ

U ¼
2c=c1

1þk�ð1�kÞ/

� �
� 1

1� k
; ð14Þ

where c is a ‘‘mixture’’ concentration that varies

smoothly within the diffuse interface, between the values
of the concentration in the bulk liquid and solid phases.

The results from Eqs. (9) to (11) can be related to

physical units using the relations W0 = d0k/a1 and

s0 ¼ ðd2
0=DÞa2k

3=a21 which follow from the thin interface

analysis of [25]. The coupling constant k is the only free

parameter and the results should be independent of k
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when they are converged. Decreasing k corresponds to

decreasing the diffuse interface width, since k = a1W0/d0.

Note that for the limiting case of a one-dimensional

system in equilibrium, Eqs. (10) and (11) give

T = Tm + mc1, c = c1, in the liquid, and c = kc1 in

the solid. Thus, h and U are both zero everywhere.
Eq. (9) then reduces to (o2//ox2) + / � /3 = 0. The

solution to this equation is the equilibrium phase-field

profile, /0 ¼ � tanhðx=
ffiffiffi
2

p
Þ:

The term (h + Mc1U) in Eq. (9) represents the ther-

mosolutal driving force for phase-change. The term
~Dð1� /Þ=2 in Eq. (10) interpolates smoothly between

the values of the solute diffusivity in the solid and liquid,

i.e., zero and ~D, respectively. The latent heat release is
given by the term (o//ot)/2 in the energy equation.

The simulations in this paper use nonlinear precondi-

tioning of the phase-field equation as introduced by

Glasner [35]. This simple technique allows using grids

that are much coarser than those required for reason-

able accuracy when solving the non-preconditioned

phase-field equation. In essence, nonlinear precondition-

ing consists of introducing a new variable w defined as
/ ¼ � tanhðw=

ffiffiffi
2

p
Þ, which makes w a signed distance

function to the interface. The above relationship be-

tween w and / is suggested by the equilibrium phase-

field profile. Eq. (9) is first expanded as follows:

Aðn̂Þ½ �2 1

Le
þMc1 1þ ð1� kÞU½ �

� �
o/
ot

¼ r2/þ /ð1� /2Þ � kð1� /2Þ2ðhþMc1UÞ
þ e cos 4uð2þ e cos 4uÞr2/

� 8e sin 4uð1þ e cos 4uÞðux/x þ uy/yÞ
� 16e½cos 4uþ eðcos24u� sin24uÞ�ðuy/x � ux/yÞ

ð15Þ

which, in terms of w, can be written as:

Aðn̂Þ½ �2 1

Le
þMc1 1þð1� kÞU½ �

� �
ow
ot

¼r2wþ
ffiffiffi
2

p
/ j rwj2�

ffiffiffi
2

p
/þ k

ffiffiffi
2

p
ðhþMc1UÞð1�/2Þ

þ ecos4uð2þ ecos4uÞ½r2wþ
ffiffiffi
2

p
/ j rwj2�

� 8e sin4uð1þ ecos4uÞðuxwx þuywyÞ
� 16e½cos4uþ eðcos24u� sin24uÞ�ðuywx �uxwyÞ:

ð16Þ

Note that in Eq. (16) the / field is still used, but only as

a substitute for � tanhðw=
ffiffiffi
2

p
Þ, since repeatedly calculat-

ing this hyperbolic tangent term can slow down

computations.

0.0

x/d0

0 500 1000

Fig. 1. Typical evolution of the solid/liquid interface shape for an alloy

dendrite; the upper and lower boxes show the dimensionless temper-

ature and solute concentration fields, respectively.
4. Numerical procedures

To model free dendritic growth in two dimensions,

Eqs. (10), (11) and (16) are solved numerically using fi-
nite difference approximations for the spatial derivatives

and explicit discretization of the temporal derivatives.

The domain consists of a square box (Fig. 1) initially

filled with liquid of concentration c1 that is undercooled

by an amount DT (i.e., the /, U and h, fields are set to

�1, 0 and D = DT/(L/Cp), respectively). A small solid
seed, where / = 1,U = 0, and h = 0, is placed in the lower

left corner of the box. The crystal axes are aligned

with the coordinate axes as shown in Fig. 1. Taking

advantage of symmetry, only one quadrant of a dendrite

is computed; thus the initial seed is actually a quarter of

a circle. Symmetry boundary conditions are applied for

all fields on all boundaries of the domain. Due to anisot-

ropy, the circular seed grows preferentially along the
horizontal and vertical axes, developing dendritic arms

as time marches on (Fig. 1). The rate of change of the

tip position of these arms is defined as the tip velocity.

Also, the radius of curvature of the tips is calculated

numerically as a function of time (see below). When

the tip velocity and radius of curvature do not change

appreciably with time, a steady-state regime is achieved.

Fig. 1 shows typical simulation results for a set of
parameters provided in the figure. For this simulation,

the dimensionless grid spacing is Dx = 0.8, the dimen-

sionless time step is Dt = 0.003, and the coupling param-

eter that dictates the interface width is set to k = 2.

Phase-field contours are plotted for both the initial time

and ta=d0 ¼ 280; 000, when the steady state is achieved.

The upper and lower boxes in Fig. 1 show the dimen-

sionless temperature and solute concentration distribu-
tions, respectively, at ta=d2

0 ¼ 280; 000. The variation

of the solute concentration within the solid phase repre-

sents the predicted microsegregation pattern, since sol-
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ute diffusion in the solid is neglected. It can be seen that

for the simulation in Fig. 1 (Le = 40) the thermal bound-

ary layer in the liquid is much larger in extent than the

solutal boundary layer, which is barely visible. In order

to model free dendritic growth into an essentially infinite

melt, the domain needs to be large enough that the den-
drite can reach a steady growth stage before the thermal

boundary layer reaches the far ends of the domain (for

Le P 1). Through numerical tests it was determined that

as long as the temperature of the rightmost control vol-

ume along the lower edge does not increase by more

than 0.5% from its initial value, the effect of any wall

interaction is negligible.

In order to reduce computational requirements, all
simulations are carried out using a non-uniform grid

consisting of a square, uniform, fine grid surrounded

by a square, uniform coarse grid. The surrounding

coarse grid has a grid spacing that is four times larger

than the fine grid. The dendrite is always limited in ex-

tent to the fine grid, and the coarse grid is primarily used

to compute the temperature and solute concentration

fields at a sufficiently large distance from the solid/liquid
interface where the gradients in these fields are small

(note that Fig. 1 shows only the fine-grid region).

In the coarse grid region the phase-field is constant

(/ = �1, liquid) and the species and energy equations,

Eqs. (10) and (11), respectively, reduce to simple unstea-

dy diffusion equations. Eq. (16) for w also becomes

much simpler in the coarse-grid region due to the van-

ishing of certain /-dependent terms. The discretized
equations for the control volumes where the coarse

and fine grids match were carefully derived taking into

account continuity of fluxes. It was determined through

numerical tests that a ratio of four for the grid spacings

generally provides accurate results that are indistin-

guishable from ones where a fine mesh is used through-

out the domain. At the same time, this ratio is large

enough that the extent of the coarse mesh region has
only a small effect on computational times.

While the total size of the domain is kept constant in

a simulation, the fine/coarse mesh set-up is made adap-

tive. A pre-determined portion of the coarse mesh is re-

fined whenever the dendrite comes close to the boundary

of the fine mesh region. In fact, since all simulations in

the present study are for relatively high Lewis numbers

(10–200), the coarse mesh is already refined when the
edge of the solutal boundary layer reaches the boundary

of the fine mesh region. Although the fine mesh region

increases in size during a simulation, a relatively large

coarse grid region remains even at the end of a simula-

tion in order to accommodate the much thicker thermal

boundary layer. During a typical simulation, the mesh is

adapted approximately five times. An animation of the

mesh adaptation during a simulation can be viewed at
http://css.engineering.uiowa.edu/~becker/phasefield.htm.

It was verified that the mesh adaptation has no effect on
the predicted results by noting that the dendrite tip

velocity does not experience any jumps or oscillations

in response to a mesh adaptation. Whenever the dimen-

sionless grid spacing is specified in the results below, it

refers to the spacing in the fine grid region.

4.1. Calculation of the parabolic dendrite tip radius

Special care is needed for calculating the dendrite tip

radius from the computed phase-field contours. The ac-

tual radius of curvature at the tip is given by

qa ¼ ox/=o
2
y/jtip [5]. High-order polynomial interpola-

tion is employed for calculating the first and second

derivatives of /. The actual tip radius, qa (as well as
the tip velocity) is calculated at each time step during

a simulation. It is used in the calculation of the solutal

undercooling at the dendrite tip, as described in the next

subsection.

As shown previously [4,5], qa is not suitable for com-

parison with dendrite growth theories, because the theo-

ries assume a parabolic tip shape. Very close to the tip,

the computed dendrite shape differs significantly from a
parabola (in two dimensions) due to surface energy

anisotropy effects. Therefore, the following procedure

is adopted for calculating a parabolic tip radius, q, from
the computed results at steady state.

If a Cartesian coordinate system (x,z) is placed at the

dendrite tip, with z pointing in the direction of growth,

the region where the calculated dendrite shape can be

approximated by a parabola is that for which the rela-
tionship between x2d and z is linear. Here, xd represents

the x-coordinates of the points on the solid/liquid inter-

face. Fig. 2(a) shows a plot of (xd/d0)
2 vs. z/d0 for the

same dendrite as in Fig. 1 ðta=d2
0 ¼ 280; 000Þ. A least

squares procedure is employed to determine an equation

of the form [4] (xd/d0)
2 = �2q[(z/d0)�z0] that best de-

scribes the solid/liquid interface away from the tip.

The free parameters obtained through the least squares
fitting are the parabolic tip radius q and the effective

tip location z0. As shown in Fig. 2, all points on the

computational mesh for which z is less than approxi-

mately �10q are not used in the fit, because the com-

puted dendrite develops secondary structures at larger

distances from the tip. The exact end of the fitting range

is not important. Furthermore, a certain region near the

very dendrite tip is also excluded from the fit due to the
non-parabolic nature of the solid/liquid interface there,

as noted above. The variation of the parabolic tip radius

with the starting point of the fit is shown on the right

side of Fig. 2(a). It can be seen that for the example of

Fig. 2, the parabolic tip radius is equal to 26.05d0 if

the fitting range is started at the very dendrite tip (i.e.,

z/d0). For a fitting range starting between 50d0 (z � �2q)
and 120d0 (z � �4.6q) from the tip, the parabolic tip ra-
dius is on the average equal to q/d0 � 26.1 and varies by

less than 0.2%. Therefore, the beginning of the fitting

http://css.engineering.uiowa.edu/~becker/phasefield.htm
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Fig. 2. Determination of the parabolic fit dendrite tip radius:
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(b) comparison of the actual dendrite tip shape from the simulation

(solid line) with the parabolic fit (dashed line).
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range is chosen to be always about two parabolic tip ra-
dii away from the tip (z � �2q). This point is indicated
as a solid circle in Fig. 2(a). For illustrative purposes,

the parabola obtained from the least square fitting pro-

cedure is compared to the original dendrite from the

phase-field simulation in Fig. 2(b).

4.2. Calculation of the solutal undercooling

In calculating the selection parameter, r*, via Eq. (6)

using the results of phase-field simulations, it is neces-

sary to know the solutal undercooling at the dendrite

tip, DC, in addition to the tip velocity and radius. In

the theories, DC is determined from the Ivantsov func-

tion solution, i.e., DC = Iv(LePe), but this relation can-

not be used if the calculated r* is intended to be the

result of phase-field simulation only. Note that this issue
is specific to thermosolutal dendritic growth, because the

dendrite tip temperature and solute concentration in the

liquid are not known a priori.

Using the definition of U given by Eq. (14), the

dimensionless solute concentration at the interface, Ui,

can be expressed as (1 � k)Ui = (c*/c1) � 1 [25]. Substi-

tuting this relation into Eq. (3), the dimensionless solutal

undercooling is given by DC = Ui[1 + (1 � k)Ui]. Hence,
DC can be calculated from the knowledge of Ui. There

are two methods for determining Ui from the phase-field

results. In the first method, Ui is taken directly from the

computed U field as the ‘‘frozen-in’’ value of U in the so-

lid (/ � 1) along the dendrite axis right behind the tip

(note that U is continuous across the diffuse interface,
and that U does not vary in the solid along the dendrite

axis during steady growth). In the second method, Ui is

determined using the anisotropic Gibbs–Thomson rela-

tion, which can be written in dimensionless form as

UiMc1 ¼ �d0ðn̂Þj� hi, where hi is the dimensionless

interfacial temperature and j is the local curvature of

the interface. When applied in the direction of the hori-

zontal dendrite growth axis, this relation becomes [5]

Ui ¼
�d0ð1� 15eÞ=qa � hi

Mc1
: ð17Þ

Hence, Ui can be calculated with Eq. (17) by recording

the actual dendrite tip radius, qa, and the interface tem-
perature, hi, during a simulation. Due to the diffuse nat-

ure of the interface in the phase-field method, there is

some ambiguity regarding the location within the inter-

face at which hi is evaluated. Numerical tests indicate,

however, that the uncertainty in the measured DC due

to this ambiguity is negligible provided the value of /
at which hi is evaluated is between 0.85 and 0.95. These

relatively high values of / (i.e., close to unity; the value
for the bulk solid phase) can be used because the solid is

close to isothermal [25]. The two methods for determin-

ing Ui from the phase-field results and, ultimately, for

calculating the solutal undercooling at the tip, DC, give

generally the same result to within a few per cent (see

[25] and the following section). Unless otherwise noted,

the second method is used in evaluating the selection

parameter, r*.

4.3. Convergence studies

To determine an adequate dimensionless grid spac-

ing Dx, several simulations are performed varying this

parameter only. A solid seed of radius 78d0 is used as

an initial condition. The other simulation parameters

are D = 0.55, Mc1 = 0.07, Le = 10, k = 0.15 and k = 2.
For these simulations, the steady-state dendrite tip

velocity and parabolic tip radius are determined as pre-

viously described and the results are plotted as a func-

tion of the grid spacing in Fig. 3. Fig. 3 shows that

the tip velocities and radii for the simulations with and

without nonlinear preconditioning converge to the same

values at small grid spacings (Dx 6 0.3). However, it is

readily apparent that the use of nonlinear precondition-
ing yields quite accurate results even with grid spacings

as large as 1.4. On the other hand, the results without

preconditioning rapidly deteriorate with increasing grid

spacing, and no converged solution is obtained for

Dx > 1.0. All subsequent simulations are performed with
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nonlinear preconditioning and a value for the grid spac-
ing of Dx = 0.8, unless otherwise specified. With the re-

sults in Fig. 3, it is possible to estimate the numerical

uncertainties associated with this choice of the grid spac-

ing when using nonlinear preconditioning. The tip veloc-

ity and radius for Dx = 0.8 are within 2.5% and 1%,

respectively, of the results for Dx = 0.3, which can be

considered converged. Note that using Dx = 0.8 instead

of Dx = 0.3 reduces computational times by at least one
order of magnitude.

Using the steady-state tip velocity and parabolic tip

radius from a simulation, the Péclet number, Pe = Vq/
(2a), is calculated. Substituting these parameters, as well

the steady-state solutal undercooling at the tip (see the

previous subsection), DC, into Eq. (6), the selection

parameter, r*, is also determined for each simulation.

The effect of the grid spacing on r* and Pe is shown
in Figs. 4(a) and (b), respectively. Only the LKT defini-

tion of the selection parameter is shown, but the qualita-

tive behavior for the LGK definition is similar. Again,

the results converge to the same values at small grid

spacings. While the uncertainty in the selection parame-

ter due to the grid spacing is negligibly small with non-

linear preconditioning (up to about Dx = 1.0), the result

for r* without preconditioning for Dx = 0.8 is more
than 20% below the converged value. With nonlinear
preconditioning, the uncertainty in the Péclet number

associated with the use of Dx = 0.8 is less than 1.5%.

The convergence behavior of the Péclet number without

preconditioning in Fig. 4(b) appears to be reasonable,

but this is a fortuitous event because the velocity greatly

decreases with increasing Dx while the radius sharply in-
creases, resulting in an almost constant product (i.e., Pe)

of the two.

Next, a convergence study is performed where the

interface width in the phase-field model is varied. The

same physical parameters as in the above grid size con-

vergence study are used. The interface width is con-

trolled by the dimensionless coupling parameter k, and
simulations are performed for values of k equal to 1,
2, 3, 4, 6 and, 8. Values of k < 1 required impractically

long times to reach steady state. The calculated steady-

state tip velocities and radii as a function of k are shown

in Fig. 5. For the range of values of k shown in Fig. 5,

convergence seems difficult to obtain, but clearly, it is

desirable to keep the interface width (and, hence, k) as
small as possible. Fig. 6 shows the calculated steady-

state Péclet number and selection parameter as a func-
tion of k. The Péclet number is much less sensitive to

the choice of k, which can again be explained by the
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compensating effect of the tip velocity changing in oppo-

site ways than the tip radius. The selection parameter

varies by about 20% for k between 1 and 4, and rapidly

decreases for higher k. In all subsequent simulations, the

coupling parameter is set to k = 2, unless otherwise spec-

ified. The uncertainty associated with this choice of k
can be estimated by considering the values for k = 1 as
the most accurate available. Therefore, simulations per-

formed with k = 2 predict tip velocities that are within

9% and tip radii that are within 10% of the most accu-

rate values. The uncertainties for Pe and r* are less than

0.5% and 10%, respectively.

The total uncertainty in the predicted quantities of

interest in the present study can be estimated by taking

the root mean square of the uncertainties due to the grid
spacing and the interface width. Combining the separate

uncertainties in this way, the total uncertainties are

approximately 10% for Vd0/a, 10% for q/d0, 10% for

r*, and 2% for Pe. These uncertainties are indicated as

error bars on the phase-field results in the subsequent

comparisons with the theories. While the uncertainties

may appear to be rather large, they represent a realistic
account of the accuracy that can be achieved with the

present phase-field model within a reasonable computa-

tional time.
5. Comparison with LGK/LKT theories

5.1. Effect of solute concentration

The phase-field results are first compared to the LGK

and LKT theories through a parametric study in which

the initial melt composition is varied. The other physical

parameters are fixed at D = 0.55, e = 0.02, k = 0.15, and

Le = 10 or Le = 40. For these simulations, the choices
k = 2 and Dx = 0.8 were adopted.

Figs. 7(a) and (b) show calculated thermal Péclet

numbers as a function of initial melt composition for

Le = 10 and Le = 40, respectively. As expected, the Péc-

let number decreases with increasing solute content. The

Péclet numbers predicted by the phase-field simulations

are in good agreement with, but slightly below, the

LGK/LKT results if the capillary undercooling,
Dq = d0/q, in Eq. (5) is neglected. In that case, the

LGK and LKT theories predict the same Péclet numbers.
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When the capillary undercooling is not set to zero in the

theories, a value for r* is needed to determine the tip

radius, q, from Eq. (6). For that purpose, the q and V

from the simulation for Mc1 = 0 (pure substance) were

inserted into Eq. (6) and a selection parameter, termed

r�
0, was calculated. The LGK and LKT theories give

r�
0 that differ by about 6% (0.0547 and 0.0582, respec-

tively). It can be seen from Fig. 7 that the predicted Péc-

let numbers from the full LGK and LKT theories,

including the capillary undercooling, are much lower

(by about 10–20%) than the ones for Dq = 0, and are

not in good agreement with the Péclet numbers from

the phase-field simulations. Hence, the capillary correc-

tion to the undercooling in Eq. (5), Dq = d0/q, is not
accurate, as already noted in Section 2. However, the

fact that the Péclet numbers from the simulations are

slightly below the theoretical curve for Dq = 0 indicates

that the capillary undercooling is not completely negligi-

ble. Nonetheless, the comparison in Fig. 7 confirms the

transport part of the LGK/LKT theories for alloys.

Figs. 8 and 9 show the phase-field simulation results

(symbols) for the dimensionless tip velocities and radii,
respectively, as a function of the initial melt concentra-

tion compared to the predictions from the LGK and

LKT theories (lines). For the LGK/LKT results, the

capillary undercooling is neglected and values for r*
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the initial melt concentration from the phase-field simulations (sym-

bols) and the LGK/LKT theories (lines): (a) Le = 10; (b) Le = 40.
are used that correspond to Mc1 = 0, i.e., the same r�
0

as in Fig. 7. It can be seen that the agreement between

the simulation and theory results is excellent for the pure

substance case (Mc1 = 0) and for relatively high con-

centrations (Mc1 P 0.15). However, for 0 < Mc1 <

0.15, which is the range where thermal and solutal effects

are both of importance, a large disagreement can be ob-

served. In particular, the pronounced tip velocity maxi-
mum predicted by the LGK/LKT theories at small

solute concentrations (at Mc1 � 0.015), which becomes

stronger with increasing Lewis number, is not seen in the

simulation results (Fig. 8). For Le = 10 (Fig. 8(a)) the tip

velocities from the phase-field simulations continually

decrease with increasing solute content. For Le = 40

(Fig. 8(b)) the tip velocities from the simulations are

approximately constant, or show a slight maximum that
is within the uncertainty of the simulations, up to about

Mc1 = 0.02 and then decrease; at the maximum, the tip

velocities predicted by the LKT and LGK theories are

approximately 50% and 200%, respectively, higher.

The tip radii (Fig. 9) from the simulations show a slight

minimum at Mc1 � 0.1, but the LGK/LKT theories

predict the minimum to be more pronounced and at a

smaller solute concentration. Note from Figs. 8 and 9
that the LGK and LKT theories are in relatively close



J.C. Ramirez, C. Beckermann / Acta Materialia 53 (2005) 1721–1736 1731
agreement at all concentrations other than for a certain

interval around the tip velocity maximum, where the

LKT theory always predicts a smaller maximum than

the LGK theory. This indicates that the Péclet number

corrections to the selection criterion, Eqs. (7) and (8),

play an important role in the prediction of the tip veloc-
ity maximum, and that this role becomes increasingly

important at higher Lewis numbers.

The above disagreement between the phase-field re-

sults and the LGK/LKT predictions can only be ex-

plained by a breakdown of the selection criterion,

Eq. (6), at solute concentrations near the tip velocity

maximum, where the coupling between thermal and sol-

utal effects is most important. Recall that the LGK/LKT
theories assume that the selection parameter r* is inde-

pendent of the solute concentration (and the Lewis num-

ber). In order to test this assumption, the phase-field

simulation results for Vd0/a, q/d0, and DC are now in-

serted into Eq. (6) to obtain a calculated r*. The results
as a function of solute concentration are shown in Figs.

10(a) and (b) for Le = 10 and Le = 40, respectively. The

LGK and LKT theories result in different calculated r*
because of the Péclet number corrections in the LKT

theory; the difference is most significant at solute con-

centrations near the tip velocity maximum. It can be
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Fig. 10. Variation of the selection parameter (LGK and LKT

definitions) from the phase-field simulations with the initial melt

concentration: (a) Le = 10; (b) Le = 40.
seen from Fig. 10 that the r* calculated from the

phase-field simulations are generally a strong function

of the solute concentration, which is in direct contradic-

tion to the LGK/LKT theories. Increasing the solute

concentration from zero, r* first sharply decreases [espe-
cially for Le = 40, Fig. 10(b)], reaches a minimum at a
concentration near the tip velocity maximum, and then

increases to asymptotically approach a constant value

for high concentrations. For Le = 40, the minimum cal-

culated r* is about 60% (35%) below the pure substance

value, r�
0 using the LGK (LKT) definition.

In order to determine the limiting value of r* as the

solute concentration increases to very large values, an

additional simulation was performed for a purely solutal
dendrite by assuming that the Lewis number is infinitely

large and using a solutal undercooling of DC = 0.55

(with k = 0.15, e = 0.02). As can be seen from Fig. 10,

the values obtained for r* are 0.0580 and 0.0592 for

the LGK and LKT definitions, respectively. These val-

ues for a purely solutal dendrite are within about 5%

of the r* ð¼ r�
0Þ values for the corresponding purely

thermal dendrite (see Fig. 10), which is well within the
numerical uncertainty. The good agreement indicates

that the selection criterion, Eq. (6), is correct to the ex-

tent that the same r* can be used for the limiting cases

of purely thermal and purely solutal (Le ! 1) den-

drites. Note that the thermal and solutal dendrite

growth problems are not completely equivalent [see dis-

cussion below Eq. (6)]. Therefore, the above agreement

in the r* values establishes some confidence in the
phase-field simulations.

In summary, while the transport part of the LGK/

LKT theories (without the capillary undercooling) is

well validated by the present simulations, the selection

criterion appears to break down at small solute concen-

trations where thermal and solutal effects are both

important and the theories predict a dendrite tip velocity

maximum. For the present set of the governing param-
eters, no pronounced tip velocity maximum is predicted

by the phase-field simulations when increasing the solute

concentration. The main difference between the simula-

tions in this section and the experiments where the tip

velocity maximum was observed [11] is that the dimen-

sionless undercooling, D, in the simulations is much

higher than that in the experiments. The effect of the im-

posed undercooling on r* is investigated further in Sec-
tion 5.3.

5.2. Effect of Lewis number

In this section, the phase-field simulations are com-

pared to the LGK and LKT theories in a parametric

study in which the Lewis number is varied from Le = 1

to Le = 200. The other physical parameters are fixed at
D = 0.55, e =0.02 , k = 0.15, and Mc1 = 0.01. The value

ofMc1 = 0.01 was chosen because it is close to the initial
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melt concentration where the tip velocity maximum is

observed in the theories, the thermal and solutal effects

are both important, and the deviation between the simu-

lations and the theories is largest (see Figs. 8–10).

For the simulations in this section, the choices k = 1

and Dx = 1.4 were adopted. The relatively large dimen-
sionless grid spacing is needed to provide a sufficient

number of grid points to resolve the large thermal

boundary layers associated with the higher Le cases

while keeping computational times at a reasonable le-

vel. It can be seen from Figs. 3 and 4 that with precon-

ditioning, Dx = 1.4 still provides reasonably accurate

results. The overall uncertainty in the results is consid-

erably reduced by choosing an interface width that is
smaller by a factor of two compared to the previous

section (i.e., k = 1 instead of k = 2; see Figs. 5 and 6).

The estimated uncertainties are now 10% for tip veloc-

ity, 10% for tip radius, 8% for r*, and 3% for Pe. An

additional convergence check is provided in Table 1. In

this table, three parameters are provided as a function

of the Lewis number: (i) the ratio of the interface width

to the solute diffusion length, W0V/D, which should be
less than unity [25], (ii) the ratio of the actual tip radius

to the interface width, qa/W0, which should be greater

than about 10 [25,36], and (iii) the per cent difference

between the dimensionless solute concentration, Ui,

predicted at the dendrite axis and that calculated from

the Gibbs–Thomson condition, Eq. (17). Table 1 shows

that except for the simulations with Le = 150 and 200,

all three parameters are well within ranges that indicate
convergence. For Le = 150 and 200, W0V/D slightly ex-

ceeds unity, but this should not be a source of great

concern.

Fig. 11 shows a comparison of the Péclet numbers

calculated from the phase-field simulations and the

LGK/LKT theories as a function of Le. As in Fig. 7,

good agreement is observed with the theories when the
Table 1

Convergence parameters as a function of the Lewis number for

simulations with Mc1 = 0.01, k = 0.15, D = 0.55, e = 0.02, k = l,

Dx = 1.4; the last column shows the per cent difference of the solute

concentration predicted along the central dendrite axis with respect to

the value obtained from the Gibbs–Thomson condition, Eq. (17)

Le W0V/D qa/W0 % diff. w.r.t. G.T.

1 0.00750 44.4 1.7

2 0.01469 43.8 2.1

4 0.02928 42.1 2.2

6 0.03677 41.2 2.2

10 0.07444 38.1 2.2

20 0.15092 34.6 2.3

40 0.30184 31.3 2.1

60 0.45548 29.0 1.9

100 0.78063 26.0 1.4

120 0.93540 25.3 1.2

150 1.14549 25.0 1.2

200 1.44134 26.1 1.4
capillary undercooling in Eq. (5) is neglected. The theo-

retical curves that include the capillary undercooling are

much below the phase-field simulation results; in fact,

the LGK curve appears to diverge from the simulation

results with increasing Le. Note that the r�
0 values in

Fig. 11, used to determine the tip radius in the capillary

undercooling, are slightly different from the ones in the

previous section (Figs. 7–9). This can be attributed to

the use of different values for Dx and k. However, the

difference in the r�
0 values is less than 1.5%, which is well

within the numerical uncertainty. Like Fig. 7, Fig. 11

lends strong support to the transport part of the

LGK/LKT theories.
Figs. 12(a) and (b) compare the phase-field results for

the dendrite tip velocity and radius, respectively, to the

theories (with Dq = 0) as a function of the Lewis num-

ber. It can be seen that within the present range of Le

the tip velocities predicted by the phase-field simulations

are approximately constant, while the tip radius de-

creases slightly with increasing Le. There is a hint of a

tip velocity maximum, and tip radius minimum, near
Le = 100, but no definite conclusion can be made. The

variations of the tip velocity and radius with Le from

the LGK/LKT theories are generally in poor agreement

with the phase-field results. The two theories start to di-

verge from each other at around Le = 5, up to which

they are in reasonable agreement with each other and

the simulations. Beyond that Lewis number, the LGK

theory predicts that the tip velocity (radius) increases
(decreases) sharply with increasing Le, while the LKT

theory predicts a maximum (minimum) in the tip veloc-

ity (radius) at about Le = 30. As noted above, these vari-

ations are not supported by the phase-field results.

The disagreements in Fig. 12 between the simulation

and theories indicate a breakdown of the selection cri-

terion, Eq. (6), as the Lewis number is increased from

unity. Recall that the LGK/LKT theories assume that
r* is a constant that is independent of the Lewis num-

ber. Fig. 13 shows the selection parameter, r*, calcu-
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lated from the tip velocities and radii predicted by the

phase-field simulations as a function of the Lewis num-
ber. Values for both the LGK and the LKT definition

of r* are provided in the figure. Also indicated in Fig.

13 are the r* values for Le ! 1, which were obtained

by performing a simulation for purely solutal dendritic

growth. Note that the r* for Le ! 1 in

Fig. 13 are within about 5% of the corresponding val-

ues in Fig. 10, the differences being due to the choice
Le

σ*
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Fig. 13. Variation of the selection parameter (LGK and LKT

definitions) from the phase-field simulations with the Lewis number.
of different Dx and k. It can be seen that for

1 6 Le < 5, the selection parameters determined from

the phase-field simulations are indeed constant and

essentially equal to the values computed for Le ! 1.

This supports the LGK/LKT theories. However, large

variations in the r* from the phase-field simulations
can be observed for 5 < Le < 200, which contradicts

the theories. For the LGK definition r* appears to

continually decrease for Le > 5, whereas the r* based

on the LKT definition shows a minimum at Le�40

and then increases beyond the Le ! 1 value. Since

it was not possible to perform accurate simulations

for Le > 200, it is unclear how r* varies for higher Le-

wis numbers and ultimately approaches the value for a
purely solutal (Le ! 1) dendrite. To the authors� best
knowledge, the strong dependence of r* on Le shown

in Fig. 13 for a (dilute) binary alloy has not been ob-

served before and indicates a breakdown of the LGK/

LKT selection criterion.

5.3. Effect of undercooling

Phase-field simulations have also been conducted to

explore the effects of the imposed undercooling, D, on
dendritic growth of an alloy. Here, it is of primary inter-

est to check if the selection parameter, r*, varies with

the undercooling (or the Péclet number, Pe), since the

LGK/LKT theories assume that it does not. While it is

well known that r* depends on the undercooling for

dendritic growth of pure substances (e.g. [5]), this has
only been demonstrated for the LGK definition of r*
(in the limit of Mc1 = 0). Hence, the simulations in this

section will allow for an examination of the high Péclet

number corrections of the LKT theory, which are in-

tended to keep r* constant as Pe (or D) is increased.

Furthermore, it is important to verify the LKT correc-

tions for alloys and when thermal and solutal effects

are both important.
It is also of interest to examine the limit of small

undercoolings (or Pe), where the LGK and LKT theo-

ries do not differ. It is essentially in this limit where

the tip velocity maximum as a function of the solute

concentration has been observed experimentally [11].

Unfortunately, the lowest dimensionless undercooling,

D, for which it was possible to perform phase-field sim-

ulations within a reasonable computational time is equal
to 0.1, which is still much above the values in the exper-

iments. In fact, for D = 0.2 and D = 0.1 the simulations

performed in the course of this study did not reach a

complete steady growth state. The results are included

here because, even though the tip velocity and radius

did not reach their steady-state value, the selection

parameter had to within the numerical uncertainty.

Nonetheless, the simulation results for D = 0.2 and
D = 0.1 should be viewed with caution. Simulations are

performed for three cases: (i) purely thermal dendrites
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(Mc1 = 0), (ii) purely solutal dendrites (Le ! 1), and

(iii) thermosolutal dendrites with Mc1 = 0.01 and

Le = 40. The latter case corresponds to the concentra-

tion where the tip velocity maximum is expected from

the theories and where thermal and solutal effects are

both important. Other simulation parameters are held
at k = 0.15, e = 0.02, and Dx = 1.4.

The choice of the coupling parameter, k, deserves spe-
cial attention for the low undercooling simulations in

this section. The simulations with lower undercoolings

can be performed with a much larger k (and, hence a

much larger W0/d0) than is necessary for the simulations

in the previous sections with D = 0.55. This can be

attributed to the much lower growth velocities in the
simulations with a lower undercooling, which increase

the solutal diffusion length, D/V, relative to the interface

width. Table 2 provides a list of the same three conver-

gence parameters as in Table 1 for all undercoolings and

cases presented in this section. It can be seen that for the

present choices of k, W0V/D < 0.3, W0V/a < 0.008,

q0/W0 > 12, and the deviation from the Gibbs–Thomson

condition is always less than about 3%. Hence, the re-
sults can be considered converged with respect to k (or

the interface width) [25,36]. Note that a value of k as

high as 40 can be used for the simulations with D = 0.1.
Table 2

Convergence parameters as a function of the imposed undercooling

and the coupling parameter k for purely thermal, purely solutal, and

thermosolutal dendritic growth; the last column shows the per cent

difference of the solute concentration predicted along the central

dendrite axis with respect to the value obtained from the Gibbs–

Thomson condition, Eq. (17); the results for D = 0.2 D = 0.1 are not at

a complete steady state

D k W0V/D qa /W0 % diff. w.r.t. G.T.

Thermosolutal, Mc1 = 0.01, k = 0.15, Le = 40, e = 0.02

0.1 40 0.018 17.3 2.2

0.2 10 0.046 21.4 2.3

0.3 8 0.150 12.9 2.8

0.4 2 0.137 66.0 2.3

0.55 1 0.302 31.3 2.1

DC k W0V/D qa/W0 % diff. w.r.t. G.T.

Purely solutal, k = 0.15, e = 0.02

0.1 40 0.0005 18.9 1.3

0.2 10 0.0018 18.5 1.3

0.3 8 0.0052 12.5 2.3

0.4 2 0.0049 26.5 1.8

0.55 1 0.01549 22.1 3.3

DT k W0V/a qa/W0 % diff. w.r.t. G.T.

Pure substance, e = 0.02

0.1 40 0.0005 26.0 N/A

0.2 10 0.0009 27.6 N/A

0.3 8 0.0029 24.2 N/A

0.4 2 0.0026 50.6 N/A

0.55 1 0.0079 44.1 N/A
Fig. 14 shows a comparison of the Péclet numbers

from the phase-field simulations with the LGK/LKT

theory (with Dq = 0 only) as a function of the underco-

oling. The horizontal axis represents the total underco-

oling D for the pure substance and thermosolutal

cases, and the solutal undercooling DC for the purely
solutal case. Similarly, the vertical axis represents the

thermal Péclet number for the pure substance and ther-

mosolutal cases, and the solutal Péclet number for the

purely solutal case. Since the Pe(D) relation for the pure

substance case is the same as the PeC(DC) relation for

the purely solutal case, the theory curves for these two

cases overlap. Fig. 14 shows that the simulation results

for these two cases (open circles and solid diamonds)
agree to within the numerical uncertainty. Overall, there

is good agreement between the simulations and the the-

ory for all three cases, lending further support to the

transport part of the LGK/LKT theories. The Péclet

numbers from the simulations for D = 0.2 and D = 0.1

are somewhat above the theoretical predictions, which

can be attributed to these simulations not having

reached a complete steady state (see above).
The selection parameters, r*, obtained from the

phase-field simulations for all three cases are plotted

as a function of the Péclet number in Fig. 15. The Péclet

number is chosen as the independent variable instead of

the undercooling, in order to directly examine the

dependence of r* on Pe; the Péclet number is related

to the undercooling as explained in connection with

Fig. 14. For the purely thermal and thermosolutal cases,
the abscissa represents the thermal Péclet number, and

for the purely solutal case, the abscissa is the solutal Péc-

let number. The selection parameters determined using

the LGK definition are shown in Fig. 15(a), while

the ones from the LKT definition are provided in

Fig. 15(b). The following observations can be made with

respect to Fig. 15:
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� The selection parameters determined from the phase-

field simulations are not a constant, but decrease with

increasing Péclet number. This indicates a breakdown

of the LGK/LKT selection criterion which assume a

constant r* that is independent of Pe (or the

undercooling).
� The high Péclet number corrections in the LKT selec-

tion criterion are generally not effective, since the r*
based on the LKT definition still varies with Pe

(Fig. 15(b)). In fact, the differences between the r*
from the LGK and the LKT definition are relatively

minor for Pe < 0.3, which is the range examined here.

� As noted in Section 5.1, the selection parameter for

the pure substance (Mc1 = 0) and purely solutal
(Le ! 1) cases agree with each other to within the

numerical uncertainty. Fig. 15 shows that this is true

regardless of Pe, as expected.

� Ignoring the scatter in the r* corresponding to

D = 0.2 and D = 0.1 (the two left-most data points),

Fig. 15(a) indicates that for the pure substance and

purely solutal cases, the selection parameter varies

with Pe in an approximately linear fashion, with
r*(Pe ! 0)�0.07. Such a linear variation, as opposed
to the nonlinear Pe corrections of the LKT theory,

was also found by Karma and Rappel [5] for three-

dimensional dendrites of pure substances.

� The selection parameters for the thermosolutal case

(Mc1 = 0.01, Le = 40) are much different, and vary

more strongly with Pe, than the r* in the purely ther-
mal and solutal cases. The solute concentration

dependence of r* was already noted in connection

with Fig. 10. However, Fig. 15(a) shows that the dif-

ference between the selection parameters for the ther-

mosolutal case and the ones for the purely thermal

and solutal cases becomes less with decreasing Péclet

number and that they approach the same value as

Pe ! 0, i.e., r* (Pe ! 0) � 0.07 for all three cases.
In other words, it is likely that r* becomes indepen-

dent of the solute concentration as Pe ! 0. Unfortu-

nately, it was not possible to generate additional

numerical data for r* in the low Péclet number limit

to verify this hypothesis, and even the data corre-

sponding to D = 0.2 and D = 0.1 in Fig. 15 should

be viewed with caution.

The last item may explain why a pronounced dendrite

tip velocity maximum as a function of the solute concen-

tration is observed in experiments [11] but not in the

simulations (see Fig. 8). The experiments correspond

to the low Péclet number limit, whereas the simulations

in Fig. 8 are for higher Pe. If indeed the selection param-

eter is a constant that is independent of the solute con-

centration as Pe ! 0, the maximum in the tip velocity
predicted by the LGK/LKT theories is more likely to

occur.
6. Conclusions

The standard LGK and LKT theories for free den-

dritic growth of alloys into an infinite melt (in the ab-
sence of kinetic effects and solute trapping) are

quantitatively tested using phase-field simulations. The

simulations are carried out in two dimensions using a

structured adaptive grid and nonlinear preconditioning

of the phase-field equation. The uncertainties in the den-

drite growth parameters predicted by the simulations are

established through extensive convergence studies.

Numerous simulations are performed to investigate the
effects of the melt concentration, the Lewis number,

and the imposed undercooling. It is found that the sim-

ulation results for the dendrite tip growth Péclet number

are in good agreement with the LGK/LKT theories if

the tip radius is based on a parabolic fit to the actual

dendrite shape and the capillary undercooling is ne-

glected. However, considerable differences are observed

between the simulation results for the dendrite tip veloc-
ity and radius and the corresponding LGK/LKT predic-

tions. In particular, the pronounced tip velocity
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maximum at a small but finite melt concentration that is

predicted by the LGK/LKT theories is not exhibited by

the simulation results. These disagreements can be ex-

plained by a breakdown of the LGK/LKT selection cri-

terion. The phase-field simulations show that the

computed selection parameter, r*, based on either the
LGK or the LKT definition, varies strongly with initial

melt composition, Lewis number and undercooling (or

Pe), whereas the theories hinge upon the fact that r*
is independent of these parameters. While r* is the same

for purely thermal and purely solutal dendrites, the

LGK/LKT selection criterion breaks down at the melt

concentration where thermal and solutal effects are both

important and the tip velocity maximum is predicted by
the theories. The present simulations also show that the

high Péclet number corrections of the LKT theory are

ineffective for the range of undercoolings investigated

here. The results presented in this study should motivate

a re-examination of the selection theory for alloys.

Additional numerical simulations should be conducted

at the low undercoolings where detailed experimental

data are available.
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