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ABSTRACT 

Phase-field models of solidification with convection ofte
assume the existence of a single (mixture) velocity at a
location inside the diffuse interface, and the phase-field, φ, is 
advected by this mixture velocity. In this paper, the advect
of the phase-field is examined for a one-dimensional norm
flow to a solidification front induced by a density differenc
between the solid and liquid. It is found that the results from
phase-field model that assumes a single velocity inside 
diffuse interface are generally not in agreement with the sh
interface condition for the kinetic undercooling of the front 
the presence of unequal densities, regardless of the inter
width. By introducing a two-phase approach, where the so
and liquid are assumed to coexist inside the diffuse interf
with different velocities, good agreement with the sha
interface condition is obtained irrespective of the density ra
between the two phases.    

 
NOMENCLATURE 
 L latent heat of fusion per unit mass 
 J mass flux across the interface 
 M interface mobility 
 S interfacial area per unit volume 
 T temperature 

mT  melting temperature 

sX  existence function 

Pc  specific heat 

al   atomic-scale width of a solid/liquid interface 
 n interface normal vector 

ρr  density ratio 
 u velocity vector 
 
Greek symbols 
 β kinetic coefficient, s/m 
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 dimensionless undercooling 

 δ diffuse interface width 
 φ phase-field 
 Γ interfacial mass transfer per unit volume due to phas

change 

kµ  kinetic coefficient, m/(s⋅K) 
ρ  density 
ξ  dimensionless length 
 
Superscripts 
 − ensemble or volume average 
 * dimensionless variable 
 
Subscripts 
  i interface 
  l liquid  
  k phase  
  s solid 

 
INTRODUCTION 

Phase-field methods and other diffuse interface approache
have been a popular tool in the direct simulation of
solidification [1-3]. By introducing an order parameter, φ, to 
represent the transition between the solid and liquid, a uniqu
set of evolution equations is solved over the entire domai
without explicitly tracking the solid/liquid interface. Due to the 
strong influence of melt motion on the evolution of the
microstructure during solidification [4,5], efforts have been
made to include convection within phase-field models [3,6-10]
Some phase-field models of solidification with convection trea
the solid phase as an extremely viscous fluid and derive th
governing equations from basic concepts of irreversible
thermodynamics [8,9], or simply make the viscosity a function
of the phase-field in the regular Navier-Stokes equations [7]. I
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a different approach, Beckermann et al. [3] viewed the diffuse 
interface region as a porous medium where the solid has a zero 
velocity and the liquid flows through the porous matrix 
representing the diffuse interface. The diffuse interface version 
of the governing equations was derived “backwards”  from 
well-established sharp interface equations via a formal 
ensemble (or volume) averaging method for two-phase flows.  

All thermodynamically derived phase-field models assume 
the existence of a single velocity and pressure at any point 
inside the diffuse interface between the solid and liquid. 
Moreover, single thermophysical properties (e.g., density and 
viscosity) are assumed to exist and their variation across the 
diffuse interface is postulated in some ad-hoc manner. For large 
differences in these variables between the phases, 
thermodynamically derived phase-field models can give results 
that are very dependent on the choice of the interface width [11] 
and the way the property variations are specified [10]. The two-
phase averaging approach introduced by Beckermann et al. [3] 
offers an alternative by assuming that each phase possesses its 
own velocity, pressure, and properties, and separate 
conservation equations are solved for each phase. This avoids 
the potentially steep variations of the variables across the 
diffuse interface, and the property variations follow naturally 
from the derivations. By simply adding the averaged 
conservation equations for each phase and making use of 
averaged interfacial balances, a so-called mixture model can be 
derived from the two-phase model [11]. Assuming furthermore 
equal velocities of the two phases inside the diffuse interface, a 
direct connection with thermodynamically derived models can 
be made [8,9]. 

The objective of this paper is to examine the advection of 
the phase-field φ  in various phase-field models of 
solidification with flow and to compare the results with those 
from a corresponding sharp interface model. In the next section, 
both two-phase and mixture phase-field models are derived 
using ensemble averaging. The models are then applied to a 
simple one-dimensional solidification problem where the 
interface motion is driven by a kinetic undercooling and a 
normal flow exists that is caused by a density difference 
between the solid and liquid.  

THE MODEL 
 A detailed derivation of a diffuse interface model for two-
phase flows using ensemble averaging of the sharp interface 
equations is presented in Ref. [11]. In this approach, the phase-
field φ  is defined as the ensemble average of an existence 
function, sX , which is unity in the solid and zero otherwise. 
Here, only the continuity and phase-field equations are 
presented. The system is assumed to be isothermal and 
solidification is driven solely by a kinetic undercooling. The 
material is assumed to be a pure substance with different 
densities in the solid and liquid states. 
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Mass conservation 
The local mass conservation equation for each phase and 

the jump condition for a sharp interface are given, respectively, 
by 

 ( ) 0=⋅∇+
∂
∂

uρρ
t

        and        ( ) 0=⋅− nuu iρ  (1) 

where ρ  is the density, which is assumed constant in each 
phase, u  is the velocity, n is the local interface normal vector, 

 denotes a jump across the interface of a function f as 
ls fff −= , and iu  is the velocity of the interface between 

the solid and liquid. Multiplying the local continuity equation 
by the existence function, kX , and averaging yields the 
following averaged continuity equation for phase k 

 
( ) ( ) kkkk

kk

t
Γρφρφ

=⋅∇+
∂

∂
u  (2) 

where the average velocity of phase k is defined as 

kkk X φ/uu =  and the interfacial mass transfer rate per unit 
volume due to phase-change as ( )[ ] k

k
ik X ∇⋅= uu - ρΓ . 

Multiplying the jump condition for mass by sX∇  and 
averaging, results in the following averaged interfacial mass 
balance 
 0=+ ls ΓΓ  (3) 

where the subscripts s and l denote the solid and liquid, 
respectively.  
      Defining a mixture density as ( )φρφρρ −+= 1ls  and a 
mass-averaged mixture velocity as 

( )[ ] ρφρφρ llss uuu −+= 1 , Eqs. (2) and (3) can be 
combined to yield the following mixture continuity equation 

 ( ) 0=⋅∇+
∂
∂

uρρ
t

 (4) 

Equation (4) shows that the mixture is compressible inside the 
diffuse interface if the densities of the two phases are different. 
For the mixture approach, where the phase velocities are 
assumed equal, i.e., uuu == ls , Eq. (4) can be rewritten as 

   �
�
�

�
�
�
�

�
−=⋅∇

ls
s ρρ

Γ 11
u   and  �

�
�

�
�
�
�

�
+−=∇⋅+

∂
∂

ls
st ρ

φ
ρ

φΓφφ 1
u     

                                                               for   uuu == ls  (5) 

 
Phase-field equation 

The derivation of the phase-field equation starts with the 
sharp interface condition for the solid/liquid interface 
temperature. For the purpose of the present study, solidification 
is assumed to be controlled solely by atomic attachment 
kinetics. The effects of pressure, surface tension, and viscous 
stresses on the interface temperature are neglected.  

For a certain choice of the interpolating function for the 
density variation inside the diffuse interface, Anderson et al. 
[12] derived the following expression for the kinetic 
undercooling at a solidification front in the limit of a sharp 
interface 
2 Copyright © 2004 by ASME 

ME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



 
Ll

MJT
TT

lsa

m
im ρρ

−=−   (6) 

where iT  is the interface temperature, mT  is the equilibrium 
melting point, J is the mass flux across the interface defined as 

( ) ( ) nuunuu ⋅−=⋅− illiss ρρ =J, al  is the atomic-scale width 
of a “sharp”  solid/liquid interface (which is not necessarily the 
same as the width of the diffuse interface in the phase-field 
models below), L is the latent heat of fusion per unit mass, and 
M is the atomic mobility of the interface. Equation (6) is valid 
for unequal densities of the solid and liquid as well as in the 
presence of flow (as long as the pressure and viscous effects are 
neglected). Also note that it is symmetric with respect to the 
two phases (i.e., the subscripts s and l could be interchanged). 
Relating the mobility, M, to the linear kinetic coefficient of the 
interface, kµ , via [12] 

 
MT

Ll

m

la
k

ρµ =  (7) 

Eq. (6) can be rewritten as 

 
( )

k

si

ks
im

J
TT

µµρ
nuu ⋅−

=−=−  (8) 

For 0=su , Eq. (8) reduces to the form commonly used in 
modeling solidification without flow. It is important to note that 
for a given solid velocity the sharp interface velocity is 
independent of the density ratio between the solid and liquid, 
i.e., lsr ρρρ = .  
 Equation (8) is now used to derive the phase-field 
equation. Multiplying both sides of Eq. (8) by sX∇ , making 
use of the definition for the interface normal vector, 

ss XX ∇∇−=n  [11], and averaging yields 

 
( ) ( ) sim

k

sis XTT
X ∇−=∇⋅−

µ
uu

 (9) 

where the parentheses  denote an ensemble average. The 
average interfacial temperature is defined as 

ssii XXTT ∇∇= , where sX∇  is modeled as [11] 

   
( )

δ
φφφ −=∇=∇ 1

sX  (10) 

In Eq. (10), δ  is a measure of the width of the diffuse interface 
in the phase-field model. Substituting Eq. (10), making use of 
the definition for sΓ , and assuming kµ  to be constant, Eq. (9) 
becomes 

 ( ) ( )
δ

φφ
µρ

Γ −−= 1
im

ks

s TT  (11) 

Substituting Eq. (2) for sΓ  in Eq. (11), yields 

 ( ) ( ) ( )
δ

φφµφφ −−=⋅∇+
∂
∂ 1

 imks TT
t

u  (12) 

The left-hand side of Eq. (12) describes the evolution of φ  in a 
“conserved”  form with the solid velocity, su , inside the 
divergence operator. Note that no assumption was made with 
regard to the liquid velocity, and Eq. (12) is valid for arbitrary 
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lu  as well as for unequal solid and liquid densities. In the case 
of a rigid and stationary solid, i.e., 0=su , Eq. (12) reduces to 

 ( ) ( )
δ

φφµφ −−=
∂
∂ 1

imk TT
t

 (13) 

Equation (12), or Eq. (13) for 0=su , is the phase-field 
equation for the two-phase approach explained in the 
Introduction, because the phase velocities inside the diffuse 
interface are not assumed equal. 

The phase-field equation for the mixture approach can be 
obtained from Eq. (12) by assuming that only a single velocity 
exists inside the diffuse interface, i.e., uuu == ls . Hence, 

 ( ) ( ) ( )
δ

φφµφφ −−=⋅∇+
∂
∂ 1

  imk TT
t

u  (14) 

Using Eqs. (5), Eq. (14) can be rewritten as 

 ( ) ( )
δ

φφµ
ρ
ρφφ −−=∇⋅+

∂
∂ 1

imk
l

TT
t

u  (15) 

It can be seen that in Eq. (15) the phase-field is advected by a 
single (mixture) velocity u . Equation (15) is equivalent to the 
thermodynamically derived phase-field equation of Anderson et 
al. [8,9]. In fact, Eq. (15) can be derived from the phase-field 
equation in Ref. [8] by choosing appropriate double well and 
interpolating functions in the free energy functional, and 
neglecting the effects of pressure, surface tension, and viscous 
stresses on the interface temperature. 

ONE-DIMENSIONAL NORMAL FLOW TO A 
SOLIDIFICATION FRONT DUE TO A DENSITY 
DIFFERENCE BETWEEN THE PHASES 

 
Problem description 

The two-phase and mixture approaches are compared for 
the example illustrated in Fig. 1 involving solidification in the 
presence of a simple one-dimensional flow.  The flow normal to 
the planar solidification front is induced by a density difference 
between the phases. The interface moves at a constant speed iV  
into the positive x-direction. The problem becomes steady if 
one introduces the moving coordinate tVxx i−′= , where x′  is 
the fixed coordinate normal to the interface. The far-field 
velocity of the solid ( −∞→x ) is taken to be zero. The system 
is held isothermally at the interface temperature.  

For this example, a sharp interface analysis would give a 
zero velocity in the solid and a constant contraction or 
expansion flow in the liquid normal to the interface. Hence, 
with 0=su , the sharp interface condition for the interface 
temperature, Eq. (8), can be written in the following 
dimensionless form 

 �Vi =∗  (16) 

where �  is the dimensionless undercooling defined as 
( ) ( )pim cLTT

�
−= , and ii VV β=∗  is the dimensionless 

interface velocity, where ( )Lc kp µβ = . Hence, for a given 
undercooling, the sharp interface velocity is the same regardless 
of the density ratio. 
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Figure 1. Schematic illustration of the system used in the 
analysis of normal flow due to phase-change in the presence of 
a density difference between the phases. 

 
 

Velocity profiles for a diffuse interface 
The velocities for a diffuse interface are solely determined 

by the mass conservation equations. In the moving coordinate 
system, the mixture continuity equation, Eq. (4), can be written 
in a dimensionless form as 

 ( )( )[ ] 01 =−−+ ∗∗
iVur

d

d φφ
ξ ρ  (17) 

where the dimensionless length is defined as δξ x=  and the 
dimensionless mixture velocity as uu β=∗ . Integrating Eq. 
(17) yields 

 
�
�

�

�

�
�

�

�
−

−+
−= ∗∗ 1

1 φφρ

ρ

r

r
Vu i  (18) 

Equation (18) provides the velocity profile for the mixture 
approach. Note that for unequal densities the mixture velocity 
profile across the interface is not symmetric with respect to 

5.0=φ .  
The continuity equations for each phase, Eq. (2), become 

 ( )[ ] ∗∗∗ =− sis Vur
d

d Γφ
ξ ρ    (19) 

 ( )( )[ ] ∗∗∗ =−− lil Vu
d

d Γφ
ξ

  1  (20) 

where the dimensionless interfacial  mass transfer rates are 
defined are lss ρδΓβΓ =∗  and lll ρδΓβΓ =∗ . Using the 
definition for sΓ  and Eq. (3), Eqs. (19) and (20) can be 
integrated to yield 

                    0=∗
su           and           ( )ρrVu il −= ∗∗ 1  (21) 

Hence, for the two-phase approach the individual phase 
velocities are constant inside the diffuse interface. It can be 
verified that Eqs. (21) together with the definition of the 
mixture velocity, u , lead to Eq. (18).  
 
Phase-field profiles 

The solutions of the phase-field equations for the two-
phase ( 0=su ) and mixture approaches ( uuu == ss ) are 
discussed separately in the following. 

diffuse interface iV  x 

liquid 

solid 

y 

0, =∞su

lu
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Two-phase model 
Equation (13) can be expressed in the moving coordinate 

system as  

 ( )φφ
ξ
φ −−=∗ 1

�

d

d
Vi  (22) 

Fixing 5.0=φ  at 0=ξ , the solution of Eq. (22) is given by Eq. 
(16) for the interface velocity, i.e., 

�
Vi =∗ , and the following 

phase-field profile 

   �
�

	


�

�
�
�

�
�
�

�−=
2

tanh1
2

1 ξφ  (23) 

Note that the above profile is the same as that encountered in 
the phase-field model for equilibrium situations. It is 
emphasized here again that the two-phase model gives an 
interface velocity that is independent of the density ratio. 
 
Mixture model 

Equation (14) can be written in the moving coordinate 
system as 

 ( )[ ] ( )φφφ
ξ

−=− ∗∗ 1
�

Vu
d

d
i  (24) 

Substituting the mixture velocity profile, Eq. (18), into Eq. 
(24), yields 

 ( )φφφ
φφξ ρ

ρ −−=
�
�

�

�

�
�

�

�

−+
∗ 1

1

�

r

r

d

d
Vi  (25) 

which can be rewritten as 

 ( ) ( )φφ
ξ
φ

φφρ

ρ −−=
−+

∗ 1
1 2

�

d

d

r

r
Vi  (26) 

Fixing 5.0=φ  at 0=ξ , and using 1=φ  or 0=φ  far from the 
interface as a boundary condition, Eq. (26) can be solved 
numerically to determine the phase-field profile and the 
interface velocity. 
 
Discussion 

Comparing the phase-field equations for this example, i.e., 
Eqs. (22) for the two-phase model and Eq. (26) for the mixture 
model, it can be seen that they only differ in the advection term 
on the left-hand side. In the mixture model, the advection term 
is modified by a complex factor involving the density ratio, i.e., 

( )21 φφρρ −+rr , that originates from the variation of the 
mixture velocity inside the diffuse interface. 
 It is important to note that the measure of the diffuse 
interface width, δ , is absent from the dimensionless continuity 
and phase-field equations for both the two-phase and mixture 
models. Hence, δ  can be chosen as the reference length to 
scale the problem, and the solution of the dimensionless 
equations is independent of δ . This independence of the 
solution on the diffuse interface width is a unique feature of the 
present problem and can be explained by the fact that the 
interface velocity is determined solely by the kinetic 
undercooling and that the system is isothermal. In the presence 
4 Copyright © 2004 by ASME 
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of surface tension, however, the solution would generally 
depend on the interface width [12].  
 
Results 

Calculated steady-state phase-field and velocity profiles 
across the diffuse interface are shown in Figs. 2a and 2b for 
density ratios of 0.2=ρr  and 5.0=ρr , respectively. In each 
figure, results are given for both the two-phase and mixture 
models and for an undercooling of 0.1=

�
. The profiles are 

plotted in the moving coordinate system, such that the interface 
( 5.0=φ ) is fixed at 0=ξ . It can be seen from Fig. 2a that for 
the two-phase model the velocities are constant in each phase 
and equal to 0=∗

su  in the solid and 51.0−=∗
lu  in the liquid, 

where the negative sign implies that the flow for 0.2=ρr  is in 
a direction opposite to the interface velocity (contraction flow). 
The phase-field profile corresponding to the mixture model is 
much steeper than the hyperbolic tangent profile corresponding 
to the two-phase model, which can be explained by the 
complex form of the advection term in the phase-field equation 
for the mixture model. For a density ratio larger than unity, 
such as 0.2=ρr , the phase-field in the mixture approach is 
advected towards the solid, which reduces the effective width 
of the diffuse interface region. For a density ratio less than 
unity, as shown in Fig. 2b for 5.0=ρr , the calculated phase-
field profile for the mixture model is less steep than the 
hyperbolic tangent profile corresponding to the two-phase 
model, since the phase-field is advected away from the solid. 

Figure 3 shows a comparison of the variations of the 
dimensionless interface velocity with undercooling calculated 
from the two-phase and mixture models for a density ratio of 

8.0=ρr . The two-phase model gives the expected linear 
dependence of the interface velocity on the undercooling, in 
agreement with the sharp interface solution given by Eq. (16). 
The mixture model also gives a quasi-linear variation of the 
interface velocity, but the interface moves at a speed that is 
about 20% higher than the sharp interface solution. The results 
from the mixture model are in agreement with previous 
observations of Anderson et al. [8] and Conti [9] who solved a 
similar problem using thermodynamically derived phase-field 
models. Clearly, if the goal is to simulate a solidification 
problem that is defined by the present sharp interface condition, 
the mixture or thermodynamically derived phase-field models 
will yield incorrect interface velocities. This is especially of 
concern because the interface velocity is independent of the 
diffuse interface width. 

Figure 4 shows a comparison of the calculated variations 
of the interface velocity with density ratio between the various 
models (for 0.1=

�
). Again, the two-phase model agrees with 

the sharp interface solution and the interface velocity is 
independent of the density ratio. On the other hand, the 
interface velocities calculated from the mixture model are a 
strong function of the density ratio, as expected from Eq. (26). 
For a density ratio of 0.2=ρr  the mixture model gives an 
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interface velocity that is 50.5% lower than the sharp interface 
value, and for 5.0=ρr  it is 94.2% higher. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Calculated phase-field and velocity profiles for 

0.1=
�

; the dashed lines correspond to the two-phase model 
and the solid lines to the mixture model: (a) 0.2=ρr  and (b) 

5.0=ρr . 
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Figure 3. Calculated variations of the interface velocity with 
undercooling for 8.0=ρr ; the dashed line corresponds to the 
two-phase model and the solid line to the mixture model. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Calculated variations of the interface velocity with 
density ratio for 0.1=

�
; the dashed line corresponds to the 

two-phase model and the solid line to the mixture model. 
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CONCLUSIONS 
Phase-field modeling of solidification is examined for the 

case where there is convection induced by a density difference 
between the phases. Using an ensemble averaging approach, 
two different phase-field models are derived from the same set 
of sharp interface equations: (i) a two-phase model where the 
velocities of the two phases inside the diffuse interface are not 
assumed equal and (ii) a mixture model where only a single 
velocity is assumed to exist inside the diffuse interface. The 
mixture model is equivalent to thermodynamically derived 
phase field models previously presented in the literature.  The 
models are applied to a simple one-dimensional solidification 
problem where solidification is controlled solely by interface 
attachment kinetics and the flow is driven by a density 
difference between the phases.  It is found that the two-phase 
model gives results that are in complete agreement with the 
sharp interface solution of this problem, regardless of the 
diffuse interface width. On the other hand, the mixture model 
shows a dependence of the interface velocity on the density 
ratio that is not in agreement with the sharp interface solution. 
This can be attributed to the advection of the phase-field by the 
motion of the mixture inside the diffuse interface. In the two-
phase model, the phase-field is not advected because the solid 
velocity is equal to zero for the present example. In conclusion, 
it is unclear how a phase-field model that is based on the 
mixture approach can be used to obtain accurate results for 
solidification problems involving convection. Future work will 
include extension of the two-phase model to non-isothermal 
systems including surface tension. 
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