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The mesoscopic envelope model is a recent multiscale model that is intended to bridge the gap between
purely microscopic and macroscopic approaches for the study of dendritic solidification. It consists of the
description of a dendritic grain by an envelope that links the active dendrite branches. The envelope
growth is deduced from an analytical microscopic model of the dendrite tip growth kinetics matched
to the numerical solution of the mesoscopic solute concentration field in the vicinity of the envelope.
The branched dendritic structure inside the envelope is described in a volume-averaged sense by phase
fractions and averaged solute concentrations. We present a careful quantitative analysis of the influence
of numerical and model parameters on the accuracy of the model predictions. We further perform a val-
idation study through comparisons of 3D simulations to experimental scaling laws giving the shape and
the internal solid fraction of freely growing binary alloy dendrites and to analytical solutions for the pri-
mary dendrite tip speed. We provide generally valid guidelines for the calibration of the mesoscopic
model, enabling reliable control of the accuracy of model predictions over a wide range of undercoolings.
The model is applied to simulate strong solutal interactions in large ensembles of equiaxed grains. The
potential for mesoscopic simulations to provide refined modeling of microstructures in volume-
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averaged macroscopic models via scale bridging is demonstrated.
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1. Introduction

Dendritic (treelike) crystals or grains are the most common
growth form in solidification of metal alloys. Their growth is gov-
erned by an intricate interplay between diffusion or convection
of heat and chemical species (solutes) and capillary effects. Fur-
thermore, in castings the growth of dendritic crystals is influenced
by adjacent grains. The grains can “feel” each other due to the over-
lap of thermal and solutal fields surrounding each growing grain.
Analytical solutions of dendritic growth are limited to the descrip-
tion of a single isolated dendrite tip that grows by diffusion in an
infinite, uniformly undercooled melt [1,2].

Complex dendritic structures can be simulated directly by
phase-field methods, which directly resolve the dendritic structure
in detail but are computationally expensive. These and other
microscopic methods thrived and matured in the last decade [3-
5]. Phase-fields methods have become the most common approach
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to the numerical simulation of dendrite growth. However, because
phase-field methods need a very fine mesh, computing and mem-
ory requirements are large. Most simulations are limited to the
scale of a few dendrites, to two dimensions and purely diffusive
conditions. Only recently simulations of large ensembles of grains
in 3D have been reported [6,7]. They required complex high-
performance parallel computing algorithms and massive super-
computing resources.

Other common approaches are cellular-automaton and volume-
averaged models [8-13] that can simulate the growth of multiple
dendrites on the scale of an entire casting but at the expense of
simplifications. These methods are not able to predict accurate
grain shapes and rely on very approximate relations for modeling
grain interactions.

A simulation tool for dendritic solidification that is intended to
bridge the gap between purely microscopic and macroscopic
approaches is given by the so-called mesoscopic solidification
model of Steinbach, Beckermann and coworkers [14-16]. This
model relies on the description of a dendritic grain by its envelope,
which is a smooth surface connecting all of the actively growing
dendrite tips. An example of interacting three-dimensional
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Nomenclature

Greek Letters

r Gibbs-Thomson coefficient

é stagnant film thickness (distance between the envelope
and the confocal envelope)

Senv distance to the envelope

3 volume-averaged diffusion length at the envelope

0 angle between the envelope normal and the tip growth
direction

a* tip selection parameter

T dimensionless time scaled by D;/VZ.,

T4 dimensionless time of departure from free growth

Tymin dimensionless time of minimum sphericity

¢ phase indicator field

b4 average envelope sphericity

Q supersaturation

Qo initial supersaturation

Qs supersaturation at the confocal envelope

Q. supersaturation at infinity

Latin letters

A1, A, amplification factors in the dendrite scaling laws

b, b, stabilization parameter and its stability limit

C solute concentration

c)® average solute concentration in the extradendritic lig-
uid

Coy courant number of the phase indicator field

D solute diffusion coefficient

do capillary length

dee mean distance between grain centers

F projection area of the solid phase

Foax grid Fourier number

g volume fraction

kp equilibrium solute partition coefficient

Laise theoretical (LGK) solutal diffusion length at the primary
tip at the initial supersaturation

mg slope of the liquidus line

ni, n;  exponents in the dendrite scaling laws

i outward drawn normal of the envelope surface

N{}jiff dimensionless grain density

Pe Péclet number

R radius

Sv.env volume averaged specific envelope surface area

T temperature

Tf melting temperature of the pure solvent

t time

V.,V speed, velocity

w characteristic width of the hyperbolic-tangent profile

Xact width of the envelope formed by active sidebranches

X5 position of the confocal envelope point

X, y, z cartesian coordinates

Ax, At  grid spacing, timestep

Subscripts

e envelope

env envelope surface

LGK theoretical LGK primary dendrite tip

! liquid phase

s solid phase

tip dendrite tip

Superscripts

*

solid-liquid interface
~ dimensionless quantity

Special functions

Iv Ivantsov function: Iv(Pe) = Pe exp (Pe)E; (Pe)

equiaxed dendritic grain envelopes predicted by the mesoscopic
model is shown in Fig. 1. The driving force for the envelope growth
is obtained as a function of the temperature or solute concentra-
tion in the liquid at a certain distance ahead of the envelope. As
shown in Fig. 2, this distance is denoted as the stagnant film thick-
ness ¢ and is the principal model parameter. This model has been
shown to provide physically realistic results for both equiaxed
[14,15] and columnar [16,17] dendritic growth.

Steinbach et al. [14] applied the mesoscopic model to the ther-
mally driven growth of dendritic grains into a supercooled melt of
a pure substance. They validated the predictions of the model for
the case of a single grain growing into an essentially infinite melt
through comparisons with previously obtained scaling laws for
the grain envelope shape and the internal solid fraction, derived
from microgravity experimental data [19-22]. Later they investi-
gated the transient interactions between equiaxed grains of a pure
substance and validated some of their results with phase-field cal-
culations [15]. More recently, Delaleau et al. [16] extended the
mesoscopic model to the solidification of a binary alloy with a pre-
scribed temperature field. They applied the model to simulate the
columnar dendritic microstructures observed in in situ synchrotron
X-ray imaging experiments [23,24]. Relatively good agreement
was found between the predicted and measured dendrite envelope
shapes, solid fractions and solute concentration fields.

These studies have shown the potential of the mesoscopic
model for accurate prediction of dendrite envelope shapes and

grain interactions at a computational cost that is up to several
orders of magnitude smaller than that of phase-field methods
[17]. An interesting future application of this model is the upscal-
ing from mesoscopic simulations to volume-averaged macroscopic
models, in order to provide laws of microstructure growth dynam-
ics that account for interactions in large ensembles of grains. This
can be done, for example, by simulations of large ensembles of
grains across wide parameter ranges and by subsequent averaging
of these simulations. However, on the way to such a wide applica-
tion of this model, a comprehensive investigation of the accuracy
of the model predictions, particularly of the dependence of the
simulations on the model and numerical parameters, is still neces-
sary. This has not been systematically addressed in previous stud-
ies. In the present paper we perform a careful quantitative analysis
of the influence of numerical and model parameters on the accu-
racy of the model predictions. We also validate the model for free
dendritic growth in a binary alloy over a wide range of undercool-
ings. This is accomplished through comparisons of 3D simulations
to recently published experimental scaling laws giving the shape
and the internal solid fraction of freely growing binary alloy den-
drites [18] and to classical analytical solutions for the primary den-
drite tip speed. We provide generally valid guidelines for the
calibration of the numerical and model parameters of the meso-
scopic model, enabling reliable control of the accuracy of model
predictions over a wide range of undercoolings. Finally, we apply
the model to large ensembles of equiaxed grains growing in the
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Fig. 1. Example of results of a simulation with the mesoscopic model. Top: four
interacting equiaxed grain envelopes growing in an enclosure. Bottom: a slice
across the enclosure at mid-depth (shaded area in the top image). The liquid
fraction field (g;) is shown in the interior of the envelopes and the supersaturation
field in the liquid outside the envelopes. The black line is the contour of the
envelope of a free (unconfined) equiaxed grain aligned with the green grain and
growing at the same initial supersaturation of Q, = 0.05. Note that the core of the
central dendrite shows a zone with g, = ©, which is a trace of the initial spherical
nucleus. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

presence of strong solutal interactions. The potential for meso-
scopic simulations to provide refined modeling of microstructures
in volume-averaged macroscopic models via scale bridging is
demonstrated using these examples.

2. Description of the model

The core idea of the mesoscopic envelope model is the descrip-
tion of a dendritic grain by its envelope - a virtual smooth surface
that links the tips of the actively growing dendrite branches (see
Fig. 2). The growth velocity of the envelope can thus be calculated
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Fig. 2. Schematic illustration of the main principles of the mesoscopic model: the
envelope, the confocal envelope, and the stagnant film thickness, §. The envelope
propagation velocity, V,, is obtained by the projection of the tip velocity, Vtip, from
the preferential growth direction forming the smallest angle 6 with the envelope
normal, 7i. The parameters and scales of equiaxed dendrites measured in the
experiments used for validation [18] are also shown: the width of the envelope
formed by the active sidebranches, X, the projection area of the solid, F, and the
primary tip radius, Ryp.

from the velocities of the dendrite tips. The growth of the dendrite
tips is controlled by the solute flux that they eject into their sur-
roundings and is therefore determined by the local supersaturation
of the liquid in the vicinity of the envelope. The branched dendritic
structure inside the envelope is only implied and its details are not
resolved; the interior of the envelope is instead described in a
volume-averaged sense by a phase-fraction field, as shown in
Fig. 1. The phase solute concentrations are also described in a
volume-averaged sense. The phase change that determines the
evolution of the structure, i.e. of the phase fraction field, inside
the growing envelope is controlled by the exchange of solute with
the surroundings of the grain. The transport of solute at the meso-
scopic scale is described by volume-averaged transport equations.

The model equations are given in dimensionless form in order
to provide better insight into the role played by the control param-
eters. Scalings related to the free Ivantsov dendrite tip are most
convenient for nondimensionalization. They are obtained by a sim-
plified version of the Lipton-Glicksman-Kurz (LGK) tip model [25]
that neglects thermal and capillary undercooling and accounts only
for the solutal contribution. The free tip grows at a supersaturation
of Q. = (C; —C)/(C;(1 —kp)), where C; is the liquid concentra-
tion at the solid-liquid interface of the tip growing at the temper-
ature T =Ty + m,C}, C is the liquid concentration at infinity, k, is
the equilibrium solid-liquid solute partition coefficient, Ty is the
melting temperature of the pure solvent, and m; is the liquidus
slope. The inverse Ivantsov function provides the growth Péclet
number of the tip, Pejgk = RickVick/(2D)), as a function of the
supersaturation via the relation Pex =Iv'(Q.), where
Iv(x) = xexp(x)E;(x). The tip selection criterion is given by
Rl«Vick = doDy/a*, where do = I'/(m,C; (k, — 1)) is the solutal cap-
illary length, ¢~ is the selection constant, and I is the Gibbs-Thom-
son coefficient. These relations give the free-tip curvature radius,
Rick = do/(20"Pe;ck), which is used as the length scale, and the
free-tip speed, Vicx = 4J*D1PefGK /do, which is used as the velocity
scale. Time is scaled by the square of the tip radius over the solute
mass diffusivity, R%../D;, and the concentration scale is C; (1 —k;).
The dimensionless position vector, speed, time, and solute concen-
tration are then given by X= X/Rick, V= V/Viek, t=tD /RfGK, and
Q= (C; —O)/(C/(1 = kp)), respectively.
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2.1. Dendrite tip kinetics

The local growth speed of the envelope is given by the kinetics
of the dendrite tips behind it. Their growth Péclet number, Peyp, is
obtained from a modified Ivantsov solution that is written in terms
of the supersaturation, Qs, at a finite distance ¢ from the tip [26]:

20
Qs = Peﬁp exp (Petip> |:E1 (Peﬁp) —Eq (Petip |:1 + R—:| >:| (1)
tip

Eq. (1) is also called the stagnant-film formulation of the Ivantsov
solution. In the mesoscopic model, the supersaturation Qs is
obtained from the numerically resolved concentration field in the
liquid around the grain envelope. This corresponds to a matching
of the locally valid tip solution to the solution of the mesoscopically
valid solute transport equation at a distance é from the envelope
(on a surface called the confocal envelope, Fig. 2). In this way the
tip kinetics and the mesoscale solutal interactions are fully coupled
without resolving the structure of individual dendrite branches.
Eq. (1) is supplemented by the tip selection criterion, which can

be written in dimensionless form as R% Vi, =1. Then, the
dimensionless tip speed is given by:

e ) )

Egs. (1) and (2) together give the local tip speed at any point on the
grain envelope. The stagnant film thickness, J, is a model parameter.
Its choice is not clear a priori and, as we will show, ¢ has an influ-
ence on the results (primary tip speed, envelope shape, etc.).

2.2. Envelope propagation with the phase-field equation

One of the main assumptions of the mesoscopic model is that
the preferential tip growth directions are known. They must be
prescribed, since the physics underlying the selection of the
growth direction is not included in the model. For example, a typ-
ical cubic crystal dendrite can be approximated by six possible
growth directions that are perpendicular to each other. The normal

envelope growth velocity, V,, is then calculated from the local tip
speed, Vyp, by the relation

\7,1 = Vtipﬁ cos 0, (3)

where 0 is the angle between the outward drawn normal to the
envelope, i, and the preferential growth direction that forms the
smallest angle with the normal, as shown in Fig. 2.

As in previous work [14-16], we use the phase-field sharp-
interface capturing method [27] to propagate the envelope on a
numerical mesh. In this method the tracked front is given by the
level set of a continuous indicator field ¢. The transition of ¢ from
1 to 0 in the vicinity of the front follows a hyperbolic tangent pro-
file given by the kernel function [28]

$(n) :% [1 —tanh (%)]7 (4)

where n is the distance from the center of the profile. The phase-
field equation that is used to propagate the field ensures that the
profile is self preserving and retains its shape and its characteristic
width W. In our case the envelope is defined by the level set of
¢ = ey = 0.95. This value can be chosen arbitrarily; however, it
affects the error associated with the approximation of a curved
front by the phase field. For the method to work accurately, ¢ pro-
files should not overlap in curved parts of the surface. The largest
overlap is determined by the smallest radius of curvature of the
front, Renv.min, and by the width of the kernel function, W, which var-
ies from 1 to O over a distance of approximately 6W. If ¢.,, = 0.5 is

used, W should be chosen such that W < Reyymin/6 in order to
describe the shape with sufficient accuracy [27]. If ¢en = 0.95 is
used, a kernel function width of W < Renvmin/3.1 is sufficiently
small to accurately describe the convexly curved parts of the front.
However, in concave parts, only curvatures with a radius larger than
8.9W can be accurately described in this case. Generally, we seek to
set W as large as possible, because the grid spacing must meet the

requirement Ax < W/+v/2 [27] in order to describe the hyperbolic
tangent transition with sufficient accuracy. By using a larger W
the grid spacing can be increased and the computational cost is
thereby decreased. The choice of ¢.,, = 0.95 was motivated by
the fact that we studied primarily the tip of the envelope of the pri-
mary arm, where the convex curvatures are most critical. As long as
the ¢-profile is well conserved and the smallest radius of curvature
is compatible with the studied case, there is no particular sensitivity
of the model to the choice of ¢.,,.

The phase-field equation for the propagation of the indicator
function ¢ is [28]:

09y 5 T b lo2g PA-®)(1-20) (Yo
Se HVal-Vo=—b|V?0 W2 VeIV ( W)}?

stabilization term

)

The term on the right hand side of the equation is a stabilization
term that ensures that the phase-field ¢ retains the hyperbolic tan-
gent profile. The coefficient b is a relaxation factor. It has to be cho-
sen appropriately to minimize the error and to ensure the stability
of the method [27]. The choice of b in the context of the mesoscopic
model is discussed in Section 3.

2.3. Transport equations

The solute transport at the mesoscopic scale is described by vol-
ume averaged equations [29] that are valid in the whole domain,
i.e., both inside and outside the envelopes. The solid and liquid
phases are assumed to be stationary. Solidification inside the
envelope is modeled using the Scheil assumptions: thermody-
namic equilibrium at the solid-liquid interface, negligible diffusion
in the solid and perfect diffusion in the liquid. This implies that the
supersaturation of the liquid inside the envelope is zero and the
dimensionless concentration of the solid at the solid-liquid inter-
face is Q; = 1. These assumptions lead to the following simplified
dimensionless conservation equation for the solute in the liquid
phase that describes isothermal solidification at a constant tem-
perature, such as will be treated in our simulations:

09 = - g,

—=V-(gVQ = 6
a5 =V (ave) + 3 (6)
Outside the envelope the material is fully liquid,

g = 1 5 ¢ < ¢env (7)

and Eq. (6) reduces to a single phase diffusion equation. Inside the
envelope, the liquid is in thermodynamic equilibrium, such that:

Q=0 ; ¢>= Penv- (8)

With @, known, Eq. (6) gives the evolution of the liquid fraction
inside the envelope. In the particular case of isothermal growth at
a constant temperature, €, in the interior of the envelope is uniform
and constant and Eq. (6) therefore reduces to 9g;/ot = 0. Phase
change in this case only occurs at the envelope front, where a solid
fraction g;.,, forms due to the solute rejected from the envelope
into the surrounding liquid. It is given by the solute flux balance
at the envelope:

)
gs‘env Vﬂ - ﬁ env!

9)



308 Y. Souhar et al./ Computational Materials Science 112 (2016) 304-317

During the propagation of the envelope, the concentration gradient
at the envelope varies in space and time. As a trace of the varying
conditions, a certain solid fraction distribution develops inside the
envelope, as can be seen in Fig. 1. Note that we do not solve Eq.
(9) explicitly; it is merely a consequence of solving Egs. (6)-(8).
Note also that solving this equation system is equivalent to: (i) set-
ting Q; = 0 and then solving Eq. (6) for g; inside the envelope; and
(ii) setting g, = 1 and solving Eq. (6) for Q, outside the envelope.

3. Numerical implementation

We solve the model, consisting of the system of Egs. (1)-(3) and
(5)-(8), by the following sequence of steps in each time increment:

1. Determination of the supersaturation at the confocal envelope,
Q;, for each grid element within the region around the envelope
front.

2. Calculation of the envelope propagation velocity field, V,, by
local solution of the dendrite tip model (Egs. (1)-(3)).

3. Solution of the phase-field Eq. (5) by an explicit time-stepping
scheme.

4. Solution of the conservation equations for liquid fraction and
for solute mass in the liquid (Egs. (6)-(8)) by an operator-
splitting algorithm with implicit time stepping [30].

The transport equations were solved with the finite volume
method using first-order Euler schemes for time stepping. The gra-
dient of the phase-field was discretized by a fourth-order accurate
scheme using least-squares weighting. The Laplacian terms in the
phase-field and solute Eq. (6) were evaluated using a fourth-
order central scheme. The divergence in the stabilization term of
Eq. (5) was discretized using a second-order scheme.

The computer code CrystalFOAM® was developed on the Open-
FOAM® platform. It uses 3D finite-volume solvers, parallelized by
domain decomposition and employing Open MPI for parallel com-
putation on distributed memory systems, achieving good scalabil-
ity. Most development efforts went into the development of the
algorithm for the determination of the supersaturation at the con-
focal envelope.

3.1. Determination of the envelope propagation velocity

To propagate the phase field that describes the position of the
envelope, the envelope growth velocity has to be given in the form

of a corresponding propagation velocity field V, in the whole
domain. In practice, it is sufficient to determine the propagation
velocity in a relatively narrow band around the transition region
of the field ¢ in the vicinity of the envelope. We used a band in
the interval 0.01 < ¢ < 0.99. In order to preserve the hyperbolic
tangent shape in ¢, the propagation velocity should be constant
across a cross-section perpendicular to the envelope, i.e. in the
direction of the envelope normal. Since the elements of the compu-
tational grid are generally not aligned along this direction, it is not
possible to obtain the propagation velocity across the whole width
of the transition at once. The propagation velocity has to be actu-
ally calculated for every grid cell within the transition region.
Examples are shown in Fig. 3 as blue cells. This is done by solving
Egs. (1) and (2) for each of these cells. The supersaturation at the
confocal envelope in the direction normal to the envelope Q; is
needed for this.

In order to determine ©;, the distance and the direction from
the grid cell center, X, to the corresponding point at the confocal
envelope, X;, need to be determined first. The direction is given
by the envelope normal vector, i, that goes through the given grid
cell center, X. This vector is estimated as 7i = —V¢/|V¢|, where V¢

confocal "¢ =099
envelope envelope

4

Fig. 3. Schematic illustration of the method used to compute the envelope
propagation velocity, V,, for all grid cells within the transition region of the
indicator field: 0.01 < ¢ < 0.99 (blue cells). The supersaturation Qs needed for this
is the supersaturation of the liquid in the corresponding green dots, i.e. at the
intersection of the confocal envelope and the line of the envelope normal vector
running through the center of the blue cell (red dot). Q; is calculated by
interpolation across the neighborhood of the green cell. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

is the local gradient in point X%, calculated by a discrete finite-
volume approximation. The distance is given by 6 — deny, Where
Senv 1S the distance from point X to the envelope, which lies at
deny = 0.95, along the same (normal) direction. A simple method
for the calculation of d.,, is by the inverse of the hyperbolic tangent
function:

_ (l B d’env)d’(z)
son = Win (20 10

This method is based on the assumption that the transition of the
phase field closely follows the hyperbolic tangent profile. In prac-
tice, the phase field often slightly deforms, despite the stabilization
terms. This is most pronounced in parts with high curvature, such
as the tip of the dendrite envelope. If the shape of the transition
deviates from the hyperbolic tangent, the distance de,, given by
the inverse kernel function (Eq. (10)) is not accurate any more. This
leads to an error in the determination of the position of the confocal
envelope point, X; = X + (8 — deny) 1, and consequently to an error in
the confocal envelope supersaturation, Q; = (X;). This is illus-
trated in Fig. 4, which shows the profiles of the phase-field ¢ and
of the supersaturation Q, of the liquid along the axis of the primary
tip of an envelope. We can see that the profile of ¢ is spread to a
somewhat wider shape than the theoretical hyperbolic tangent that
it intersects at the envelope (at ¢.,, = 0.95). As a consequence, the
position of the confocal envelope estimated by the inverse kernel
function is estimated to be at a distance from the envelope that is
larger than 6. Since the supersaturation increases with the distance
from the envelope, the confocal envelope supersaturation, Q;, is
thus overestimated. The sensitivity to this error is generally higher
if the chosen stagnant film thickness, 4, is small and the confocal
envelope is thus located close to the envelope in a region of high
concentration gradients. We can also see that the error is not uni-
form across the width of the transition profile. The inverse kernel
function method is accurate at the envelope (¢ = ¢,,,) and the error
increases with the distance from the envelope. The consequence of
the nonuniform error is a nonuniform normal envelope speed V,,
which is calculated from the supersaturation Q; for each cell within
the transition region. Since an outward oriented spread of the ¢
transition induces a higher outward oriented propagation velocity,
which increases the spread, this error is self-reinforcing. The final
consequence is an inaccurate envelope propagation velocity.



Y. Souhar et al./ Computational Materials Science 112 (2016) 304-317 309

——e=u 1
1
0.1 S
,
0.08 || 302=010]5/14 =027 2 < 0.75
- = = confocal envelope 2
—@— Numerical ¢-profile E ©
0.06 [ | - - — imposed ¢-profile ! N =
Gv— —— arrows pointing (0“Nal’ds ' 5 405 E
wrong confocal points 1 ) o
0.04 - when using inverse kernel ! kY N -
method and ¢ values . 8 ©
1 ' g
' | 8
0.02 - | ' = <0.25
\
. \
. |
= 1 SOSRRY
1
e ! 0
-2 -1.5 -1 -0.5 0 0.5

2/ Laigs

Fig. 4. Illustration of the error induced by the use of the inverse kernel function (Eq.
(10)) for the determination of the distance to the confocal envelope. The deviation
of the profile of the indicator field ¢ (solid green line) from the shape of the
hyperbolic tangent kernel function (dashed green line intersecting the solid line at
the envelope ¢, = 0.95) leads to an erroneous determination of the distance
(arrows) between the grid cell centers (green dots) and the confocal envelope
(dashed line). This type of error tends to estimate the position of the confocal
envelope to be at a distance from the envelope larger than 4, thus overestimating
the supersaturation ;. The erroneous €; is the supersaturation (blue line) at the
positions of the arrowheads. The correct Q; is the supersaturation at the confocal
envelope. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

The spread of the transition is nevertheless limited by the stabi-
lization term of the phase-field propagation equation. A higher
value of the stabilization coefficient, b, in Eq. (5) generally keeps
the transition more compact and provides better accuracy. The
maximum value of b is however limited by the stability of the solu-
tion scheme. Even by setting b close to the stability limit does not
sufficiently reduce the errors of the envelope growth velocity. In
order to avoid these errors, we used a front reconstruction method
for the determination of the distance to the envelope. In this
method the envelope is described by marker points distributed
over the surface defined by the level set of ¢ = ¢,,. This recon-
struction is done at each timestep, using a marching tetrahedra
method implemented in OpenFOAM® [31]. The marker points have
a higher density than the finite-volume mesh, the envelope is thus
reconstructed with good accuracy. An example of the reconstruc-
tion is shown in Fig. 5. The perpendicular distance of a grid cell
point from the envelope is determined by the distance to the clos-
est marker point projected onto the local unit gradient vector
V¢/|Vé|. This method is general if the grid cell is on the convex
side of the curved envelope surface. If it is on the concave side,
the method works as long as the distance to the envelope is smaller
than the local curvature of the envelope. The front reconstruction

Fig. 5. Envelope markers determined at each timestep by the marching tetrahedra
algorithm [31]. The squares correspond to the finite volume elements.

method substantially improves the accuracy of the determination
of the envelope growth velocity, especially for small stagnant film
thicknesses.

Once the position of the corresponding confocal point,
Xs = X + dceii, is determined, the liquid supersaturation at this
point, Q;s, is determined by a linear interpolation across the neigh-
borhood of the cell containing X; (green cells in Fig. 3). The super-
saturation at the envelope, Q.,y, can in general be determined by
the same procedure, but in the isothermal case treated here it
was known a priori. Knowing both the supersaturation at the
envelope and at the confocal envelope, the supersaturation Qs is
computed. Eqs. (1) and (2) are then solved by a hybrid Newton-
bisection method, giving the tip speed. Finally, the projection onto

the envelope (Eq. (3)) gives the envelope propagation velocity, V.

3.2. Numerical parameters and grid convergence

In this section we will discuss the choice of the numerical
parameters of the present implementation of the mesoscopic
model. The solution method is controlled by two parameters of
the phase-field interface capturing method, the kernel function
width, W, and the stability coefficient, b, and by the spatial and
temporal discretization steps, Ax and At. The stagnant film thick-
ness, J, is a model parameter with a physical meaning and will
be discussed separately.

Following the recommendations in [27], the characteristic
width of the kernel function of Eq. (4) is chosen such that

W = v2Ax in order to accurately resolve the hyperbolic tangent
profile. Thus, the ¢ profile varies from 1 to O over a distance of
approximately 6W =~ 8Ax. The radii of the spherical envelope “nu-
clei” that were introduced to initialize the grains, were taken
slightly larger than 6W in order to ensure good accuracy from
the onset of the simulation.

According to Sun and Beckermann [27] the accuracy of the
interface capturing method increases with an increasing stabiliza-
tion parameter b, up to a stability limit by, that depends on the
front velocity and on the spatial and temporal discretization. The
stabilization parameter b was set adaptively in time, as a fraction
of the current stability limit. At timestep n it was set to:

b™ = 0.05by;, With

1 Ax? (n—-1)
lim = AT [1 - 2max (Cof V)] (11)
n}_{3 (3D)
Dim — 2 (ZD) )

where Co, is the Courant number for the phase-field equation. This
formulation of by, comes from the discretization of the phase-field
equation. The factor 1/(2npy,) stems for the use of the simplest

stencils for the term V2¢ (5-point stencil in 2D and 7-point stencil
in 3D). The b used here was somewhat smaller than the recommen-
dation given by Sun and Beckermann [27], which was to use
b ~ 0.4by,, where by, ~ 1.2Wa was the observed stability limit
and a the characteristic normal front speed. We should note that
this recommendation was obtained for interface motion with a uni-
form normal speed or a uniform translation speed. In our case, the
problem is more complex as the envelope needs to deform due to
nonuniform growth velocity. We observed that a too high stabiliza-
tion parameter constrains the shape too much. Indeed, the ¢-profile
has to expand slightly in some places to allow the envelope to bend.
The influence of b on the overall envelope shape is discussed below.

The grid spacing should be chosen with respect to the charac-
teristic length scales of the problem. In addition to the diffusion
length, the radius of curvature of the envelope appears as a length
scale. The diffusion length is smallest at the tip of the primary arm
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and is lgir = D;/Vick. The smallest curvature of the envelope Reny min
also appears at the tip of the primary arm, but is more difficult to
estimate a priori. We can assume that it scales with the tip radius
in a similar way as the whole envelope. Following this assumption,
the ratio of the smallest curvature to the diffusion length scales as
Renv.min/laitt ~ fPe cx- The proportionality factor f is larger than 2,
since the envelope curvature radius is necessarily larger than the
tip radius. This means that at very high supersaturations (when
Peicx > 1) the grid size will be controlled mainly by the diffusion
length, whereas at very low supersaturations it will be controlled
by the envelope curvature at the primary tip. A simple estimation
shows that the threshold between these two regimes is well above
a supersaturation of Iv(0.5) = 0.46. Such supersaturations are not
of great interest since the experiments used for validation [18]
were performed at considerably lower values. In technical pro-
cesses the supersaturations are even much lower. This means that
the pertinent regime to check the influence of the grid spacing is at
low supersaturation, in order to clearly discern the limits pre-
sented by the envelope curvature.

Because the grid convergence study required a large number of
computations on dense grids, it was performed in 2D. An initial
supersaturation of Qo = 0.179 was used. The Péclet number of a
2D Ivantsov tip growing at this supersaturation is identical to the
Péclet number of a 3D tip growing at a Qo = 0.05, which was the
smallest supersaturation in the 3D computations that follow. In
this case the primary dendrite tip radius is around 40 times smaller
than the diffusion length at the tip. All computations were per-
formed on a regular square mesh for 1/4 of the 2D grain on a com-
putational domain of length zy.x = 2504, Which was sufficiently
large to obtain a steady state of the envelope tip. The physical
and numerical parameters are detailed in Table 1.

The critical result of interest is the shape of the envelope of a
primary arm. We compared the width of the envelope as a function
of the distance from the envelope tip (X,.(z) according to the nota-
tions in Fig. 2) for 13 grids. An estimation of the continuum solu-
tion (i.e. at zero grid spacing) of the envelope shape was
obtained by Richardson extrapolation. [32]. With this reference,
the error of the envelope width, X,, along the primary arm, shown
in Fig. 6, was estimated. We can see that the relative errors are con-
stant along a large part of the dendrite axis, sufficiently far from
the tip. For a grid spacing of Ax = 0.10ly¢ = 3.8R;ck, the error is
about 5%. The errors increase drastically only in the close vicinity
of the tip. This means that the shape of the envelope can be pre-
dicted accurately even if the tip of the envelope is not finely
resolved. An accurate resolution of the envelope shape at the tip
is thus not of prime importance. Moreover, the envelope does
not have any physical meaning close to the tip, before the onset
of branching. The convergence of the envelope width is shown in
more detail in Fig. 7 in the form of the error in six probe points
at different distances from the primary tip. The observed order of
convergence is approximately 1. The convergence seems to
improve with very fine grids, where the error is however already
within a few percent.

An adaptive time step was used. In all computations it was set
such that both the Courant number for the phase-field equation,

Table 1

Physical and numerical parameters, and relations between different characteristic
length scales, the grid spacing, Ax, and the size of the computational domain, zp.y, for
(a) the grid convergence study and (b) the sensitivity study assessing the influence of
the stabilization parameter b. Both studies are in 2D. A stagnant film thickness of
3/lair = 1 was used.

1, Zmax I A b
2o E?Gﬂlz Lairr i‘xﬁ ﬁ Biim
0.179 38.2 25 3 to 45 12.7 to 0.85 0.05 (a)
10 3.82 0.004 to 0.9 (b)

T T
2D Q) =0.179 | 5/lggr=1
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Fig. 6. Relative error of the envelope width along the primary dendrite arm for 13
grids. z is the distance from the primary tip. The error is computed with respect to
an estimation of the continuum solution (i.e. at zero grid spacing) of the envelope
shape obtained by Richardson extrapolation.
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Fig. 7. Grid convergence of the envelope width in six probe points along the
primary dendrite arm. z is the distance from the primary tip. The error is computed
with respect to an estimation of the continuum solution (i.e. at zero grid spacing) of
the envelope shape obtained by Richardson extrapolation. The dashed line shows a
fit of a first-order discretization error.

Co4, and the grid Fourier number for the solute equation,
Foax = DiAt/Ax?, remained smaller than 0.1. This ensured a suffi-
cient accuracy of the time integration.

The stabilization parameter, b, also has an influence on the pre-
dicted envelope shapes. We quantified the influence by a parame-
ter study, varying the ratio b/b, from 0.004 to 0.9, as given in
Table 1. Fig. 8 shows the dependence of the envelope width, X,,
on b/by, in six probe points at different distances from the primary
tip. We can see that there is no clear convergence point. The vari-
ations over the range 0.05 < b/bj, < 0.4 are around 2.5%. This is
much less than the errors related to the spatial discretization.
The dependence of the choice of b/by, on the supersaturation is
not explicitly analyzed here. However we can understand it
through the analyses of Sun and Beckermann [27]. They have
shown that the error linked to the stabilization of the diffuse
interface in this interface tracking method depends on the
dimensionless stabilization parameter b’ = b/(WV\cx). Accounting
for our previously justified choices of the numerical parameters
(W is proportional to Rigx and by, is proportional to Ax?/At in
the limit of small Courant numbers), we can deduce that
b ~ (b/bym)Pe,cFo,}. This shows that the Péclet number should

affect the error in the same way as (b/bym) . In our 3D computations
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Fig. 8. The dependence of the envelope width on the stabilization parameter b in
six probe points along the primary dendrite arm. z is the distance from the primary
tip.

Pey gk varies from 0.013 to 0.062 (i.e. by a factor of 4.8) as Q. varies
from 0.05 to 0.25. This should affect the solution in the same way
as a reduction of b/b;y, by a factor of around 0.2. Fig. 8 indicates
that this changes the envelope width by only around 2%.

4. Free growth of an equiaxed grain

Steinbach et al. [14,15] demonstrated the validity of the meso-
scopic model for a pure substance. In this paper, we study the
validity of the model for a binary alloy. We are primarily interested
in all factors that will affect the fidelity of the representation of
interactions between several neighboring grains - the raison
d’étre of this model. The principal factors are the growth velocity,
the shape of the grain envelopes, and the quantity of solute
rejected into the liquid surrounding the envelope. The simplest
configuration to analyze this is the growth of an isolated equiaxed
grain into an infinite and uniformly supercooled melt. While this is
an idealized configuration, reliable quantitative references are
available, allowing for a rigorous validation.

The predictions of the primary tip speed can be validated
against the Ivantsov solution combined with the tip selection crite-
rion. However, simple solutions do not exist for the envelope shape
or the solute flux from a dendrite. Validation is therefore made by
comparisons with the recent experiments of Melendez and Becker-
mann [18]. They performed detailed characterizations of equiaxed
dendrites of transparent succinonitrile-acetone alloys growing
into a uniformly undercooled melt. They deduced generalized scal-
ing laws for the dendrite envelope shape and for the solid fraction
inside the envelope, which is a direct indicator of the quantity of
the rejected solute. Although these alloy dendrites were governed
by both heat and solute transport (with different proportions of
thermal and solutal undercooling) the obtained scaling correla-
tions are close to those observed for pure materials in micrograv-
ity. It is therefore reasonable to assume that the same
generalized envelope shape also holds for purely solutal dendrites
with negligible thermal undercooling. Our comparisons are based
on this premise and our validation is done for isothermal, purely
solutally driven growth.

4.1. Validation cases

We consider a tridimensional isolated equiaxed grain growing
by solute diffusion into an infinite undercooled melt. The only
physical parameter in this case is the supersaturation of the melt,
Qo. The computations were performed for supersaturations in the
range of Qy = 0.05 — 0.25. This is similar to the range of solutal

supersaturations of Qp ~ 0.05 —0.45 found in the experiments
[18]. These were estimated with the LGK model from the known
total undercoolings. Initially, the entire domain is liquid at a uni-
form supersaturation €,. A spherical nucleus is introduced, an
envelope within which the liquid has zero supersaturation and
the solid fraction is given by the Scheil law. At the domain bound-
aries, conditions of zero normal first derivative were used for the
fields ¢ and Q,.

There are no expected limitations to using the model at a lower
or higher supersaturation as long as the grain morphology is den-
dritic. The explored range of supersaturation is merely a question
of achievable/convenient domain size because we wanted to com-
pare our results to free-growth experiments. Indeed, the size of the
domain must be sufficient to ensure that the diffusion field around
the grain is not affected by the confinement before the envelope of
the primary arm reaches a steady state, i.e. when both the primary
tip speed and the envelope shape no longer vary. Generally, the
steady state was reached at t = tV\cx/lair ~ 5, which corresponds
roughly to a dendrite arm length of 5ly. The domain sizes were
between 10l and 2914, as specified in Table 2, which was suffi-
ciently large.

All the computations presented in this section were performed
on a uniform structured hexahedral mesh with 200 x 200 x 200
volumes for 1/8 of the grain. For each case the grid size Ax was
chosen in accordance with the theoretical diffusion length
lyir = D/Vck at the primary tip. Typically, Ax ~ 0.1lys allows for
accurate resolution of the solute diffusion field. The domain size
Was Zmax ~ 2014, which was sufficient in all cases, as shown above.
All parameters are detailed in Table 2.

4.2. Primary tip speed

The dependence of the primary tip speed on the supersaturation
as given by the mesoscopic model is shown in Fig. 9. The primary
tip speed, Vyp, that was determined by tracking the position of the
primary tip with time, is compared to the theoretical speed, V\cx,
which is considered to be the reference speed that the model
should ideally predict. Several different values of the stagnant film
thickness, J, were used in the mesoscopic computations and the
plot reveals a certain dependence of the predictions on this model
parameter. A clearer presentation of the influence of the stagnant
film thickness is given by Fig. 10. The theoretical diffusion length,
laie = Dy/Vck, is used to scale the stagnant film thickness in order
to try to reveal a general relationship. Overall, we can see that the
errors in the predicted primary tip speed are large for small stag-
nant film thicknesses. However, whatever the supersaturation,
the predicted primary tip speed approaches the theoretical speed
when the stagnant film thickness is of the same magnitude as
the diffusion length D,/V\cx. Within a large range of supersatura-
tions the error is less than 20% when 6/l4¢ > 1 and less than 10%
when 5/ldiff > 1.5.

Table 2

Physical and numerical parameters used in the 3D computations investigating the
dependence of the predictions of free growth of an equiaxed grain on the stagnant
film thickness. The grid spacing, Ax, and domain size, zn.y, (corresponding to the
maximal possible length of the primary dendrite arm) are compared to the
characteristic scales of the problem.

Q Ly Ax Ax Zmax Zmax N
0 Rick Rick Tair Rick Tairr T tested

0.05 38.2 3.0 0.08 600 15.7 0.16-2.62 (20 values)
2.0 0.05 400 10.5 0.10-2.62 (12 values)

0.10 14.7 2.0 0.14 400 273 0.27-2.73 (12 values)
0.15 8.01 1.0 0.12 200 25.0 0.37-2.25 (10 values)
0.20 5.06 0.5 0.10 100 19.8 0.30-2.77 (10 values)
0.25 3.46 0.5 0.14 100 28.9 0.43-3.47 (9 values)
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Fig. 9. Predicted primary tip speed versus the supersaturation for different values
of the stagnant film thickness normalized by the diffusion length. The dimensional
values are given for succinonitrile-0.5 mol% acetone (with ¢* = 0.02 and thermo-
physical properties from [18,33,34]).

This behavior can be explained by the matching of the analyti-
cal solution for the dendrite tip, Eq. (1), to the mesoscopic solution
of the diffusion field around the envelope. This is illustrated in
Fig. 11a and b, which show the matching of the concentration
fields along the axis of a primary arm in the vicinity of the tip for
two different supersaturations, 2y = 0.10 and @, = 0.25, respec-
tively. In each figure the mesoscopic solutions of the concentration
field around the envelope for two different values of the dimen-
sionless stagnant film thickness §/ls¢ and the analytical solution
of the concentration field around the tip (LGK model) are plotted.
The mesoscopic field and the tip field are inherently different
because the envelope is distinct from the liquid-solid interface.
While the envelope is at the same supersaturation and advances
at the same speed as the tip, it has a different shape and a larger
radius of curvature at the end of the primary arm. As can be seen
in Fig. 11a and b, the matching of the two solutions at a distance
smaller than Iy can lead to errors. The supersaturation at the con-
focal envelope and hence the tip speed can be either underesti-
mated (generally at low supersaturations, such as Qy, = 0.10 in
Fig. 11a) or overestimated (at high supersaturations and small
stagnant film thicknesses, such as Qy = 0.25 and §/lgir = 0.43 in
Fig. 11b). On the opposite, if the matching is done at a sufficiently
large distance, corresponding to several diffusion lengths Iy, the
supersaturation at the confocal envelope approaches the far-field
nominal supersaturation of the system, €y, independently of all
model parameters. The primary tip speed, Vy,, then approaches
the theoretical speed, Vi ck. The reason is that for 6> lg the

40 T T T T
- o- 3D 0y =0.05
3D Q) =0.10
< 3D Q,=0.15
g 20r 3D 0 =0.20 ||
~ 3D Q,=0.25
M
&
g Te= 7T
S - 28=7
| 0"
& —20 -* -
2 o
>
—40 L 1 l | | |
0 0.5 1 1.5 2 2.5 3 3.5

8 /Laige = 6 Vig/Dy

Fig. 10. Dependence of the relative error of the predicted primary tip speed on the
stagnant film thickness normalized by the diffusion length.
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Fig. 11. Comparison of the mesoscopic (numerical) and the microscopic (theoret-
ical) profiles of supersaturation in the liquid ahead of the primary dendrite tip. The
microscopic tip profile is computed for a tip operating at the theoretical speed Vick.
In each case mesoscopic profiles for a small and for a moderate value of the
normalized stagnant film thickness 6/lg¢ are shown. (a) Case of a low supersat-
uration (o = 0.10), where the tip speed is underestimated at small §/l4s. (b) Case
of a high supersaturation (2o = 0.25), where the tip speed is overestimated at small
o/l

stagnant-film formulation approaches the original far-field formu-
lation of the Ivantsov solution. This might lead one to believe that a
large stagnant film thickness should be used in order to ensure
good accuracy of the model. However, as we will show in the next
section, too large values of /Iy lead to erroneous predictions of
the envelope shape and should be avoided. Sufficiently accurate
matching is ensured at all supersaturations if 6/lg¢ > 1, as shown
in Figs. 10 and 11.

4.3. Envelope shape

The mesoscopic model is further validated by comparing pre-
dicted envelope shapes to measurements from experiments
involving the growth of a dendrite into a uniformly supersaturated
binary melt. Melendez and Beckermann [ 18] showed that the side-
branch structure of alloy dendrites is such that the length of the
active sidebranches, X,, follows a self-similar power law with dis-
tance from the tip, z:

KXact ( Z )nl
=A== 12
Rtip ! Rtip ( )

A =0.84 n =0.85

This law is universal and is independent of the undercooling and of
the alloy concentration. It showed an excellent fit to the experimen-
tal data for 10 < z/Ryp < 200, which corresponds roughly to the
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range of the so-called self-similar sidebranching regime
10 < z/Rip < 1/Peyp. Note that sidebranching starts behind the tip
at a distance of about z/Ry, = 10 for pure dendrites and at about
Z/Rip = 6 in SCN-acetone alloys [18] and therefore the envelope
does not have any physical meaning closer to the tip of the primary
arm. The experiments leading to Eq. (12) were performed under ter-
restrial gravity, therefore some influence of natural convection is
inevitable. By comparing Eq. (12) to scaling laws for pure dendrites
under terrestrial gravity [18] and microgravity [19], Melendez and
Beckermann have shown however, that the influence of convection
on the envelope width is rather small for branches that are approx-
imately downward growing. The difference of the envelope width
compared to pure dendrites in microgravity is around 20%. This dif-
ference is not due to convection, but due to the earlier onset of side-
branching in alloys. The influence due to convection can be
estimated by comparing scaling laws for pure dendrites in micro-
and terrestrial gravity [18], which shows that the convection tends
to widen the envelope at distances from the tip of about
Z/Rsp > 100.

The results of the mesoscopic model are presented in Figs. 12
and 13. As we can see in Fig. 12, the stagnant film thickness used
in the computations affects the shape of the grain and the distribu-
tion of the solid phase in the interior of the envelope. Steady-state
envelope contours for three different supersaturations in the range
Qy = 0.05 — 0.25 are shown in Fig. 13. For each supersaturation the

91
8/1diff = 0.5

j—
T

8/1diff = 1.0

8/1diff = 2.0

Fig. 12. Comparison of equiaxed grains obtained for an initial supersaturation
Qo = 0.15 and different values of the normalized stagnant film thickness, J/lys.

computations were performed using several different stagnant film
thicknesses, indicated in the figures in the dimensionless form
0/lqie. The normalized envelope width, X,cc/Ryip, follows a power
law with the normalized distance from the tip, z/Ryp, in all cases.
Fig. 13 shows the absolute difference between the predicted envel-
ope width and the scaling law. Generally, the envelope width
increases with a larger stagnant film thickness. This can be
explained by the matching between the analytical tip solution
and the mesoscopic concentration field around the envelope. The
larger the distance of the matching, the higher is the local (confo-
cal) supersaturation that the secondary tips feel and the faster is
the lateral growth of the envelope. When the stagnant film thick-
ness becomes much larger than the diffusion length (6/ly¢ > 1),
the supersaturation at the confocal envelope becomes identical
along the whole envelope, and equal to Q. The tip speeds are then
also identical along the whole envelope and they approach V.
The grain then takes an octahedral shape as can be seen in
Fig. 13c for §/lgir = 3.47. Conversely, for sufficiently small stagnant
film thicknesses (5/lsier < 1) the variation of the local supersatura-
tion felt by the tips along the envelope is larger and the associated
tip speeds vary enough to give the grains their characteristic shape.
In Fig. 13 we can see that the width of the envelope is closest to the
experimental scaling law when using a stagnant film thickness of
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Fig. 13. Normalized envelope widths, X, /Ry, as a function of the dimensionless
longitudinal distance from the tip, z/Ryp, for initial supersaturations of: (a)
Qp = 0.05, (b) 29 = 0.15, and (c) Qo = 0.25.
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about §/l4¢ ~ 0.5. This holds for all supersaturations, except for
the lowest supersaturation (Qq = 0.05), where a somewhat smaller
value of /l4¢ gives a better fit.

However, as we have shown, a correct estimation of the primary
tip speed requires larger values, of about /I > 1; at smaller val-
ues the errors become significant. A reasonable compromise to rec-
oncile these opposing requirements is to use a stagnant film
thickness of around J/lgg ~ 1. In this way both the primary tip
speed and the envelope width can be estimated within about
20% accuracy.

4.4. Projected solid area

In their experiments Melendez and Beckermann [18] also mea-
sured the solid projection area, F, of the SCN-acetone dendrites, as
defined in Fig. 2. They observed that the projection area as a func-
tion of the distance from the tip, z, follows a universal self-similar
scaling law given by:

F z\™
—A 13
thip 2 (Rtip) ( )
A, =0.58 n, =177

These values of the exponent n, and of the amplification factor A,
are very close to the values found for pure substances in terrestrial
gravity [18] and microgravity [19]. The same scaling law thus
appears to be valid for all solute concentrations (including pure
substances), undercoolings, and even convection intensities if we
consider only the downward growing branches as in the experi-
ments [18].

In the mesoscopic model the projection area can be related to
the solid fraction field in the envelope. We calculated an equivalent
of the projection area by first extracting the plane of the ridge of
the sidebranches, (i.e. the plane at y =0) and then calculating
the area integral of the solid fraction as a function of the distance
from the primary tip in this plane. With the notations of Fig. 2,
the projected area is calculated using the formula:

z  rXact(2)
F(z):/0 /0 8,(x,z)dxdz (14)

In Fig. 14, we can see that the projection area is in very good agree-
ment with the experiments for all supersaturations. Moreover, we
can conclude that the stagnant film thickness has very little influ-
ence on the projection area.

Finally we can recommend J/lg¢ = 1 as a good compromise to
obtain realistic simulations with the mesoscopic envelope field
model in terms of envelope shape, internal solid fraction and pri-
mary tip speed.

5. Solutal interaction between multiple equiaxed grains

To demonstrate the power of the mesoscopic envelope model,
we present several simulations involving a large ensemble of inter-
acting equiaxed grains. Fig. 15 shows simulations of randomly dis-
tributed and oriented grains growing isothermally in a cubic
enclosure at an initial supersaturation of Qy = 0.05 and at three
different grain densities. The dimensionless grain density, Nl}"ff,
representing the mean number of grains in a volume of
B = (Di/Vigk)?, varies from 1.25 - 107 to 4 - 1073, This means that
the mean distance between the grain centers d.. varies from 22l
to 7lyg. This distance is estimated based on a close regular packing
arrangement (FCC or HCP), which gives d.. = Idiff(N‘;jiff/\/j)il/a. At
the lowest grain density, shown in Fig. 15a, the grain interactions
are very weak. Fully developed envelope shapes, similar to that
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Fig. 14. Normalized projection area, F/Rfip, as a function of the dimensionless
longitudinal distance from the tip, z/Ry,, for initial supersaturations of: (a)
Qo = 0.05, (b) Q9 =0.15, and (c) Qp = 0.25.

of a free grain, develop well before the solutal interactions start.
At the intermediate grain density, shown in Fig. 15b, we can see
a pronounced interaction before the grains can reach a free-
growth shape. The envelopes adapt to the neighbors. Only some
of the primary branches develop a shape close to that of a freely
growing primary arm envelope. At the highest grain density,
shown in Fig. 15c, interactions occur very soon and the grains
develop virtually octahedral shapes. These computations were
done with a multi-phase-field formulation of the interface captur-
ing algorithm, where each orientation is described by a distinct
indicator field. Eq. (5) is then solved separately for each indicator
field. This increases the computation time but is a very simple
and robust way to account for multiple orientations. The parame-
ters used in these computations are summarized in Table 3.

Such simulations can provide important information and
parameters for macroscopic volume-averaged models of solidifica-
tion. We can think of the simulation domain as a representative
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(a) 27 grains with 9 orientations in a cubic enclosure of volume (60 Lgg)*: N‘l,diff =1.25-10"% (c?CC =22 14i6)-

T=4.8

T=14.4

(c) 108 grains with 18 orientations in a cubic enclosure of volume (30 l4)°: N‘l,Gliff =4-1073 (dee = 7 Ligp)-

Fig. 15. Snapshots from simulations of randomly distributed and oriented grains growing iso_thermally in a cubic enclosure at an initial supersaturation of Q, = 0.05 and at
three different dimensionless grain densities, N{f’“ (or three different mean grain distances, d..). A stagnant film thickness of /14 = 1.0 was used in all simulations.

elementary volume (REV) for the averaging. In this type of models
[11], the equiaxed dendrite envelopes are assumed to have a sim-
ple shape (spherical, for example). The growth of an average envel-
ope of this shape is then given by the velocity of the primary tips,
which is calculated from the average supersaturation of the liquid
outside the envelopes (extradendritic liquid), using an Ivantsov-
based dendrite growth model. The evolution of the average solute
concentration of the extradendritic liquid in the isothermal REV,
(C))%, is described by an averaged conservation equation of the
form

G -@*

9(8.(C)°)
0 ’

En (15)

. O,
= C, % + Dlsv,env

where g, is the volume fraction of the extradendritic liquid in the
REV. The first term on the RHS of Eq. (15) gives the contribution
due to the growth of the envelopes, which engulf liquid at the equi-
librium concentration, C; (the concentration of the liquid in the
envelopes). The second term on the RHS is the diffusion flux from
the envelopes into the extradendritic liquid. It is formulated in
terms of the average concentration gradient at the surface of the
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Table 3

Physical and numerical parameters used in the 3D simulations of interactions
between multiple grains. ngpins and Neen are the number of grains and of different
orientations, respectively. Lyox is the length of the side of the cubical enclosure. The
stagnant film thickness was /Iy = 1 in all computations. The grid size, timestep and
stabilization parameter were set such that: Ax/lug = 0.2, (AtD;)/Ax* = 0.25, and
b/bjim = 0.05. The approximate execution time is given for simulating the time
T = tVick/lair = 10 on a 100 GFlops personal computer. The single grain simulation
was done for 1/8 of the grain by taking into account the symmetries.

Ngrains  Morien 'i:ﬁ N%?ifr %ﬁ Lk_& Exec. time for 7 = 10
1 1 40 156.10°~0 45=~oc0 200 <1h
27 9 60 125.10% 22 300 7.0days
27 9 30 103 11 150 2.6 days
108 18 30 4.103 7 150 4.0days

envelopes, which is approximated by the concentration difference
between the envelope and the averaged extradendritic liquid,
(C; — (C))°), divided by a diffusion length, §,. To give the flux, the
gradient is multiplied by the diffusion coefficient, D;, and by Sy eqy,
the specific surface area of the envelopes per unit volume of the
REV. An accurate formulation of the diffusion length, §;, and of the
specific surface area, Sy ey, is essential for an accurate representa-
tion of the envelope growth kinetics. Both are usually modeled by
simplistic analytical or empirical relations. Now the averaging can
be done from the mesoscopic simulations, which represent the phe-
nomena at the scale of the macroscopic REV in detail. The evolution
of the envelope surface area in the simulations of interacting grains
was determined directly from the computed envelope shapes. The
diffusion length was determined indirectly by solving (15) for g,
which requires first to determine (C;)¢ and g, from the mesoscopic
simulations.

Fig. 16 shows the evolution of the specific envelope surface area
in terms of the average envelope sphericity. The sphericity, ¥, is
the ratio of the surface area of a sphere with the same volume as
the envelope to the surface area of the envelope. For a spherical
envelope, ¥ = 1, and for any other shape, ¥ < 1. For a fixed num-
ber of grains the sphericity and the specific envelope surface area
are linked by the proportionality Sy eny o<g§/3 Y. In addition to the
cases shown in Fig. 15, a case of free growth of an isolated grain,
and a set of cases for a higher supersaturation (2, = 0.15) and
the same grain densities are included. The time in the plots is
scaled by the diffusion time at the scale of the diffusion length,
laie = Di/Vick, which can also be interpreted as the traveling time
of a primary tip growing at the free-growth speed V¢ across the
diffusion length ly.
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time.

&
5 3 T T
= el oo
© s
=
- =
&0 A
o s
8 M
o 20 asdt® .
[} A
2 &:9‘5)
& Ay
fam
5 g
o ‘ﬁ
gJo 1+ ¢ ® ;=005 -
s £ A Q=015
g *;‘ Free growth
rp # N =1.25.107*
9 N =1.00-107%
§ N = 4.00-1072
S 0 | | | | I ]
> 0 5 10 15 20 25 30 35

T =t Vigr/Laisr = t Vi /Dy

Fig. 17. Evolution of the dimensionless volume-averaged diffusion length,
81/(D1/Vick), over the dimensionless time.

It is interesting to compare the average sphericity of the com-
puted envelopes to approximations of the envelope shape made
in different macroscopic volume-averaged models. In early models
spherical envelopes with a radius equal to the primary arm length
were often used [11,35,36]. The sphericity is then equal to 1. Other
models [37,38] use octahedral envelopes with a sphericity of

(71/(3\/§))1/3 ~ 0.846. or shapes composed of six orthogonal square
pyramids [12], with a sphericity of (4847)/(12 + /(3) ~ 0.837, i.e.
very close to that of an octahedron.

We can see that starting from the initially spherical nuclei the
sphericity first decreases in a manner that is independent of the
supersaturation and of the grain density. In the case of free growth
the sphericity continuously decreases. In the two cases with the
highest grain density the sphericity first passes through a mini-
mum and through a stage of spheroidization and then tends to a
limit value. Both, the limit value and the entire evolution in terms
of the dimensionless time, depend on the grain density, but not on
the supersaturation. The departure from the free-growth behavior
occurs when the diffusion layers of adjacent grains start to interact.
This point of departure can be estimated by the dimensionless time

of T4~ (Dl/lﬁiff)(dcc/Z — luitr) /Vick = dec/(2lgir) — 1. For the three
grain densities, from the highest to the smallest, this relation gives
Tq ~ 2.5, T4 ~4.5 and 14 ~ 10, respectively, providing very accu-
rate estimates, as can be seen in Fig. 16. An estimate of the time
of minimum sphericity is more difficult to deduce, but it seems
to be close to tymin ~ dec/Vick, i.€. Twmin ~ dec/liig. This gives
Tymin ~ 7, Tymin ~ 11 and Tymin ~ 22 for the three grain densities,
from the highest to the smallest.

The evolution of the dimensionless average diffusion length,
61/ (Di/Vick), with time is shown in Fig. 17. We can see that the evo-
lution is independent of the initial supersaturation as well as of the
grain density.

6. Conclusions and outlook

We have performed a systematic analysis of the performance of
the mesoscopic envelope field model of dendritic solidification. The
sensitivity of the results to the numerical parameters - the spatial
discretization and the stabilization parameter of the phase-field
interface capturing method - was quantified in detail by extensive
convergence and parameter studies. We introduced a new, more
accurate method for the determination of the distance from a grid
cell to the dendrite envelope, used in the matching of the analytical
tip solution to the numerical solution of the mesoscopic diffusion
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field. This improves the accuracy of the calculation of the envelope
growth velocity and thus increases the application range of the
mesoscopic model.

We have performed a detailed validation of the model, focusing
on the aspects that determine its main power: the fidelity of the
description of solutal interactions between neighboring grains.
This fidelity depends on the accuracy of the representation of the
envelope growth velocity, of the shape of the grain envelopes,
and of the solute flux rejected into the liquid surrounding the
grain. The validation was done by comparison of model predictions
of these aspects to theoretical and experimental references. The
validation procedure has shown that the model results depend
on the stagnant film thickness, the only model parameter, and that
an appropriate choice of this parameter is required to ensure accu-
rate predictions. We have shown that a stagnant film thickness of
the order of the theoretical primary tip diffusion length, D;/Vck,
leads to accurate predictions in terms of the dynamics, the shape
and the internal solid fraction of equiaxed grain envelopes. This
demonstrated that the mesoscopic model gives physically realistic
results for three-dimensional equiaxed dendritic growth in binary
alloys over a wide range of undercoolings.

From the analysis of the numerical performance and from the
validation study we were able to provide generally valid guidelines
for the calibration of the mesoscopic model. The knowledge of the
quantitative dependence of the errors on the numerical and model
parameters gives the possibility to carefully control the accuracy of
model predictions.

The model has been applied to simulate the growth of large
ensembles of equiaxed grains in the presence of solutal interac-
tions. The configurations ranged from weakly to strongly interact-
ing. To quantify the grain interactions and their dynamics and to
demonstrate the possibilities of scale bridging from the meso-
scopic to macroscopic models, we calculated representative
volume-averaged quantities for the simulated ensembles. We have
shown examples of the temporal evolution of the volume-averaged
envelope surface area and of the volume-averaged diffusion length
in the liquid at the envelope surface. With these examples we have
shown that the proper choice of scalings (in our examples for time)
can lead to generalized correlations that can be implemented in
volume-averaged multiscale models of processes, which are used
at the industrial scale.

Upcoming work will consist of the inclusion of melt convection
in the model, in order to describe its influence on grain growth and
grain interactions. In parallel, scale-bridging to macroscopic mod-
els, first demonstrated in this paper, will be developed with the
objective of providing refined laws and parameters for the descrip-
tion of microstructures in volume-averaged macroscopic models.
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