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Abstract 

A two-phase diffuse interface model previously developed by the authors is used 
to simulate the buoyancy-driven flow and Rayleigh-Taylor instability of fluid 
layers inside a Hele-Shaw cell. The model assumes that the two phases coexist 
inside the diffuse interface with different properties and velocities. A separate 
momentum equation is used to calculate the slip velocity between the two phases 
within the diffuse interface. This two-phase approach is coupled with a       
phase-field equation for calculating the interface motion. The model is validated 
by comparing the calculated interface evolution, before any topology changes 
occur, to available results from a sharp interface model. Then, the flows and 
interface topology changes are investigated for fluid layers with a large density 
and viscosity contrasts. The convergence of the results with respect to the 
interface width is examined in detail. It is shown that the two-phase model 
converges better than standard diffuse interface models that assume a single 
velocity inside the diffuse interface. 

1 Introduction 

Two-phase flows featuring topology transitions and other interface singularities 
have become an area of increasing research interest over the last decade [1-3]. In 
such flows, multiple length and time scales emerge and capillary stresses cannot 
be neglected. For the nano-scale phenomena introduced by interface 
singularities, conventional sharp interface models fail to work. Diffuse interface 
approaches have been proposed to overcome these difficulties [1, 4, 5]. In diffuse 
interface models, the interface is viewed as a region of finite extent over which 
the properties vary smoothly from one phase to the other.  
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 All thermodynamically derived diffuse interface models [1, 2, 4] assume the 
existence of a single velocity and pressure at any point inside the diffuse 
interface between two phases. Moreover, single thermophysical properties (e.g., 
density and viscosity) are assumed to exist and their variation across the diffuse 
interface is postulated in some ad-hoc manner. For large differences in these 
properties between the phases, such diffuse interface models can give results that 
are very dependent on the choice of the interface width [6] and the way the 
property variations are specified [7]. Based on an atomic-scale ensemble 
averaging approach, a so-called “two-phase” diffuse interface model was 
recently developed by the present authors [6]. As opposed to thermodynamically 
derived diffuse interface models, the two phases are assumed to coexist inside 
the diffuse interface with different properties, velocities, and pressures. The 
phase interactions are modelled explicitly through the inclusion of interfacial 
forces in the momentum equations for each phase. Capillary stresses inside the 
diffuse interface are included in the model as well. One unique feature of the 
model is that the results are independent of the diffuse interface width for simple 
shear flows. This allows for artificially large interface widths and hence 
significantly improves computational efficiency.  
 In the present study, the two-phase diffuse interface model from [6] is applied 
to a buoyancy-driven flow inside a Hele-Shaw cell that features interface 
topology transitions. The motion of the interface between the two phases is 
calculated using a phase-field equation [8]. The two-phase model is compared to 
a mixture model that assumes a zero slip velocity inside the diffuse interface and 
is equivalent to thermodynamically derived models. The objective of this paper 
is to examine the differences in the predictions between the two-phase and 
mixture diffuse interface models for large density and viscosity contrasts 
between the phases. The convergence of the results from the two models with 
respect to the interface width is compared in detail.  

2 Model equations 

2.1 Two-phase model 

The present study considers the flow of two viscous fluids of different properties 
(i.e., density and viscosity) inside a Hele-Shaw cell. The cell has a gap of width b 
that is much smaller than the cell length L (i.e., Lb << ), as illustrated in Fig. 1. 
The two-phase diffuse interface model of Sun and Beckermann [6] is simplified 
in the following using the standard Hele-Shaw approximations [9]. 

2.1.1 Continuity 
In the absence of phase change, the two-phase continuity equations are given by 
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where 1ρ  and 2ρ  are the densities of phases 1 and 2, respectively, 
( )φρφρρ −+= 121  is the mixture density, ( )[ ] ρφρφρ 2211 1 uuu −+=  is the 

mixture velocity averaged across the gap width b, 1u  and 2u  are the gap 
averaged velocities of the two phases, and φ  is the phase field. The phase field 
varies in a hyperbolic tangent fashion across the diffuse interface, as illustrated 
in Fig. 2, and takes on constant values of 1=φ  and 0=φ  inside phases 1 and 2, 
respectively. It can be viewed as an atomic-scale volume fraction [5]. The 
parameter δ  in Fig. 2 is a measure of the interface width, with φ  varying from 
0.95 to 0.05 within δ6 . The concept of a slip velocity, 21 uuu −=∆ , inside the 
diffuse interface is illustrated in Fig. 3. In the so-called mixture model, u∆  is 
equal to zero.  
 Note that the right-hand side of Eq. (1) is generally non-zero for 21 ρρ ≠ . 
Hence, the present two-phase approach introduces compressibility inside the 
diffuse interface, even though the individual phases are incompressible. Equation 
(2) is the evolution equation for the phase-field, φ . This advection equation also 
contains an extra term due to the slip velocity [6]. To solve it numerically, Eq. 
(2) is rewritten as 
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where M is a purely numerical parameter. The right-hand side of Eq. (3) 
maintains the hyperbolic tangent phase-field profile across the diffuse interface, 
while cancelling out any curvature-driven interface motion. The reader is 
referred to [3, 8] for a detailed discussion of this technique. 
 

Figure 1: Schematic of the two-
phase Hele-Shaw cell 
problem (after [2]). 

 

Figure 2: Schematic illustration of 
the diffuse interface and 
the phase field variation 
normal to the interface. 
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Figure 3: Illustration of the two-phase and mixture approaches. 

2.1.2 Momentum 
The momentum equations for the mixture velocity and the slip velocity are 
given, respectively, by 
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where ( )φµφµµ −+= 121  is the mixture viscosity, 1µ  and 2µ  are the 
viscosities of phases 1 and 2, respectively, p  is the mixture pressure, σ  is the 
surface tension, and g  is the gravitational acceleration. In Eq. (4), the relative 
“permeability”, relk , is given by 
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and the relative “kinetic” density, B, by 
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These two factors are different from unity only inside the diffuse interface. Note 
that, 1=relk  for 21 µµ =  and 1=B  for 21 ρρ = . The term ( )φφφφσδ −∇∇ 12  
represents the surface tension force and is equivalent to the capillary stress term 
in thermodynamically derived models [1, 4] (see Ref. [6] for detail). Equation (5) 
shows that the slip velocity is non-zero only in the presence of property 
differences between the phases. 

2.2 Mixture model 

Setting 0=∆u , the mixture velocity, u , becomes solenoidal (i.e., 0=⋅∇ u ), 
and the last term on the left-hand side of Eq. (3) vanishes. The relative 
permeability, relk , and kinetic density, B, in Eq. (4) are both equal to unity. 
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3 Problem description and validation 

The physical problem considered in the present study is adopted from [2]. As 
illustrated in Fig. 1, an unstable stratification is introduced by surrounding a 
layer of a light fluid, phase 1, by a heavy fluid, phase 2. The initial locations of 
the interfaces are given by ( )( )0,, 1 xyx  and ( )( )0,, 2 xyx , where [2]  
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Here, x and y are nondimensionalized by π20 LL = . Periodic boundary 
conditions are applied in both the x and y directions. Under gravity, the upper 
interface is unstable and the upper heavy fluid flows downwards through the 
layer of light fluid. The lower interface is stable and resists motion. Ultimately, 
the two interfaces meet and pinch off. The equations are nondimensionalized 
using 0L , ( )gbLt 21

2
20 2 ρρπµ −= , 000 tLu = , and ( ) πρρ 2210 gLp −=  as 

the length, time, velocity, and pressure scales, respectively. Two dimensionless 
parameters, the Bond number, ( ) ( ) σπρρ 2

21 2LgBo −= , and the Atwood 
number, ( ) ( )1212 µµµµ +−=At , characterize the interface motion [2, 3]. 
Symbols denoting dimensionless variables are dropped in the following. 
 The numerical implementation of the present models (not described here due 
to space limitations) is validated by comparing results to the boundary-integral, 
sharp interface solution provided by Lee et al. [2]. The governing parameters for 
the validation case are [2]: density ratio 9.021 == ρρρr , viscosity ratio 

121 == µµµr , and 25=Bo . The mesh size is 250250×  grid points and 
04.0=δ . Calculated interface contours before pinch-off (at 0=t , 4, 6, and 7.5) 

are compared in Fig. 4. Note that a boundary-integral solution cannot be 
obtained during and after pinch-off [2]. It can be seen that the results from the 
present two-phase and mixture models almost overlap. This can be expected 
because in this example the viscosity ratio is equal to unity and the density ratio 
is also close to one. The diffuse interface results are in good agreement with the 
sharp interface solution, except near the pinch-off time (i.e., at 5.7=t ). At that 
time, the diffuse interfaces are starting to overlap. Similar differences between 
diffuse and sharp interface results near the pinch-off have also been observed by 
Lee et al. [2]. They used a Cahn-Hilliard type (mixture) diffuse interface model 
with concentration as the order parameter. 
 The differences between the diffuse and sharp interface results before pinch-
off can be attributed to the diffuse interface model results not being fully 
converged with respect to the interface width, δ . Identical results can only be 
expected for 0→δ . Figure 5 compares the convergence behaviour of the two-
phase and mixture models with respect to δ . The calculated y intercept of the 
upper interface (i.e., the 5.0=φ  contour), δy , at 5.7=t  is used as the figure of 
merit. The reference intercept, 0y , is obtained from the sharp interface solution 
of [2]. It can be seen that for a finite interface width, δy  differs significantly 
from the sharp interface result. The two-phase and mixture models show both a 
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linear convergence behaviour with respect to δ . However, for a given interface 
width, more accurate results are obtained by the two-phase model, even though 
the density contrast is small and 0.1=µr  in this case. 

 
Figure 4: Evolution of interfaces: comparison between sharp and diffuse 

interface solutions ( 9.0=ρr , 0.1=µr , 25=Bo , and 04.0=δ ). 

4 Results for large property contrasts between the phases 

The two-phase and mixture models can be expected to differ more significantly 
for larger property contrasts between the two phases than in the previous test 
case. In the example of this section, the density and viscosity ratios are chosen to 
be 01.0=ρr  and 1.0=µr . These ratios should be viewed as corresponding to a 
much less dense and less viscous phase 1 (middle fluid layer) compared to phase 
2. The Bond number is kept unchanged by adjusting g. The focus in the 
following discussion is on (i) the topology transition around the pinch-off time 
and (ii) the convergence of the results with respect to the interface width. 
 The calculated evolution of the phase-field contours for this example is 
shown in Fig. 6 for both the two-phase and mixture models. It can be seen that 
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the pinch-off occurs earlier for the two-phase model than for the mixture model. 
Also, at 0.2=t , two satellite drops appear for the two-phase model, while only a 
single but larger droplet occurs for the mixture model. The difference in the 
pinch-off time can be attributed to the presence of a highly asymmetric (with 
respect to 5.0=φ ) velocity distribution across the diffuse interface for the 
mixture model. For that model, the velocity inside the diffuse interface is 
dominated by phase 2, because that phase has a much larger density and 
viscosity. Since phase 2 is more viscous than phase 1, the velocity of phase 2 
near the interface is generally less than that of phase 1. Hence, the asymmetric 
velocity distribution slows down the interface motion. The two-phase model 
effectively prevents this asymmetry because a slip flow is allowed inside the 
diffuse interface.  
 

Figure 5: Convergence of y intercept of the upper interface at 5.7=t  wrt. δ  
( 9.0=ρr , 0.1=µr , and 25=Bo ). 

 The differences in the calculated velocities between the two-phase and 
mixture models can be better observed in Fig. 7. This figure compares results 
from the two models at different times, but in each case the results correspond to 
times right before and after the pinch-off. It can be seen that the velocities near 
the interface inside of phase 1 are generally smaller for the mixture model (Fig. 
7a) and than for the two-phase model (Fig. 7b). This is particularly evident near 
the centre of the main vortex. Again, the smaller phase 1 velocities for the 
mixture model can be attributed to the more viscous and dense phase 2 extending 
its influence far across the diffuse interface into phase 1. The slip velocities 
inside the diffuse interface,  ( ) u∆−φφ 1 , calculated by the two-phase model are 
shown in Fig. 7c. It is apparent that the velocity of phase 1 inside the diffuse 
interface is much larger than that of phase 2, which is due to the density and 
viscosity being smaller in phase 1 than in phase 2 [see also Eq. (5)]. Since 
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therefore more symmetric across the interface, even though 21 ρρ << . Also note 
that it is the slip velocities shown in Fig. 7c that are responsible for the 
compressibility effect in the two-phase model, as discussed in connection with 
the continuity equation.  
 

Figure 6: Evolution of phase-field contours ( 1.0=φ , 0.3, 0.5, 0.7, and 0.9) 
near the pinch-off: comparison of two-phase and mixture models 
( 01.0=ρr , 1.0=µr , 25=Bo , 82.0=At , and 04.0=δ ). 

 A comparison of the convergence behaviour of the pinch-off time with 
respect to the interface width between the two-phase and mixture models is 
shown in Fig. 8. In each simulation, the grid spacing was adjusted such that 

628.0=∆ δx , implying that the simulations with a smaller interface width 
required a finer grid.  It can be seen that for both models, the pinch-off time 
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decreases in an approximately linear fashion with decreasing interface width. 
Best straight-line fits to the calculated results show that the pinch-off times from 
the two models converge to approximately the same value (~1.7) in the limit of 

0→δ . As already noted in connection with Fig. 5, at a given interface width, 
the results from the two-phase model are much more accurate than those from 
the mixture model. For example, the pinch-off time for the mixture model with 

03.0≈δ  is approximately the same as for the two-phase model with 06.0=δ . 
Hence, the two-phase model offers a significant advantage relative to a standard 
mixture approach for large property contrasts between the phases. The remaining 
dependence of the two-phase model results on the interface width can be 
attributed to the presence of δ  in the capillary stress term in the momentum 
equation.  
 

 (a) u : mixture (b) u : two-phase (c) ( ) u∆−φφ 1 : two-phase 

Figure 7: Velocity vectors before (upper panels) and after (lower panels) 
pinch-off ( 01.0=ρr , 1.0=µr , 25=Bo , 82.0=At , and 

04.0=δ ).  

5 Conclusions 

The present study shows that, in the presence of large property contrasts between 
the phases, the use of a two-phase approach in diffuse interface modeling of 
micro-scale two-phase flows offers a significant advantage relative to standard 
models that assume a single velocity inside the diffuse interface. The two-phase 

0 1 2 32

3

4

5

0 1 2 32

3

4

5
u = 0.5

t = 1.84

0 1 2 32

3

4

5
u = 0.5

t = 1.83

0 1 2 32

3

4

5
u = 0.5

t = 1.77

0 1 2 32

3

4

5
u = 0.5

t = 1.78

0 1 2 32

3

4

5 u = 0.5
t = 1.77

2 

u = 0.5
t = 1.77

2 

© 2005 WIT Press WIT Transactions on Engineering Sciences, Vol 50,
 www.witpress.com, ISSN 1743-3533 (on-line) 

Computational Methods in Multiphase Flow III  155



 

approach strongly reduces the dependence of the results on the width of the 
diffuse interface. Even though the present study examines only a simplified set 
of diffuse interface equations for Hele-Shaw flows, a similar advantage can be 
expected for the full Navier-Stokes version of the two-phase model as presented 
in [6]. Future work should focus on developing methods to overcome the 
remaining interface width dependencies due to the capillary stress term in the 
momentum equation. The ultimate goal of such work should be to achieve 
complete convergence of the results for a finite interface width (since only finite 
interface widths can be resolved numerically), along the same lines as in the 
thin-interface phase-field models of Karma and Rappel for solidification [10]. 
Only then can diffuse interface models be used reliably for the simulation of 
complex two-phase flows. 
 

Figure 8: Convergence of pinch-off time wrt. δ  ( 01.0=ρr , 1.0=µr , 
25=Bo , and 82.0=At ). 

Acknowledgement 

This work was supported by the U.S. National Science Foundation under Grant 
No. DMR-0132225. 

References 

[1] Jacqmin, D., Calculation of two-phase Navier-Stokes flows using phase-
field modeling. J. Comput. Phys., 155, pp. 96-127, 1999. 

[2] Lee, H.-G., Lowengrub, J.S. & Goodman, J., Modeling pinchoff and 
reconnection in a Hele-Shaw cell. I. The models and their calibration & II. 
Analysis and simulation in the nonlinear regime. Phys. Fluids, 14, pp. 
492-513 & pp. 514-545, 2002. 

0 0.02 0.04 0.061.65

1.7

1.75

1.8

1.85

1.9

1.95

pi
nc

h-
of

f t
im

e 

mixture model 
two-phase model

δ

© 2005 WIT Press WIT Transactions on Engineering Sciences, Vol 50,
 www.witpress.com, ISSN 1743-3533 (on-line) 

156  Computational Methods in Multiphase Flow III



 

[3] Folch, R., Casademunt, J., Hernández-Machado, A. & Ramírez-Piscina, 
L., Phase-field model for Hele-Shaw flows with arbitrary viscosity 
contrast. I. Theoretical approach & II. Numerical study. Phys. Rev. E, 60, 
pp. 1724-1733 & pp.1734-1740, 1999. 

[4] Anderson, D.M., McFadden, G.B. & Wheeler, A.A., Diffuse-interface 
methods in fluid mechanics. Ann. Rev. Fluid Mech., 30, pp. 139-165, 
1998. 

[5] Beckermann, C., Diepers, H.-J., Steinbach, I., Karma, A. & Tong, X., 
Modeling melt convection in phase-field simulations of solidification. J. 
Comput. Phys., 154, pp. 468-496, 1999. 

[6] Sun, Y. & Beckermann, C., Diffuse interface modeling of two-phase 
flows based on averaging: mass and momentum equations. Physica D, 
198, pp. 281-308, 2004. 

[7] Anderson, D.M., McFadden, G.B. & Wheeler, A.A., Phase-field model of 
solidification with convection. Physica D, 135, pp. 175-194, 2000. 

[8] Sun, Y. & Beckermann, C., Interface tracking using the phase-field 
method (in preparation). 

[9] Saffman, P.G. & Taylor, G., The penetration of fluid into a porous 
medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. 
London A, 245, pp. 312-329, 1958. 

[10] Karma, A. & Rappel, W.-J., Phase-field model for computationally 
efficient modeling of solidification with arbitrary interface kinetics. Phys. 
Rev. E, 53, pp. R3017-3020, 1996. 

© 2005 WIT Press WIT Transactions on Engineering Sciences, Vol 50,
 www.witpress.com, ISSN 1743-3533 (on-line) 

Computational Methods in Multiphase Flow III  157




