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a b s t r a c t 

A two-phase truncated-Scheil-type model is developed for columnar solidification of binary alloys in the presence 

of melt convection and liquid undercooling ahead of the primary dendrite tips. The model is derived from a three- 

phase model, which takes into account liquid undercooling ahead and behind the primary tips. These models 

are used to simulate a numerical solidification benchmark problem, and their predictions are compared with 

those of a Scheil-type model that disregards liquid undercooling and solute diffusion in solid. Simulation results 

reveal that the predictions of the truncated-Scheil-type and three-phase models are nearly identical, indicating 

that undercooling behind the primary tips can be disregarded and the truncated-Scheil-type model can replace 

the significantly more complex three-phase model. The truncated-Scheil-type and three-phase models smoothly 

recover the Scheil-type model as the value of the dendrite tip selection parameter is increased. Taking into 

account liquid undercooling changes the melt convection pattern around the columnar front and the form of 

channel segregates but does not change the overall macrosegregation pattern. 

1

 

s  

w  

o  

v  

o  

t  

t  

k  

m  

r  

n  

t  

r  

m  

i  

b  

m

 

t  

B  

m  

c  

L  

u  

l  

t  

t  

l  

l  

g  

i  

s  

u  

u  

t  

s  

l  

e  

u  

t  

d  

m  

o  

c  

r  

h

R

A

2

. Introduction 

Solidification of metals and alloys is important in industrial processes

uch as metal casting, additive manufacturing, and welding. On Earth,

here gravity is present, solidification typically occurs in the presence

f buoyancy-driven melt convection (i.e., double diffusive natural con-

ection), which is generated due to the dependence of the liquid density

n temperature and/or solute concentration in the liquid. Melt convec-

ion changes the temperature distribution during solidification and is

ypically the main reason for the formation of a type of casting defect

nown as macrosegregation, which refers to solute composition inho-

ogeneities at the macroscale. In addition, melt convection is the only

eason for the formation of a critical casting defect known as chan-

el segregates, which are narrow, pencil-like macrosegregation patterns

hat are highly enriched by solute elements. Macrosegregation deterio-

ates the quality of cast products, and the presence of channel segregates

ight result in rejection of those products. Predicting these defects us-

ng computer models is therefore critical for the industry, and this can

e achieved only if melt convection is incorporated into computational

odels. 

Incorporating melt convection in macroscopic solidification models

o simulate macrosegregation and channel segregates was pioneered by

eckermann and Viskanta [1,2] and Bennon and Incropera [3,4] in the

id-1980s and has since been the subject of numerous studies. For a
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omprehensive review, the reader is referred to Beckermann [5] and

udwig et al. [6] and references therein. Most studies have, however,

sed models that entirely neglect the constitutional undercooling of the

iquid, hereafter referred to as liquid undercooling. During solidifica-

ion, because heat and/or solute diffusion rates are limited, the liquid

ypically becomes undercooled locally: its local temperature becomes

ess than the local liquidus temperature corresponding to the local so-

ute concentration in the liquid. Accounting for liquid undercooling is, in

eneral, important because liquid undercooling is the key in determin-

ng the position of the primary dendrite tips, and important phenomena

uch as nucleation of equiaxed grains can be predicted only if liquid

ndercooling is taken into account. The main reason that neglecting liq-

id undercooling has been a common assumption in the literature is

hat models making that assumption have the advantage of a relatively

imple numerical implementation, leading to their extensive use in the

iterature. As examples of recent and highly relevant studies, Carozzani

t al. [7] and Saad et al. [8] used such a macroscopic model to sim-

late solidification in the presence of melt convection in a solidifica-

ion benchmark experiment and during directional solidification of in-

ium 75 wt. pct. gallium, respectively. Kumar et al. [9,10] used a similar

odel to investigate the effects of the mesh size, numerical treatment

f the permeability term in the liquid momentum equation, and the in-

lusion of the inertia term in that equation on the predicted macroseg-

egation and channel segregates. Bellet et al. [11] proposed a numerical
. Torabi Rad). 
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Fig. 1. A schematic of two adjacent columnar dendrites (black) and their shape 

approximated in the Scheil (dotted blue), truncated-Scheil (solid blue), and 

three-phase models (red).(For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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enchmark problem for solidification of binary alloys in the presence

f melt convection. Combeau et al. [12] compared the predictions of

he different computer codes for that benchmark problem. Again, these

tudies have all disregarded liquid undercooling. 

To account for liquid undercooling in macroscale solidification mod-

ls, Flood and Hunt [13] introduced the so-called truncated-Scheil

odel. The term Scheil, in that paper and this one, is used to refer to

odels that account for neither solute diffusion in solid nor liquid un-

ercooling. Fig. 1 shows a schematic of two adjacent columnar dendrites

black), hereafter referred to as dendrites, and their shape approximated

n the Scheil (dotted blue) and truncated-Scheil (solid blue) models. In

oth models, the liquidus isotherm (thin vertical dashed line) is at the

ame position. In the Scheil model, the primary tips of the dendrites are

ocated at the liquidus isotherm; therefore, in that model, solidification

tarts at the liquidus temperature. In the truncated-Scheil model, how-

ver, the primary tips of the dendrites are located at a distance behind

he liquidus isotherm, and the imaginary surface that connects them is

ermed the columnar front (i.e., the thick vertical dashed line). Note

hat, behind the columnar front, the shape of the dendrites in the Scheil

nd truncated-Scheil models are identical. In other words, by truncating

he dendrites of the Scheil model at the position of the columnar front,

ne gets the dendrites of the truncated-Scheil model. The truncated-

cheil model accounts for liquid undercooling because the liquid be-

ween the columnar front and the liquidus isotherm is undercooled. In

hat model, the growth velocity of the tips, and therefore the veloc-

ty of the columnar front, is linked to the liquid undercooling ahead of

he columnar front through a dendrite tip growth model. In summary,

lood and Hunt’s truncated-Scheil model [13] , is a macroscale model

hat allows incorporation of liquid undercooling ahead of the columnar

rimary tips but disregards melt convection. 

In the literature, macroscale models that incorporate both liquid un-

ercooling and melt convection are available. These models are typi-

ally based on the multiphase modeling framework developed in the

ioneering and widely-accepted work of Wang and Beckermann [14] ,

hich allows one to develop macroscale models that incorporate mi-

roscale and mesoscale phenomena. For the details of the framework,

he reader is referred to the original paper [14] . In brief, as shown in

ig. 1 , models based on this framework consist of three phases: solid,

nter-dendritic liquid, and extra-dendritic liquid. The two liquid phases

re separated by the dendritic envelope (or grain envelope), which is

 smooth, virtual surface that connects the primary tips to the tips of

ctively growing secondary arms and is shown by the dashed red curve

n the figure. A secondary arm is defined as active when it is longer

han the next active secondary arm closer to the primary tip. Two liq-

id phases are introduced in the framework because, in general, solute
iffusion is governed by length scales of different orders of magnitude:

he secondary arm spacing in the inter-dendritic liquid and the distance

etween the primary dendrite arms in the extra-dendritic liquid. The

ramework makes the following assumptions: at the microscopic level,

he different phases are at thermal and mechanical equilibrium (i.e.,

ave the same temperature and pressure); the inter-dendritic liquid is

ell-mixed (i.e., has a uniform concentration) and is at the equilibrium

oncentration (given by the phase diagram). The extra-dendritic liquid

s, in general, undercooled. Note that the dendritic envelope (shown by

he dashed red curve in Fig. 1 ) shall not be confused with the colum-

ar front (shown by the thick dashed vertical line), as the liquid behind

he columnar front is generally undercooled while the liquid behind the

nvelope is not. To develop a macroscale model using the framework

f Wang and Beckermann [14] , the local equations (i.e., equations that

re valid at the microscopic scale) for each phase are formally aver-

ged over a volume that contains all the phases present in the system

nd is called the Representative Elementary Volume (REV). Wang and

eckermann used their framework to develope a model for equiaxed so-

idification in the presence of melt convection [15–17] and a model for

he columnar to equiaxed transition in the absence of melt convection

18] . Martorano et al. [19] used the framework to develope another

odel for the columnar to equiaxed transition in the absence of melt

onvection. 

Although models that incorporate melt convection and liquid un-

ercooling have been already developed using the framework of Wang

nd Beckermann [14] and have been successfully used to simulate so-

idification in different systems [20–25] , more research in this area is

till needed for at least three reasons. First, most of the models that are

vailable are three-phase models and the existence of the third phase

akes their numerical implementation significantly more complex than

he two-phase models which (as already discussed and due to their rel-

tive simplicity) have been extensively used in the literature to predict

elt convection in the absence of liquid undercooling. This extra com-

lexity increases the computational cost of the models and, more im-

ortantly, has created problems in several previous studies, especially

n predicting sensitive phenomena such as channel segregates. For ex-

mple, in the study of Carozzani et al. [7] , where simulations of a so-

idification experiment were performed, channels (observed in the ex-

eriment) were not predicted and, although the reason for the failure to

redict them was not entirely clear, it was believed to be due to the lack

f computational resources and model uncertainties; as another exam-

le, in a previous study by the authors [26] , where the same experiment

as simulated, the model that accounted for liquid undercooling failed

o predict channels. A two-phase model that is simpler to implement

han the three-phase models but still incorporates both melt convection

nd liquid undercooling can help alleviate these problems (by allowing

ne to more readily predict melt convection and channel segregates in

he presence of liquid undercooling). Second, there are still some open

uestions in this research area. For example, a macroscale model that

ccounts for liquid undercooling is obviously more general than one that

oes not and can, therefore, be expected to recover that model at some

imiting values of its parameters. This recovery has, to the authors’ best

nowledge, never been investigated in the literature. Third, it should be

oted that the interplay between liquid undercooling and melt convec-

ion during solidification and their effect on the final macrosegregation

attern or channel segregates have never been investigated in any de-

ail. For example, it is known from the literature that channel segregates

re sensitive to the mesh spacing [27] or the relation used to calculate

he permeability of the mush [28] ; therefore, it is reasonable to expect

hat they are also sensitive to the liquid undercooling. The extent of this

ensitivity, however, has not been investigated. 

The main objective of this paper is to develop a two-phase model

hat incorporates melt convection and liquid undercooling ahead of the

olumnar front. This model, which is referred to as a truncated-Scheil-

ype model (for reasons that will be discussed in Section 2.1 ), is de-

ived from a three-phase columnar solidification model. The three-phase
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∇  
odel itself is developed using the framework of Wang and Beckermann

14] and is similar to their equiaxed solidification model [15–17] . In

ddition, a robust and easy-to-implement numerical scheme to update

olid fractions during solidification is developed and, for the first time in

he field of macroscale modeling of solidification, complex movements

f the columnar front, due to the presence of strong melt convection,

hannel segregates and liquid undercooling, were tracked. Predictions

f the truncated-Scheil-type and three-phase models, in the absence and

resence of melt convection, and with different values of the dendrite tip

election parameter 𝜎∗ , are compared with the predictions of a Scheil-

ype model that neglects liquid undercooling entirely. The effects of

iquid undercooling and melt convection on each other during solidi-

cation, on the final macrosegregation pattern, and on the channel seg-

egates is investigated. 

This paper is organized as follows: Section 2 introduces the dif-

erent models and outlines their governing equations. Section 3 dis-

usses the numerical solution of the governing equations and a scheme

hat is developed to calculate solid fractions during solidification.

ection 4 introduces the numerical solidification benchmark problem.

inally, Section 5 discusses predictions of the different models and with

he different values of 𝜎∗ . 

. Three different models: the three-phase, truncated-Scheil-type, 

nd Scheil-type 

This study explores three models that differ mainly in the assumption

hat they make with respect to liquid undercooling. Section 2.1 presents

n overview of these models. Section 2.2 presents the derivation of the

overning equations for the models, and the final sub-section summa-

izes the similarities and the differences between them. 

.1. Overview of the three models 

The three-phase model is developed using the multiphase modeling

ramework of Wang and Beckermann [14] and is similar to the model

hat Wang and Beckermann [15–17] developed using that framework.

he latter model is referred to as the WB model hereafter. In addition to

he fundamental assumptions made in the framework of Wang and Beck-

rmann [14] (see paragraph four of Section 1 ), the three-phase model

eveloped here and the WB model both assume that the thermophysi-

al properties of the different phases are equal and constant (except for

he liquid density in the buoyancy term of the momentum equation);

herefore, solidification shrinkage is disregarded. 

Next, the main differences between the three-phase model developed

ere and the WB model are discussed. First, our model is for colum-

ar solidification and, therefore, disregards solid motion, while the WB

odel was for equiaxed solidification, and incorporated that motion.

econd, for reasons that will become clear subsequently, the model de-

eloped here requires tracking of the columnar front, while the WB

odel did not. Third, because the main objective of this study is to de-

elop a two-phase model (see Section 1 ) with only one liquid phase,

he three-phase model developed here assumes that the inter-dendritic

nd extra-dendritic liquids have the same velocity and that there is no

olute diffusion in the solid, while the WB model did not make those

ssumptions. 

The truncated-Scheil-type model is a two-phase model that is de-

ived from the three-phase model by making an additional assumption

o those of the three-phase model: the liquid behind the columnar front

s not undercooled. It is shown that, because of this single assump-

ion, the truncated-Scheil-type model becomes significantly less com-

lex than the three-phase model, while the predictions of the two mod-

ls are nearly identical. The reason that this two-phase model is referred

o as the truncated-Scheil-type model is that, similar to the truncated-

cheil model of Flood and Hunt [13] , it disregards solute diffusion in the

olid and liquid undercooling behind the columnar front but takes into
ccount liquid undercooling ahead of the columnar front. It is empha-

ized that, unlike the truncated-Scheil model of Flood and Hunt [13] , the

runcated-Scheil-type model developed here incorporates melt convec-

ion, and to make that distinction clear, it is referred to as the truncated-

cheil-type model (instead of just truncated-Scheil). Finally, the third

odel, similar to the one used in simulating the numerical solidifica-

ion benchmark problem [11] , disregards liquid undercooling entirely

ut unlike that model, which assumed infinite solute diffusion in the

olid, assumes no solute diffusion in the solid. The third model is here-

fter referred to as the Scheil-type model. 

Before proceeding, it is useful to summarize the main assumptions

ehind the three-phase, truncated-Scheil-type, and Scheil-type models.

hese models all disregard solid motion and solute diffusion in the

olid. The three-phase model assumes that the inter-dendritic and extra-

endritic liquids have the same velocity but makes no simplifying as-

umption with respect to liquid undercooling. The truncated-Scheil-type

odel disregards liquid undercooling behind the columnar front, while

he Scheil-type model disregards it both behind and ahead of the colum-

ar front. The governing equations for these models are introduced next.

.2. Governing equations 

In this sub-section, first the equations that the three models share are

isted. Then, the equations for the solute conservation in the liquid(s) in

he different models are outlined. After that, the thermodynamic and

onstitutive relations of the models are listed. 

.2.1. Overarching equations: conservation of mass, momentum, energy, 

nd solute in solid 

The continuity equation reads [15] 

 ⋅
(
𝑔 𝑙 ̄𝒗 𝑙 

)
= ∇ ⋅ 𝒗 = 0 (1)

here g l , �̄� 𝑙 , and v are the liquid fraction (in the three-phase model,

he liquid fraction is equal to the inter-dendritic liquid fraction plus the

xtra-dendritic liquid fraction), average liquid velocity, and superficial

iquid velocity, respectively. Note that the first equality follows from

he definition of the superficial liquid velocity and, in the three-phase

odel, the assumption that the inter-dendritic and extra-dendritic liq-

idus have the same velocity. The second equality follows from the as-

umption that the solid is motionless and the density of the liquid is

onstant. 

The liquid momentum equation in terms of the average liquid veloc-

ty �̄� 𝑙 reads [15] 

0 
𝜕 

𝜕𝑡 

(
𝑔 𝑙 ̄𝒗 𝑙 

)
+ 𝜌0 ∇ ⋅

(
𝑔 𝑙 ̄𝒗 𝑙 ̄𝒗 𝑙 

)
= − 𝑔 𝑙 ∇ ̄𝑝 + ∇ ⋅

[
𝜇𝑙 ∇ 

(
𝑔 𝑙 ̄𝒗 𝑙 

)]
+ 𝑔 𝑙 ̃𝜌𝑙 𝒈 − 

𝜇𝑙 𝑔 
2 
𝑙 

𝐾 

�̄� 𝑙 

(2) 

here 𝜌0 , �̄� , 𝜇l , �̃�𝑙 , and K are the reference density, average

ressure, liquid dynamic viscosity, liquid density in the buoy-

ncy term, and permeability of the semi-solid mush, respectively.

he liquid density in the buoyancy term is calculated from �̃�𝑙 =
0 [ 1 − 𝛽𝑇 ( 𝑇 − 𝑇 𝑟𝑒𝑓 ) − 𝛽𝐶 ( ̄𝐶 𝑙 − 𝐶 𝑟𝑒𝑓 ) ] , where 𝛽T and 𝛽C are the thermal

nd solutal expansion coefficients, respectively, and T ref and C ref are a

eference temperature and solute concentration, respectively. The per-

eability of the semi-solid mush is calculated from the Kozeny–Carman

elation: 𝐾 = 𝜆2 2 𝑔 𝑙 
3 ∕ [ 180 ( 1 − 𝑔 𝑙 ) 2 ] [11] , where 𝜆2 is the secondary den-

rite arm spacing. 

It is common to re-write Eq. (2) in terms of the superficial liquid ve-

ocity v . The first term on the left-hand side and the second and fourth

erms on the right-hand side can be written in terms of v using 𝒗 = 𝑔 𝑙 ̄𝒗 𝑙 
see Eq. (1) ). To re-write the second term in terms of v , one needs

o first recognize that ∇ ⋅ ( 𝑔 𝑙 ̄𝒗 𝑙 ̄𝒗 𝑙 ) = ∇ ⋅ ( ̄𝒗 𝑙 𝒗 ) = ( ̄𝒗 𝑙 ⋅ ∇ )( 𝒗 ) + ̄𝒗 𝑙 ( ∇ ⋅ 𝒗 ) =
 1∕ 𝑔 𝑙 )( 𝒗 ⋅ ∇ ) 𝒗 , where the right-hand side of the third equality can be

e-written as ( 𝒗 ⋅ ∇ ) 𝒗 = ∇ ⋅ ( 𝒗 𝒗 ) − 𝒗 ( ∇ ⋅ 𝒗 ) = ∇ ⋅ ( 𝒗 𝒗 ) . Note that, in these

elations, the equalities ∇ ⋅ ( ̄𝒗 𝑙 𝒗 ) = ( ̄𝒗 𝑙 ⋅ ∇ )( 𝒗 ) + ̄𝒗 𝑙 ( ∇ ⋅ 𝒗 ) and ( 𝒗 ⋅ ∇ ) 𝒗 =
 ⋅ ( 𝒗 𝒗 ) − 𝒗 ( ∇ ⋅ 𝒗 ) hold for any pair of vectors �̄� and v . Also, the last
𝑙 
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qualities in these relations follow simply from Eq. (1) . Combining these

wo relations, one gets ∇ ⋅ ( 𝑔 𝑙 ̄𝒗 𝑙 ̄𝒗 𝑙 ) = ( 1∕ 𝑔 𝑙 )∇ ⋅ ( 𝒗 𝒗 ) and substituting this

nto Eq. (2) gives the final momentum equation in terms of the superfi-

ial liquid velocity v 

0 
𝜕 𝒗 

𝜕𝑡 
+ 𝜌0 

1 
𝑔 𝑙 
∇ ⋅ ( 𝒗 𝒗 ) = − 𝑔 𝑙 ∇ ̄𝑝 + ∇ ⋅

(
𝜇𝑙 ∇ 𝒗 

)
+ 𝑔 𝑙 ̃𝜌𝑙 𝒈 − 

𝜇𝑙 𝑔 𝑙 

𝐾 

𝒗 (3)

The energy equation reads [15] 

𝜕𝑇 

𝜕𝑡 
+ ∇ ⋅ ( 𝒗 𝑇 ) = 𝛼0 ∇ 

2 𝑇 + 

ℎ 𝑠𝑙 

𝑐 𝑝 

𝜕 𝑔 𝑠 

𝜕𝑡 
(4)

here T , 𝛼0 = 𝑘 0 ∕ ( 𝜌0 𝑐 𝑝 ) , h sl , c p , and 𝑔 𝑠 = 1 − 𝑔 𝑙 are the temperature, ther-

al diffusivity, latent heat, specific heat capacity, and solid fraction,

espectively. 

The equation for the solute conservation in the solid reads [15] 

𝜕 

𝜕𝑡 

(
𝑔 𝑠 �̄� 𝑠 

)
= 𝑘 0 𝐶 

∗ 
𝑙 

𝜕 𝑔 𝑠 

𝜕𝑡 
(5)

here �̄� 𝑠 , k 0 , and 𝐶 ∗ 
𝑙 

are the average solute concentration in the

olid, solute partition coefficient, and equilibrium solute concentration,

espectively. 

.3. Solute conservation in liquid(s) 

Recall from Section 2.1 that the three-phase model has two liquid

hases: the inter-dendritic and extra-dendritic liquids. In this section,

he equations for solute conservation in the two liquids are listed first,

nd then these equations are used to derive the equation for the liquid

olute conservation in the truncated-Scheil-type and Scheil-type models.

.3.1. Three-phase model 

The equation for solute conservation in the inter-dendritic liquid

eads [14–17] 

0 
𝜕 

𝜕𝑡 

(
𝑔 𝑑 �̄� 𝑑 

)
+ 𝜌0 ∇ ⋅

(
𝑔 𝑑 ̄𝒗 𝑙 �̄� 𝑑 

)
= − 𝑘 0 Γ𝑠𝑑 �̄� 𝑑 − Γ𝑒𝑑 �̄� 𝑑 − 𝜌0 

𝑆 𝑒𝑛𝑣 𝐷 0 
𝛿𝑒𝑛𝑣 

(
�̄� 𝑑 − �̄� 𝑒 

)
(6)

here g d , �̄� 𝑑 , Γsd , Γed , S env , 𝛿env , and �̄� 𝑒 are the inter-dendritic liq-

id fraction, average solute concentration in the inter-dendritic liq-

id, average interfacial mass generation source due to phase-change

t the interface between the solid and inter-dendritic liquid and at the

nterface between the inter-dendritic liquid and extra-dendritic liquid,

urface area of the envelope per unit volume of the REV, average dif-

usion length around the envelope, and average solute concentration in

he extra-dendritic liquid, respectively. 

The equation for the solute conservation in the extra-dendritic liquid

eads [14–17] 

0 
𝜕 

𝜕𝑡 

(
𝑔 𝑒 �̄� 𝑒 

)
+ 𝜌0 ∇ ⋅

(
𝑔 𝑒 ̄𝒗 𝑙 �̄� 𝑒 

)
= Γ𝑒𝑑 �̄� 𝑑 + 𝜌0 

𝑆 𝑒𝑛𝑣 𝐷 0 
𝛿𝑒𝑛𝑣 

(
�̄� 𝑑 − �̄� 𝑒 

)
(7)

here 𝑔 𝑒 = 1 − 𝑔 𝑠 − 𝑔 𝑑 is the extra-dendritic liquid fraction. 

Before proceeding, it is useful to discuss the physical meaning of

he different terms on the right-hand sides of Eqs. (6) and (7) . On the

ight-hand side of Eq. (6) , the first term represents the solute transfer

rom the inter-dendritic liquid to the solid at the interface between these

wo phases due to movement of that interface (i.e., due to solidifica-

ion); the second and third terms represent the solute transfer from the

nter-dendritic liquid to the extra-dendritic liquid at the interface be-

ween these phases, due to the movements of that interface and due

o the diffusion at that interface, respectively. Note that the negative

ign of all the terms on the right-hand side stems from the fact that, at

he microscopic level, solute transfer is always from the inter-dendritic

iquid to the neighboring phases (because the solute concentration in

he inter-dendritic liquid is higher than the solute concentration in the

eighboring phases). In Eq. (7) , the terms on the right-hand side are the

ounterparts of the last two terms on the right-hand side of Eq. (6) , on

he extra-dendritic liquid side of the interface between the two liquids. 
Next, on the right-hand side of Eqs. (6) and (7) , the interfacial mass

eneration sources due to phase-change (i.e., Γsd and Γed ) and the con-

ective fluxes on the left-hand side (i.e., ∇ ⋅ ( 𝑔 𝑑 ̄𝒗 𝑙 ) and ∇ ⋅ ( 𝑔 𝑒 ̄𝒗 𝑙 ) ) are

ewritten in terms of the phase fractions and superficial liquid velocity

 = 𝑔 𝑙 ̄𝒗 𝑙 , respectively. To substitute Γsd and Γed , one first needs to write

he mass conservation equations for the solid and extra-dendritic liquids

s follows [14–17] 

0 
𝜕 𝑔 𝑠 

𝜕𝑡 
= Γ𝑠𝑑 (8)

0 
𝜕 𝑔 𝑒 

𝜕𝑡 
+ 𝜌0 ∇ ⋅

(
𝑔 𝑒 ̄𝒗 𝑙 

)
= Γ𝑒𝑑 = − 𝜌0 𝑆 𝑒𝑛𝑣 𝑤 𝑒𝑛𝑣 (9)

here 𝑤 

𝑒𝑛𝑣 
is the average growth velocity of the envelope. 

Before proceeding, it is insightful to understand the physical mean-

ng of Eqs. (8) and ( 9 ). Eq. (8) states that, in the absence of solid motion,

he rate of increase in the solid mass per unit volume of the REV (i.e.,

he left-hand side of the equation) is equal to the mass exchange rate

t the interface between the solid and inter-dendritic liquid due to the

ovements of this interface (i.e., the left-hand side of the equation). 

In Eq. (9) , the first equality states that the rate of increase in the

xtra-dendritic liquid mass per unit volume of the REV (i.e., the term

0 𝜕 g e / 𝜕 t ) plus the rate at which the extra-dendritic liquid leaves the

EV due to the flow of this liquid (i.e., the term 𝜌0 ∇ ⋅ ( 𝑔 𝑒 ̄𝒗 𝑙 ) ), is equal

o the mass exchange rate at the interface between the two liquids due

o the movements of this interface (i.e., Γed ). The second equality in Eq.

9) is obtained by modeling the interfacial mass exchange rate as the

roduct of surface area of the interface (i.e., the envelope) per unit vol-

me of the REV and the mean interfacial flux [14] . The second term on

he left-hand side of the first equality in Eq. (9) shall not be confused

ith a similar term that would have appeared on the right-hand side of

q. (8) , if grain movement had been taken into account (see, for exam-

le, the solid momentum equation in Table II of [15] ). Further examin-

ng Eq. (9) reveals another interesting point: due to the presence of the

ow term in this equation (i.e., the term 𝜌0 ∇ ⋅ ( 𝑔 𝑒 ̄𝒗 𝑙 ) ), the extra-dendritic

iquid fraction can change even when the envelope is not growing (i.e.,

hen 𝑤 

𝑒𝑛𝑣 
= 0 ). 

Substituting Γed from the first equality in Eq. (9) into Eq. (7) and

oting that in Eq. (7) , the second term on the left hand side can be

e-written using ∇ ⋅ ( 𝑔 𝑒 ̄𝒗 𝑙 �̄� 𝑒 ) = ∇ ⋅ [ 𝒗 ( 𝑔 𝑒 ∕ 𝑔 𝑙 ) ̄𝐶 𝑒 ] = ( 𝑔 𝑒 ∕ 𝑔 𝑙 )∇ ⋅ ( 𝒗 ̄𝐶 𝑒 ) + �̄� 𝑒 ∇ ⋅
 𝒗 𝑔 𝑒 ∕ 𝑔 𝑙 ) (where the first equality follows directly from the discussion

elow Eq. (1) and the second equality follows from the mathemat-

cal identity governing the divergence of a product of a scalar and

 vector and the fact that 𝒗 ⋅ ∇( 𝑔 𝑒 ∕ 𝑔 𝑙 ) = ∇ ⋅ ( 𝒗 𝑔 𝑒 ∕ 𝑔 𝑙 ) due to Eq. (1) ),

q. (7) becomes 

𝑔 𝑒 
𝜕 �̄� 𝑒 

𝜕𝑡 
+ 

𝑔 𝑒 

𝑔 𝑙 
∇ ⋅

(
𝒗 ̄𝐶 𝑒 

)
= 

(
�̄� 𝑑 − �̄� 𝑒 

) 𝜕 𝑔 𝑒 
𝜕𝑡 

+ 

(
�̄� 𝑑 − �̄� 𝑒 

)
∇ ⋅

( 

𝒗 
𝑔 𝑒 

𝑔 𝑙 

) 

+ 

𝑆 𝑒𝑛𝑣 𝐷 0 
𝛿𝑒𝑛𝑣 

(
�̄� 𝑑 − �̄� 𝑒 

)
(10) 

Similarly, on the left-hand side of Eq. (6) , Γsd and Γed can be sub-

tituted using Eqs. (8) and ( 9 ), respectively, and the last term can be

ubstituted from Eq. (10) to get 

𝜕 

𝜕𝑡 

(
𝑔 𝑑 �̄� 𝑑 

)
+ ∇ ⋅

(
𝑔 𝑑 ̄𝒗 𝑙 �̄� 𝑑 

)
= 

(
1 − 𝑘 0 

) 𝜕 𝑔 𝑠 
𝜕𝑡 
�̄� 𝑑 + 

[ 
𝜕 𝑔 𝑑 

𝜕𝑡 
+ ∇ ⋅

(
𝑔 𝑑 ̄𝒗 𝑙 

)] 
�̄� 𝑑 

− 

[ 
𝑔 𝑒 
𝜕 �̄� 𝑒 

𝜕𝑡 
+ 

𝑔 𝑒 

𝑔 𝑙 
∇ ⋅

(
𝒗 ̄𝐶 𝑒 

)
− 

(
�̄� 𝑑 − �̄� 𝑒 

) 𝜕 𝑔 𝑒 
𝜕𝑡 

− 

(
�̄� 𝑑 − �̄� 𝑒 

)
∇ ⋅

( 

𝒗 
𝑔 𝑒 

𝑔 𝑙 

) ] 
(11) 

Next, if the time and spatial derivatives on the left-hand-side are

xpanded, then the terms inside the first brackets on the right-hand-

ide can be dropped by their counterparts on the left-hand side and the

esult will be 
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 𝑑 

𝜕 �̄� 𝑑 

𝜕𝑡 
+ 𝑔 𝑑 ̄𝒗 𝑙 ⋅ ∇ ̄𝐶 𝑑 = 

(
1 − 𝑘 0 

) 𝜕 𝑔 𝑠 
𝜕𝑡 
�̄� 𝑑 

− 

[ 
𝑔 𝑒 
𝜕 �̄� 𝑒 

𝜕𝑡 
+ 

𝑔 𝑒 

𝑔 𝑙 
∇ ⋅

(
𝒗 ̄𝐶 𝑒 

)
− 

(
�̄� 𝑑 − �̄� 𝑒 

) 𝜕 𝑔 𝑒 
𝜕𝑡 

− 

(
�̄� 𝑑 − �̄� 𝑒 

)
∇ ⋅

( 

𝒗 
𝑔 𝑒 

𝑔 𝑙 

) ] 
(12) 

Next, Eq. (12) needs to be re-written in the conservative form

nd in terms of the superficial liquid velocity v only. Using identities

 ̄𝐶 𝑑 − �̄� 𝑒 )∇ ⋅ ( 𝒗 𝑔 𝑒 ∕ 𝑔 𝑙 ) = ∇ ⋅ [ 𝒗 ( 𝑔 𝑒 ∕ 𝑔 𝑙 )( ̄𝐶 𝑑 − �̄� 𝑒 ) ] − 𝒗 ( 𝑔 𝑒 ∕ 𝑔 𝑙 ) ⋅ ∇( ̄𝐶 𝑑 − �̄� 𝑒 ) 
nd 𝑔 𝑑 ̄𝒗 𝑙 ⋅ ∇ ̄𝐶 𝑑 = ( 𝑔 𝑙 − 𝑔 𝑒 )( 𝒗 ∕ 𝑔 𝑙 ) ⋅ ∇ ̄𝐶 𝑑 = ∇ ⋅ ( 𝒗 ̄𝐶 𝑑 ) − ( 𝑔 𝑒 ∕ 𝑔 𝑙 )∇ ⋅ ( 𝒗 ̄𝐶 𝑑 ) ,
q. (12) becomes 

𝑔 𝑙 
𝜕 �̄� 𝑑 

𝜕𝑡 
+ ∇ ⋅

(
𝒗 ̄𝐶 𝑑 

)
= 

(
1 − 𝑘 0 

)
�̄� 𝑑 

𝜕 𝑔 𝑠 

𝜕𝑡 

− 

𝜕 

𝜕𝑡 

[
𝑔 𝑒 
(
�̄� 𝑒 − �̄� 𝑑 

)]
− ∇ ⋅

[ 
𝒗 
𝑔 𝑒 

𝑔 𝑙 

(
�̄� 𝑒 − �̄� 𝑑 

)] 
(13) 

hich is the final form of the equation for solute balance in the inter-

endritic liquid. 

.3.2. Truncated-Scheil-type and Scheil-type models 

To derive the equation for the solute conservation in the liquid for

he truncated-Scheil-type and Scheil-type models, the average solute

oncentration in the liquid �̄� 𝑙 is defined as 

 𝑙 �̄� 𝑙 = 𝑔 𝑑 �̄� 𝑑 + 𝑔 𝑒 �̄� 𝑒 (14)

The equation for solute conservation in the liquid is obtained by

dding up Eqs. (6) and ( 7 ), substituting 𝑔 𝑑 �̄� 𝑑 + 𝑔 𝑒 �̄� 𝑒 from Eq. (14) ,

 𝑙 ̄𝒗 𝑙 from the first equality in Eq. (1) , Γsd from Eq. (8) , and �̄� 𝑑 𝜕 𝑔 𝑠 ∕ 𝜕𝑡 =
 

∗ 
𝑙 
𝜕 𝑔 𝑠 ∕ 𝜕𝑡 as 

𝜕 

𝜕𝑡 

(
𝑔 𝑙 �̄� 𝑙 

)
+ ∇ ⋅

(
𝒗 ̄𝐶 𝑙 

)
= − 𝑘 0 𝐶 

∗ 
𝑙 

𝜕 𝑔 𝑠 

𝜕𝑡 
(15)

Expanding the time derivative on the left-hand side and adding and

ubtracting 𝑘 0 �̄� 𝑙 𝜕 𝑔 𝑙 ∕ 𝜕𝑡 to and from the right-hand side gives 

 𝑙 

𝜕 �̄� 𝑙 

𝜕𝑡 
+ ∇ ⋅

(
𝒗 ̄𝐶 𝑙 

)
= 𝑘 0 

(
𝐶 ∗ 
𝑙 
− �̄� 𝑙 

) 𝜕 𝑔 𝑙 
𝜕𝑡 

+ �̄� 𝑙 
(
1 − 𝑘 0 

) 𝜕 𝑔 𝑠 
𝜕𝑡 

(16)

Next, Eq. (16) is analyzed. Note that in deriving this equation, no

dditional assumptions have been made. In other words, this equation

s as general as Eqs. (10) and ( 13 ) of the three-phase model. In fact, in

hat model, one can replace Eq. (10) or ( 13 ) with Eq. (16) , without loss

f generality. The second term on the right-hand side of Eq. (16) rep-

esents solute rejection (assuming k 0 < 1) during solidification. Under-

tanding the first term on the right-hand side is key in simplifying the

hree-phase model and developing the truncated-Scheil-type and Scheil-

ype models. This term consists of 𝜕 g l / 𝜕 t , which represents solidification

ate, and 𝐶 ∗ 
𝑙 
− �̄� 𝑙 , which is linked to the liquid undercooling. If one dis-

egards liquid undercooling entirely (i.e., assumes that 𝐶 ∗ 
𝑙 
− �̄� 𝑙 is zero

verywhere), then, the first term on the right-hand side can be dropped,

nd Eq. (16) will reduce to the equation for the liquid solute balance in

he Scheil-type model. The key point to realize here is that this term will

till be zero even if one assumes that liquid can be undercooled in the

bsence of local solidification (i.e., 𝜕 𝑔 𝑙 ∕ 𝜕𝑡 = 0 ), but it is not undercooled

n the presence of local solidification (i.e., 𝐶 ∗ 
𝑙 
= �̄� 𝑙 when 𝜕 g l / 𝜕 t ≠0). For

ully columnar solidification, this is equivalent to stating that the liq-

id behind the columnar front is assumed not to be undercooled, while

he liquid ahead of the columnar front is undercooled. Dropping this

erm gives the final form of the liquid solute balance equation for the

runcated-Scheil-type and Scheil-type models as 

 𝑙 

𝜕 �̄� 𝑙 

𝜕𝑡 
+ ∇ ⋅

(
𝒗 ̄𝐶 𝑙 

)
= �̄� 𝑙 

(
1 − 𝑘 0 

) 𝜕 𝑔 𝑠 
𝜕𝑡 

(17)

.4. Thermodynamic relations 

Under the assumption of local thermodynamic equilibrium, the tem-

erature at the interface between the solid and (inter-dendritic) liquid

s given by the liquidus line of the phase diagram. In this section, the
hermodynamic relations for the three-phase model are listed first, fol-

owed by a discussion of the slight, but important, modification to the

elations of the three-phase model that is required to obtain the corre-

ponding relations for the truncated-Scheil-type and Scheil-type models.

o write down the thermodynamic relations, one first needs to recog-

ize that these relations take different forms during primary and eutectic

olidification, and this is discussed next. 

Primary columnar solidification takes place for temperatures below

he local liquidus temperature and, obviously, only in the region behind

he columnar front. In the three-phase model, these regions are distin-

uished (from regions ahead of the columnar front) by positive values

f the phase-field 𝜙. The phase-field 𝜙 is itself calculated from an inter-

ace tracking method that will be further explored in Section 2.6 . During

rimary solidification, the inter-dendritic liquid solute concentration is

qual to the equilibrium solute concentration 𝐶 ∗ 
𝑙 
, which is given by the

iquidus line of the phase diagram. 

Eutectic solidification starts when �̄� 𝑑 reaches the eutectic concen-

ration C eut , while g l is still non-zero. During eutectic solidification, the

emperature is equal to the eutectic temperature T eut , and there is no

olute rejection due to solidification. Therefore, the partition coefficient

eeds to be set to unity. These premises can be stated mathematically

s 

rimary solidif ication ∶ 𝑇 ≤ 𝑇 𝑙𝑖𝑞 
(
�̄� 𝑑 

)
and 𝜙 > 0 → �̄� 𝑑 = 𝐶 ∗ 

𝑙 
= 

𝑇 − 𝑇 𝑓 

𝑚 𝑙 

ut ect ic solidif ication ∶ �̄� 𝑑 = 𝐶 𝑒𝑢𝑡 and 𝑔 𝑙 ≥ 0 → 𝑇 = 𝑇 𝑒𝑢𝑡 and 𝑘 0 = 1 
(18) 

here 𝑇 𝑙𝑖𝑞 ( ̄𝐶 𝑑 ) = 𝑇 𝑓 + 𝑚 𝑙 �̄� 𝑑 is the liquidus temperature corresponding

o the local inter-dendritic liquid concentration �̄� 𝑑 . Again, in Eq. (18) ,

> 0 represents regions behind the columnar front. For an equiaxed

olidification model, such as the one developed by Wang and Becker-

ann [15] , the left-hand side of the first arrow needs to be replaced

y a condition representing temperatures below the nucleation temper-

ture. Therefore, such a model will not require interface tracking and

his is one of the important differences between the three-phase colum-

ar solidification model developed here and the three-phase equiaxed

olidification model of Wang and Beckermann [15] . 

The thermodynamic relations for the truncated-Scheil-type and

cheil-type models are similar to Eq. (18) . The only difference, which is

f critical importance, is that for the truncated-Scheil-type model, �̄� 𝑑 in

his equation must be replaced with �̄� 𝑙 ; for the Scheil-type model, in ad-

ition to replacing �̄� 𝑑 with �̄� 𝑙 , the condition 𝜙> 0 needs to be removed.

herefore, this model does not require calculation of 𝜙 (i.e., interface

racking). 

.5. Constitutive relations for the envelope surface area and diffusion 

ength in the three-phase model 

In the three-phase model, the final forms of the equations for the so-

ute balance in the liquids (i.e., Eqs. (10) and ( 13 )) contain the envelope

urface area per unit volume of the REV, S env , and the average diffusion

ength around the envelope 𝛿env . These two quantities need to be calcu-

ated using additional constitutive relations. The envelope surface area

 env is calculated from [19] 

 𝑒𝑛𝑣 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
0 𝜙 < 0 

3 ( 1− 𝑔 𝑒 ) 2∕3 
𝑅 𝑓 

𝜙 ≥ 0 
(19) 

here 𝑅 𝑓 = 𝜆1 ∕2 is the final envelope radius and 𝜆1 is the primary arm

pacing. The first part of the relation simply reflects the fact that in

olumnar solidification, the envelope surface area ahead of the colum-

ar front is, obviously, zero. 
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The diffusion length 𝛿env is calculated from the relation proposed by

artorano et al. [19] , which reads 

𝛿𝑒𝑛𝑣 

𝑅 𝑒 

= 

3 𝑅 𝑒 𝑒 
𝑃𝑒 

𝑅 

3 
𝑓 
− 𝑅 

3 
𝑒 
∫

𝑅 𝑓 

𝑅 𝑒 

⎛ ⎜ ⎜ ⎝ ∫
𝑟 

𝑅 𝑒 

𝑒 
− 𝑃𝑒 𝑟 

′
𝑅 𝑒 

𝑟 ′2 
𝑑𝑟 ′

⎞ ⎟ ⎟ ⎠ 𝑟 2 𝑑𝑟 (20)

here 𝑃 𝑒 = 𝑤 

𝑒𝑛𝑣 
𝑅 𝑒 ∕ 𝐷 𝑙 is the growth Péclet number and 𝑅 𝑒 =

 𝑓 ( 1 − 𝑔 𝑒 ) 1∕3 is the instantaneous envelope radius. 

Note that Eqs. (19) and (20) were derived for equiaxed spherical

nvelopes. Because the envelope of a columnar dendrite is not spheri-

al, one might wonder why those equations are used in our three-phase

odel, which is, again, for columnar solidification. The reason is that,

s shown in Section 5 , for columnar solidification, liquid undercooling

ehind the columnar front can be disregarded. Therefore, Eqs. (19) and

20) are not an important part of the model, and using them, instead of

ore realistic relations that are available in the literature [29] , should

ot distract. In any case, the difference can be expected to be small. 

.6. Columnar front tracking for the three-phase and truncated-Scheil-type 

odels 

The three-phase and truncated-Scheil-type models, as opposed to

he Scheil-type model (see the discussion in the last paragraph of 

ection 2.4 ), contain the phase field variable 𝜙 (see Eqs. (18) and (19) ),

hich needs to be calculated using an interface tracking method. Before

iscussing the method that was used in this study to track the colum-

ar front, it is useful to review the previous studies where the columnar

ront was tracked. In studies of Martorano et al. [19] , Wang and Becker-

ann [18] , and Browne and co-authors [30–38] the columnar front was

racked in the absence of melt convection. In other studies by Browne

nd co-authors [39,40] , the columnar front was tracked in the presence

f melt convection but the solutal buoyancy forces were disregarded,

nd melt convection was due to the thermal buoyancy forces only. Sere-

ynski and Banaszek [41] and Banaszek and Seredynski [42] tracked the

olumnar front in the presence of melt convection without disregarding

he solutal buoyancy forces, but their studies provide no discussion on

he channel segregates and, in fact, it is not even clear if channels were

redicted or not. In the present study, the columnar front is tracked

n the presence of strong melt convection, driven by both thermal and

olutal buoyancy forces and channel segregates. 

In the present study, the method used to calculate 𝜙 (i.e., to track

he columnar front) is the phase-field sharp interface tracking method

f Sun and Beckermann [43] . The columnar front is represented by the

socontour 𝜙 = 0 ; regions behind and ahead of the columnar front are

epresented by 𝜙> 0 and 𝜙< 0, respectively. Initially (i.e., at 𝑡 = 0 ), 𝜙 is

qual to minus unity everywhere in the simulation domain except at the

oundary from which the columnar grains grow, where 𝜙 is set to zero;

n other words, the columnar front is assumed to be initially located

t the domain boundary from which solidification starts. For t > 0, 𝜙 is

alculated from [43] 

𝜕𝜙

𝜕𝑡 
+ 𝒘 𝑒𝑛𝑣 ⋅ ∇ 𝜙 = 𝑏 

[ 

∇ 

2 𝜙 + 

𝜙
(
1 − 𝜙2 )
𝑊 

2 − |∇ 𝜙|∇ ⋅
( 

∇ 𝜙|∇ 𝜙|
) 

] 

(21)

here 𝒘 

𝑒𝑛𝑣 
is the envelope average growth velocity vector and b and

 are numerical parameters that control the stability of the method

nd the finite thickness of the columnar front region on the numerical

esh, respectively, and are calculated using the relations in Sun and

eckermann [43] . To calculate w env , it is first assumed that the envelope

rows in the direction of the local thermal gradient (i.e., perpendicular

o the local isotherms): 

 𝑒𝑛𝑣 = 𝑤 𝑒𝑛𝑣 

∇ 𝑇 |∇ 𝑇 | (22)

here w env is the magnitude of the average growth velocity vector

hich, in the three-phase model, is calculated from [19] 

 𝑒𝑛𝑣 = 

4 𝜎∗ 𝐷 0 𝑚 𝑙 

(
𝑘 0 − 1 

)
𝐶 ∗ 
𝑙 [
𝐼 𝑣 −1 

(
Ω𝑒 

)]2 
(23)
Γ

here 𝜎∗ , Γ, 𝐼 𝑣 −1 ( ) , and Ωe are the tip selection parameter, Gibbs–

homson coefficient, inverse Ivantsov function and average undercool-

ng in the extra-dendritic liquid, which is defined as [19] 

𝑒 = 

𝐶 ∗ 
𝑙 
− �̄� 𝑒 

𝐶 ∗ 
𝑙 

(
1 − 𝑘 0 

) (24)

In Eq. (23) , the inverse Ivantsov function is calculated from [19] 

 𝑣 −1 
(
Ω𝑒 

)
= 0 . 4567 

( 

Ω𝑒 

1 − Ω𝑒 

) 1 . 195 
(25)

In the truncated-Scheil-type model, w env is calculated from

qs. (23) to (25) , however, Ωe in these equations needs to be replaced

ith the average undercooling in the liquid Ωl , which is defined as 

𝑙 = 

𝐶 ∗ 
𝑙 
− �̄� 𝑙 

𝐶 ∗ 
𝑙 

(
1 − 𝑘 0 

) (26)

As already discussed in Section 2.1 , the truncated-Scheil-type-model

oes not account for liquid undercooling behind the columnar front;

herefore, Ωl predicted by this model (from Eq. (26) ) is expected to be

ero for 𝜙> 0. It is now interesting to discuss how this expected value

or Ωl is obtained from the governing equations. According to the ther-

odynamic relation (see Eq. (18) and the discussion below), for 𝜙> 0,

ne has 𝐶 ∗ 
𝑙 
= �̄� 𝑙 , which, from Eq. (26) , results in Ω𝑙 = 0 , as expected.

n the three-phase model, the liquid undercooling behind the columnar

ront (predicted from Eq. (24) ) can be, in general, non-zero because, in

hat model, for 𝜙> 0, one has 𝐶 ∗ 
𝑙 
= �̄� 𝑑 as opposed to 𝐶 ∗ 

𝑙 
= �̄� 𝑒 ; therefore,

q. (24) can predict non-zero values for Ωl even when 𝜙> 0. 

For the Scheil-type model, an “undercooling ” can be calculated from

q. (26) , but the values of Ωl will be either zero (inside the mush) or

egative (in the superheated liquid). The reason is, as discussed below

q. (18) , in the Scheil-type model, during solidification (i.e., when 𝑇 ≤
 𝑙𝑖𝑞 ( ̄𝐶 𝑙 ) ), one has 𝐶 ∗ 

𝑙 
= �̄� 𝑙 and therefore (from Eq. (26) ) Ω𝑙 = 0 ; in the

bsence of solidification (i.e., when 𝑇 > 𝑇 𝑙𝑖𝑞 ( ̄𝐶 𝑙 ) = 𝑇 𝑓 + 𝑚 𝑙 �̄� 𝑙 ) one has

 

∗ 
𝑙 
< �̄� 𝑙 (note that m l < 0) and therefore Ωl < 0. 

.7. Convergence of the three-phase and truncated-Scheil-type models to 

he Scheil-type model 

Recall from the discussion in Section 2 that at some limiting values of

he model parameters, the three-phase and truncated-Scheil-type mod-

ls, which account for liquid undercooling, are expected to converge to

he Scheil-type model, which does not account for liquid undercooling.

ow that the equations for these models have been listed, this conver-

ence can be discussed in more detail by examining Eq. (23) and the

ole of 𝜎∗ in that equation and, therefore, in the truncated-Scheil-type

nd three-phase models. In Eq. (23) , if one increases 𝜎∗ to an effectively

nfinite value, Ωe needs to become infinitely small, but still non-zero,

o that both sides of the equation remain finite (note that, regardless of

he value of 𝜎∗ , w env needs to have a finite value that is less than the

iquidus velocity). An infinitely small value for the liquid undercool-

ng means that the Scheil-type model is recovered. In other words, it is

easonable to conjecture that by increasing 𝜎∗ in the truncated-Scheil-

ype and three phase models, these models converge to the Scheil-type

odel. The accuracy of this statement will be examined in the Results

ection. 

It is also interesting to discuss how the above discussion on the role

f 𝜎∗ is connected to the formal definition of 𝜎∗ in theories of dendritic

rowth [44] . In those theories, 𝜎∗ is defined as a constant that is in-

ersely proportional to 𝑉 𝑡 𝑅 

2 
𝑡 
, where 𝑉 𝑡 ( = 𝑤 𝑒𝑛𝑣 ) and 𝑅 

𝑡 
are the tip velocity

nd radius, respectively. Therefore, increasing 𝜎∗ simply means that the

roduct 𝑉 𝑡 𝑅 

2 
𝑡 

needs to decrease. Now, consider quasi-steady growth of

 columnar front during directional solidification, where the velocity of

he columnar front is equal to the velocity of the isotherm that coincides

ith the front. Because in directional solidification the value of 𝜎∗ has

o significant influence on the temperature distribution, increasing 𝜎∗ 

ill not change the isotherm velocities nor V t ; therefore, to have 𝑉 𝑡 𝑅 

2 

𝑡 
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ecrease, 𝑅 

𝑡 
will have to decrease. A decrease in 𝑅 

𝑡 
while V t is con-

tant indicates that the tip Peclet number 𝑃 𝑒 𝑡 = 𝑉 𝑡 𝑅 

𝑡 
∕ 2 𝐷 0 will decrease,

nd that, from the Ivantsov relation, indicates that the liquid undercool-

ng needs to decrease. Therefore, increasing 𝜎∗ to an effectively infinite

alue will decrease the liquid undercooling to an infinitely small value,

nd that is consistent with the above discussion on the role of 𝜎∗ . 

.8. Summary of the equations of the models 

Before proceeding it is useful to summarize the equations for each

f the models. The equations for conservation of mass, momentum, en-

rgy, and solute in the solid in all of these models are Eqs. (1) , (3) , (4) ,

nd (5) , respectively. The three phase model has three additional con-

ervation equations: (9) , (10) , and (13) for conservation of mass and so-

ute in the extra-dendritic and inter-dendritic liquids, respectively. The

runcated-Scheil-type and Scheil-type models have only one additional

onservation equation: (17) for the conservation of solute in liquid. The

est of the equations of the three-phase model are Eqs. (18) –(25) . The re-

aining equations of the truncated-Scheil-type model are the modified

ersion of Eq. (18) and Eqs. (21) –(23) and (25) and (26) . The remaining

quation for the Scheil-type model is the modified version of Eq. (18) . 

. Numerical solution of the governing equations 

In this section, the numerical solution of the strongly coupled and

ighly nonlinear model equations is discussed. In the first sub-section, a

umerical scheme that was developed to update the solid fraction during

olidification is outlined. In the sub-section after that, details about the

umerical solution of the equations are discussed. 

.1. Solid fraction updating scheme 

Note that the models introduced in the previous section do not have

n explicit relation for the solid fraction g s . Numerical implementations

f these models, however, require a relation that can be used to calculate

 s . In other words, a scheme to update the solid fraction is required. Such

 scheme is developed in this section. 

To develop a scheme to update the solid fraction, one first needs to

cknowledge that, in Eq. (18) , the equalities on the right-hand side of

he arrows will be satisfied only if the “correct ” solid fraction is used

n calculating the temperature and (inter-dendritic) liquid solute con-

entration. An imbalance between the two sides of these equalities in-

icates that the solid fraction is inaccurate and needs to be corrected by

n amount that can be assumed to be proportional to that imbalance.

or the three-phase model, the relation to correct the solid fraction can

e written as 

Primary solidif ication ∶ 𝑔 𝑛 +1 
𝑠 

= 𝑔 𝑛 
𝑠 
+ 

𝜕 𝑔 𝑠 

𝜕𝑇 
𝑚 𝑙 

(
𝐶 ∗ 
𝑙 
− �̄� 𝑑 

)
Eut ect ic solidif ication ∶ 𝑔 𝑛 +1 

𝑠 
= 𝑔 𝑛 

𝑠 
+ 

𝜕 𝑔 𝑠 

𝜕𝑇 

(
𝑇 𝑒𝑢𝑡 − 𝑇 

)
(27) 

here the superscripts 𝑛 + 1 and n refer to the current and previous it-

ration levels, respectively. Note that, at each time step, updating the

olid fraction using Eq. (27) should be continued until 𝑔 𝑛 +1 
𝑠 

= 𝑔 𝑛 
𝑠 

(within

he numerical precision); this will guarantee that at the end of the it-

rations, or in other words after convergence, 𝐶 ∗ 
𝑙 
= �̄� 𝑑 during primary

olidification and 𝑇 𝑒𝑢𝑡 = 𝑇 during eutectic solidification, which will, in

urn, indicate that the equalities on the right-hand side of Eq. (18) are

atisfied. For the truncated-Scheil-type and Scheil-type models, �̄� 𝑑 in

he first equality of Eq. (27) needs to be replaced with �̄� 𝑙 . To complete

he solid fraction updating scheme, the relations to calculate 𝜕 g s / 𝜕 T dur-

ng primary and eutectic solidification need to be derived. Because the

nal relations for 𝜕 g s / 𝜕 T are the same in the three models, the rest of

he derivation is shown only for the Scheil-type model. 
To obtain a relation to calculate 𝜕 g s / 𝜕 T during the primary solidifi-

ation, Eq. (17) is first discretized explicitly as 

1 − 𝑔 𝑜𝑙𝑑 
𝑠 

) �̄� 𝑙 − �̄� 𝑜𝑙𝑑 
𝑙 

Δ𝑡 
+ ∇ ⋅

(
�̄� 
𝑜𝑙𝑑 
𝑚 
�̄� 𝑜𝑙𝑑 
𝑙 

)
= 

(
1 − 𝑘 0 

)
�̄� 𝑙 

𝑔 𝑛 
𝑠 
− 𝑔 𝑜𝑙𝑑 

𝑠 

Δ𝑡 
(28) 

The solute concentration in liquid can be substituted from the ther-

odynamic relation for the Scheil-type model (see Eq. (18) and the dis-

ussion below) to give 

(
1 − 𝑔 𝑜𝑙𝑑 

𝑠 

) (𝑇 − 𝑇 𝑓 
)
∕ 𝑚 𝑙 − �̄� 𝑜𝑙𝑑 

𝑙 

Δ𝑡 
+ ∇ ⋅

(
𝒗 
𝑜𝑙𝑑 �̄� 𝑜𝑙𝑑 

𝑙 

)
= 

(
1 − 𝑘 0 

)(
𝑇 − 𝑇 𝑓 

)
𝑚 𝑙 

𝑔 𝑛 
𝑠 
− 𝑔 𝑜𝑙𝑑 

𝑠 

Δ𝑡 
(29) 

Both sides of this equation are differentiated with respect to T to give

1 − 𝑔 𝑜𝑙𝑑 
𝑠 

)
= 

(
1 − 𝑘 0 

)(
𝑔 𝑛 
𝑠 
− 𝑔 𝑜𝑙𝑑 

𝑠 

)
+ 

(
1 − 𝑘 0 

)(
𝑇 − 𝑇 𝑓 

) 𝜕 𝑔 𝑠 
𝜕𝑇 

(30) 

This equation is rearranged to give 

𝜕 𝑔 𝑠 

𝜕𝑇 
= 

1 − 𝑔 𝑛 
𝑠 
+ 𝑘 0 

(
𝑔 𝑛 
𝑠 
− 𝑔 𝑜𝑙𝑑 

𝑠 

)(
1 − 𝑘 0 

)(
𝑇 − 𝑇 𝑓 

) (31) 

To obtain a relation to calculate 𝜕 g s / 𝜕 T during the eutectic solidifi-

ation, Eq. (4) is first discretized explicitly as 

𝑇 − 𝑇 𝑜𝑙𝑑 

Δ𝑡 
+ ∇ ⋅ ( 𝒗 𝑜𝑙𝑑 𝑇 𝑜𝑙𝑑 ) = 𝛼∇ 

2 𝑇 𝑜𝑙𝑑 + 

ℎ 𝑠𝑙 

𝑐 𝑙 

𝑔 𝑠 − 𝑔 𝑜𝑙𝑑 
𝑠 

Δ𝑡 
(32)

Differentiating both sides of this equation with respect to g s gives 

𝜕 𝑔 𝑠 

𝜕𝑇 
= 

𝑐 𝑙 

ℎ 𝑠𝑙 
(33) 

Combining Eqs. (31) and (33) one gets: 

rimary solidif ication ∶ 
𝜕 𝑔 𝑠 

𝜕𝑇 
= 

1 − 𝑔 𝑛 
𝑠 
+ 𝑘 0 

(
𝑔 𝑛 
𝑠 
− 𝑔 𝑜𝑙𝑑 

𝑠 

)(
1 − 𝑘 0 

)(
𝑇 − 𝑇 𝑓 

)
ut ect ic solidif ication ∶ 

𝜕 𝑔 𝑠 

𝜕𝑇 
= 

𝑐 𝑙 

ℎ 𝑠𝑙 
(34) 

The above solid fraction updating scheme was found to be robust

nd efficient. It should be mentioned that a similar method was devel-

ped by Guo and Beckermann [27] , but one of the advantages of the

ethod developed here is that it does not require calculating intermedi-

te values for the solute concentrations; therefore, its implementation is

elatively straightforward. Another advantage of this method concerns

arallel computing in the code we have used, and that issue will be

iscussed further next. 

.2. In-house OpenFOAM codes 

To solve the governing equations numerically, two in-house paral-

el computing codes, one for the three-phase model and one for the

runcated-Scheil-type and Scheil-type models, were developed on the

penFOAM platform [45,46] . OpenFOAM is a widely used open-source

FD code, but its built-in capabilities in simulating alloy solidification

emain very limited. Here, only the major aspects of the numerical im-

lementation of the models in OpenFOAM are discussed; for more de-

ails, the reader is urged to consult the corresponding author. It is em-

hasized that one of the advantages of OpenFOAM is that it allows one

o create customized applications that can be run on multiple cores, after

ecomposing the simulation domain, without a need to make any mod-

fications in the coding of the application. One can benefit from that

dvantage only if the implemented numerical methods do not require

arallel-specific programming, and this is one of the main advantages of

he present solid fraction updating scheme. In fact, we first implemented

he scheme of Guo and Beckermann [27] , and noticed that performing

arallel computations with the application that was using their method

s not possible by just simply decomposing the simulation domain. 
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Fig. 2. Schematic of the solidification numerical benchmark problem. 

Table 1 

Properties of the lead-18 wt. pct. tin alloy. 

Property Unit Value Reference 

Specific heat J kg − 1 K − 1 176 [11] 

Thermal conductivity W m 

− 1 K − 1 17.9 [11] 

Reference density Kg m 

− 3 9250 [11] 

Latent heat of fusion J kg − 1 3.76 ×10 4 [11] 

Liquid dynamic viscosity Pa s 1.10 ×10 − 3 [11] 

Liquid thermal expansion coefficient K − 1 1.16 ×10 − 4 [11] 

Liquid solutal expansion coefficient (wt. pct.) − 1 4.90 ×10 − 3 [11] 

Melting point at C = 0 K 600.65 [11] 

Eutectic composition wt. pct. 61.911 [11] 

Eutectic temperature K 456.15 [11] 

Equilibrium partition coefficient – 0.310 [11] 

Liquidus slope K (wt. pct.) − 1 − 2.334 [11] 

Liquidus temperature K 558.638 [11] 

Secondary arm spacing m 1.85 ×10 − 4 [11] 

Liquid mass diffusivity m 

2 s − 1 7 ×10 − 9 [48,49] 

Gibbs–Thomson coefficient Km 7.9 ×10 − 8 [48,49] 

Primary arm spacing m 2 𝜆2 [50,51] 
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The equations outlined in Section 2 and the solid fraction updating

cheme developed in Section 3.1 were implemented in the codes. The

emporal and advection terms were discretized using the standard Eu-

er and upwind methods, respectively. The discretized equations were

olved iteratively at each time step until the residual for the discretized

artial differential equations and the error for the solid fraction all be-

ame less than a convergence criterion determined by the user. Pressure

oupling was handled using OpenFOAM’s PIMPLE algorithm. 

Another critical numerical point concerns tracking of the columnar

ront. Recall that, in theory, the columnar front is an imaginary surface

ith no thickness; therefore, in the numerical simulations, the columnar

ront region (i.e., the region with −1 < 𝜙 < 1 ) should be kept as thin as

ossible (two to three mesh cells on the numerical grid). This can be

chieved only if the value of 𝜙 at a cell continues to increase even after

he columnar front passes that cell (i.e., when 𝜙 becomes zero locally).

n other words, 𝜕 𝜙/ 𝜕 t needs to be positive not only for −1 < 𝜙 < 0 , but

lso for 0 < 𝜙< 1. By examining Eq. (21) , it is easy to acknowledge that

ositive values of 𝜕 𝜙/ 𝜕 t for 0 < 𝜙< 1 will occur only if w env in that equa-

ion, and therefore w env in Eqs. (22) and (23) , are positive for 0 < 𝜙< 1.

owever, as already discussed in Section 2 , the truncated-Scheil-type

odel disregards liquid undercooling behind the columnar front; there-

ore, in that model, for 𝜙> 0, w env will be strictly zero. As a result of

hat, using w env calculated directly from Eq. (23) to calculate w env from

q. (22) , and then using that w env in Eq. (21) to calculate 𝜙 will result

n a continuous increase in the thickness of the columnar front region.

his increase is not physical and should be avoided. 

In order to avoid the problem with the increase in the thickness of the

olumnar front and keep the columnar front region relatively sharp, the

DE-based multidimensional extrapolation method of Aslam [47] was

sed. By implementing this method, at the end of each time step during

he simulations, the following equation was solved repeatedly 

𝜕 ̄𝒘 𝑒𝑛𝑣 

𝜕𝜏
+ 𝐻 ( 𝜙) ̂𝒏 ⋅ ∇ ̄𝒘 𝑒𝑛𝑣 = 0 (35)

ntil 𝜕 ̄𝒘 𝑒𝑛𝑣 ∕ 𝜕𝜏 became nearly zero. In this equation, 𝜏 is a pseudo-time,

̂
 = ∇ 𝜙∕ |∇ 𝜙| is the unit vector normal to the columnar front, and H ( 𝜙)

s the sharp Heaviside function that is calculated from 

 ( 𝜙) = 

{ 

1 𝜙 > 0 
0 𝜙 ≤ 0 (36)

Note that, the zero value for the Heaviside function ahead of the

olumnar front ensures that Eq. (35) will not modify the values of �̄� 𝑒𝑛𝑣 

n those regions. 

Again, the discussion provided in Section 3.2 covers only the ma-

or aspects of the numerical implementation of the models in Open-

OAM and for more details (on, for example, how to avoid parallel-

pecific problems when implementing similar solidification models in

penFOAM), the reader is urged to consult the corresponding author. 

. Problem statement 

.1. Numerical solidification benchmark problem 

The problem studied in this paper is the solidification numerical

enchmark problem introduced in Bellet et al. [11] . A schematic of the

roblem is shown in Fig. 2 . The problem consists of solidification of

 lead-18 wt. pct. tin alloy in a rectangular cavity. The cavity is insu-

ated from the top and bottom. Initially, the melt is stationary, and its

emperature is uniform and equal to the liquidus temperature at the ini-

ial concentration 𝐶 𝑟𝑒𝑓 = 18 wt . pct . Solidification starts by cooling the

avity from the sides through an external cooling fluid with ambient

emperature T ∞ and an overall heat transfer coefficient h T . The width

nd height of the cavity are 0.1 and 0.06 cm, respectively. Due to the

ymmetry along the vertical mid-plane, only half of the cavity needs to

e simulated. 
.2. Properties and simulation parameters 

The thermophysical and phase diagram properties were taken from

ellet et al. [11] . In addition, the liquid mass diffusivity D l and

he Gibbs–Thomson coefficient Γ, which are required in simulating

he three-phase and truncated Scheil models, are equal to 𝐷 𝑙 = 7 ×
0 −9 m 

2 s −1 and Γ = 7 . 9 × 10 −8 mK [48,49] . Finally, the primary arm spac-

ng was calculated using 𝜆1 = 2 𝜆2 [50,51] . These properties are all sum-

arized in Table 1 . From the table, one can see that the thermal and

olutal expansion coefficients are both positive. This means that, inside

he mush, where the temperatures are lower than the nominal temper-

ture T ref and solute concentrations are higher than the nominal solute

oncentration C ref , the thermal buoyancy forces will be downward while

he solutal buoyancy forces will be upward. Since the value of the so-

utal expansion coefficient is about forty times larger than the value of

he thermal expansion coefficient, the solutal buoyancy forces can be

xpected to dominate the thermal buoyancy forces. 

To verify the numerical results, simulations of the benchmark so-

idification problem were first performed with a lever-type solidifica-

ion model. The equations of that model are similar to the equations of

he Scheil-type model, and the only difference is that, in the lever-type
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Fig. 3. Comparison between the predictions of the Scheil-type, 

truncated-Scheil-type, and three-phase models in the absence of 

melt convection showing profiles of (a) solid fraction and (b) 

liquid/extra-dendritic liquid undercooling at t = 60 s. 
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odel, the equations for the solute balance in the liquid and solid read

𝑔 𝑙 + 𝑘 0 
(
1 − 𝑔 𝑙 

)] 𝜕 �̄� 𝑙 
𝜕𝑡 

+ ∇ ⋅
(
𝒗 ̄𝐶 𝑙 

)
= 

(
1 − 𝑘 0 

)
�̄� 𝑙 
𝜕 𝑔 𝑠 

𝜕𝑡 
(37)

nd 

̄
 𝑠 = 𝑘 0 �̄� 𝑙 (38) 

espectively. All simulations were performed using a time step Δ𝑡 =
 . 005 seconds and mesh spacing Δ𝑥 = Δ𝑦 = 0 . 25 millimeters. Simula-

ions were performed on The University of Iowa NEON computer clus-

er. Using 48 cores, the CPU times for simulating the Scheil-type and

runcated-Scheil-type models in the presence of melt convection were

bout 30 h, while for the three-phase model that time was about 55 h.

his indicates that simulating the truncated-Scheil-type model is about

wo times faster than the three-phase model. Results for the lever-type

odel were compared with the results in Bellet et al. [11] and excellent

greement was observed for the different quantities. 

. Results and discussion 

.1. No melt convection 

In Fig. 3 , the comparisons between the predictions of the Scheil-

ype (the black curves), truncated-Scheil-type (the red curves) and

hree-phase (the blue curves) models in the absence of melt convec-

ion are shown. The curves in the figure show profiles of different

uantities along a horizontal line passing through the cavity. Note

hat disregarding melt convection makes the problem essentially one-

imensional. Fig. 3 (a) shows the comparison between the solid fraction

rofiles at t = 60 s; Fig. 3 (b) shows the comparison between the liquid

ndercoolings at that time. The vertical dashed lines show the posi-

ion of the columnar front predicted by the different models. For the

runcated-Scheil-type and three-phase models, as already discussed (see

ection 2.6 ), the columnar front corresponds to the isocontour 𝜙 = 0 ;
or the Scheil-type model, the columnar front shown in the figure corre-

ponds to the isocontour 𝑔 𝑠 = 0 . 01 . The choice of 0.01 instead of another

mall value, for example 0.001, is arbitrary but should not distract be-

ause this choice is only for the sake of illustration and has no influence

n either the results or the following discussion. First, predictions of

he truncated-Scheil-type and Scheil-type models are compared. From

ig. 3 (a), it can be seen that the solid fractions predicted by the

runcated-Scheil-type model for x > 2.8 cm (i.e., behind the columnar

ront of the truncated-Scheil-type model) are nearly identical to the solid

ractions predicted by the Scheil-type model. This is because, as shown

n Fig. 3 (b), for x > 2.8 cm, the liquid undercoolings predicted by these

wo model models are, as expected (see the discussion below Eq. (26) ),

qual to zero. 

Next, the predictions of the three-phase model shown in Fig. 3 (a)

nd (b) (the blue curves) are analyzed. From Fig. 3 (b), one can see that,
ehind the columnar front (i.e., for x > 2.8), the liquid undercoolings

redicted by the three-phase model are nearly zero. This is because be-

ind the columnar front, S env has relatively high values (see Eq. (19) and

he discussion below and note that 𝜆1 has a low value in columnar

rowth). According to Eq. (10) , a high value for S env requires �̄� 𝑒 ≈ �̄� 𝑑 ,

o that the last term in the equation remains finite. That, in turn, and

ccording to Eq. (24) and the fact that �̄� 𝑑 = 𝐶 ∗ 
𝑙 
, results in Ωe ≈0. Now,

f one uses different constitutive relations for S env and/or 𝛿env , the pre-

icted values of the different quantities can be expected to be slightly

ifferent, but S env will still have a relatively high value behind the front,

nd therefore Ωe behind the columnar front will still be nearly zero. 

Next, the predictions of the three-phase and truncated-Scheil type

odels in Fig. 3 (a) and (b) are compared. Because the liquid under-

oolings behind the front predicted by the three-phase model are nearly

ero (see the discussion in the above paragraph), the predictions of that

odel and the truncated-Scheil-type model (i.e., the predicted colum-

ar front position, solid fractions, and liquid undercoolings) are nearly

dentical. This is an important observation because it indicates that, for

olumnar solidification and, at least in the absence of melt convection,

ne can safely disregard liquid undercooling behind the columnar front

nd use the truncated-Scheil-type two phase model, instead of the more

omplex three-phase model. 

Next, the accuracy of the conjecture that was proposed in Section 2.7 ,

hich stated that by increasing 𝜎∗ in the truncated-Scheil-type and three

hase models, these models should converge to the Scheil-type model,

s examined. In Fig. 4 , predictions of the Scheil-type model (the black

urve) are compared with the predictions of the truncated-Scheil-type

odel (the colored curves) with four different values of the tip selection

arameter: 𝜎∗ = 0.0002, 0.02, 2.00, and 200. Fig. 4 (a) and (b) shows the

omparisons between the solid fraction and liquid undercooling profiles,

espectively. Results are at t = 60 s. It is emphasized that from these four
∗ values, only 𝜎∗ = 0.02 is realistic, and simulations with the three other

alues are performed only to examine the validity of the conjecture that

as proposed in Section 2.7 . The vertical lines in the figures show the

osition of the columnar front. From the plots, it is evident that, in the

runcated-Scheil-type model, as the value of 𝜎∗ is increased, the length

f the undercooled liquid region and the values of liquid undercooling in

his region decrease. Finally, with 𝜎∗ = 200 , the front positions predicted

y the two models nearly collapse. Furthermore, although not shown

ere for the purpose of concision, the same behavior was observed by

ncreasing 𝜎∗ in the three-phase model. These numerical observations

onfirm our conjecture in Section 2.7 : by increasing 𝜎∗ in the truncated-

cheil-type and three phase models, these models converge to the Scheil-

ype model. 

One more point regarding Figs. 3 and 4 must be discussed before pro-

eeding. From these figures, it can be seen that when liquid undercool-

ng is taken into account (i.e., in the truncated-Scheil-type and three-

hase models with 𝜎∗ < = 0.02), at the position of the columnar front,

here is a steep increase in the solid fraction profiles, and the value of
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Fig. 4. (a) Solid fraction and (b) liquid undercooling profiles 

at t = 60 s, showing the convergence of the truncated-Scheil-type 

model to the Scheil-type model as the liquid undercooling van- 

ishes with increase in the tip selection parameter 𝜎∗ . Vertical lines 

show the position of the columnar front. 

Fig. 5. Snapshots at t = 10 s of the different quantities predicted by the Scheil-type, three-phase, and truncated-Scheil-type models. In the second and third columns, 

the vectors represent the superficial liquid velocity and the white curve represents the columnar front, which corresponds to isoline g s = 0.01 or 𝜙= 0. 
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he solid fraction immediately behind the columnar front is relatively

igh (greater than 0.15). This steep increase, which was also observed

n the phase-field simulations of Badillo and Beckermann [52] , should

ot be inferred as a discontinuity, and resolving it numerically, espe-

ially in the presence of melt convection, requires a relatively fine mesh.

hen liquid undercooling is disregarded (i.e., the Scheil-type model or

runcated-Scheil-type models with 𝜎∗ = 200 ), however, there is no steep

ncrease in the solid fraction profiles, and the solid fraction immediately

ehind the columnar front is, as expected, very low. In all the models

nd for all values of 𝜎∗ , the increase in solid fraction behind the colum-

ar front is gradual. In the next subsection, it will be shown that, when

elt convection is taken into account, the magnitude of the solid frac-

ion immediately behind the columnar front has a major impact on the
ow directions around the front. a  
.2. With melt convection 

Predictions of the Scheil-type, truncated-Scheil-type, and three-

hase models in the presence of melt convection are shown in Figs. 5–7 .

ig. 5 shows the results at an early solidification time (i.e., t = 10 s) and

igs. 6 and 7 show the results at two intermediate solidification times

i.e., t = 60 and 120 s, respectively). The total solidification time was

bout 550 s. The predictions of the three-phase and truncated-Scheil-

ype models are shown for two different values of 𝜎∗ : 𝜎∗ = 0 . 02 and
∗ = 200 . It is emphasized again that 𝜎∗ = 200 is unrealistic and sim-

lations with this extremely high value of 𝜎∗ are performed only to

how how truncated-Scheil-type and three-phase models converge to the

cheil-type model at high 𝜎∗ values. The contour plots of the temper-

ture, solid fraction, liquid/extra-dendritic liquid undercooling, liquid
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Fig. 6. Snapshots at t = 60 s of the different quantities predicted by the Scheil-type, three-phase, and truncated-Scheil-type models. In the second and third columns, 

the vectors represent the superficial liquid velocity and the white curve represents the columnar front, which corresponds to isoline g s = 0.01 or 𝜙= 0. 
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ensity, and mixture concentration are shown in the first through fifth

olumns, respectively. In the solid fraction contour plots, the vectors and

he white curves represent the superficial liquid velocity and the colum-

ar front, respectively. Next, the predictions of the different models are

ompared. 

From the contour plots shown in the second column of these fig-

res, it can be seen that, at t = 10 and 60 s, the flow pattern predicted

y the different models and at the different values of 𝜎∗ are noticeably

ifferent. For example, the Scheil-type model predicts that (see the con-

our plots in the first row second column of Figs. 5 and 6 ) the strongest

elt flow in the simulation domain is the vertical upwards flow behind

he columnar front (i.e., at the low solid fraction regions of the mush).

his upward flow indicates that the upward solutal buoyancy forces

ave, as expected (see the discussion at the end of Section 4 ), domi-

ated the downward thermal buoyancy forces. A similar flow pattern

s also predicted by the truncated-Scheil-type and three-phase models

ith 𝜎∗ = 200 (see the contour plots in the second column, third and

fth rows Fig. 5 ). However, with 𝜎∗ = 0 . 02 (see the contour plots in the

econd column, second and fourth rows), there is no significant melt

ow behind the columnar front (except in the channel regions), and the

elt flow is mainly ahead of the front. From these observations, one

an conclude that in the absence of liquid undercooling (i.e., Scheil-

ype model and the truncated-Scheil-type and three-phase models with
∗ = 200 ), the main flow pattern in the domain is upward flow behind

he columnar front; while, in the presence of liquid undercooling (i.e.,

he truncated-Scheil-type and three-phase models with 𝜎∗ = 0 . 02 ), the

ain flow pattern is downward ahead of the columnar front. It should

e mentioned that, because liquid undercooling is present in reality, the

ow pattern predicted in the presence of liquid undercooling is expected
o be more realistic than the one predicted in the absence of liquid

ndercooling. 

The main reason for the difference that is observed in the flow pat-

ern in the absence and presence of liquid undercooling is the difference

n the magnitude of the solid fraction behind the columnar front. From

he plots in the second column of Figs. 5 and 6 , it can be seen that when

iquid undercooling is disregarded (i.e., the Scheil-type model and the

hree-phase and truncated-Scheil-type models with 𝜎∗ = 200 ), the solid

ractions behind the front are relatively low (less than 0.05); however,

hen the undercooling is taken into account, these solid fractions have

ntermediate values (about 0.3). This difference is similar to what was

bserved when the results without melt convection were discussed (see

he discussion at the end of Section 5.1 ). Low solid fractions behind the

olumnar front permit relatively strong upward melt flow locally, which

eads to a downward flow ahead of the front so that mass continuity is

atisfied around the columnar front. When the solid fractions behind the

ront are not low, the flow behind the front becomes relatively weak and,

herefore, cannot influence the flow ahead of the front. As a result, the

irection of that flow is determined solely by the downward thermal

uoyancy forces. 

Next, the liquid undercooling contour plots shown in the third

olumn of Figs. 5 –7 are discussed. From the plots, it can be seen that

he liquid undercoolings predicted by the Scheil-type model are, as

xpected (see the discussion below Eq. (26) ), zero behind the columnar

ront. Ahead of the columnar front, these undercoolings are zero in most

arts of the cavity, except in a narrow region adjacent to the top wall,

here they have negative values. A negative value for liquid under-

ooling indicates that the liquid is locally superheated: its temperature

s above the equilibrium temperature corresponding to the local liquid
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Fig. 7. Snapshots at t = 120 s of the different quantities predicted by the Scheil-type, three-phase, and truncated-Scheil-type models. In the second and third columns, 

the vectors represent the superficial liquid velocity and the white curve represents the columnar front, which corresponds to isoline g s = 0.01 or 𝜙= 0. 
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oncentration. The liquid undercoolings predicted by the truncated-

cheil-type model are, again, as expected, zero behind the columnar

ront. Ahead of the columnar front, these undercoolings are positive

ith 𝜎∗ = 0 . 02 , but, with 𝜎∗ = 200 , positive liquid undercoolings nearly

anish. The liquid undercoolings predicted by the three-phase model

re very similar to the ones predicted by the truncated-Scheil-type

odel. This indicates that, for columnar solidification, even in the pres-

nce of melt convection, the liquid undercooling behind the columnar

ront can be disregarded and the truncated-Scheil-type model can be

sed instead of the three-phase model. 

From the solid fraction contour plots shown in Figs. 5 – 7 it can also

e seen that at t = 60 s a few channel segregates are fully established

i.e., solid free channels are clearly distinguishable from their neighbor-

ng regions, which have relatively high solid fractions). Channels are

nitiated by convective instabilities in the low solid fraction regions of

he semi-solid mush (see [53,54] and references therein). Most metallic

lloys, including the lead-tin alloy studied in this paper, have a partition

oefficient less than unity; therefore, during their solidification, solute

s rejected into the melt. The solute rejection changes the density of the

elt and induces buoyancy forces. To understand how channels form,

magine a parcel of highly segregated liquid located deep in the mush.

wo types of force act on the parcel: buoyancy forces and frictional

orces. If the buoyancy forces acting on the parcel are strong enough to

vercome the frictional retarding forces that are exerted by the semi-

olid mush, the parcel will move. During that movement, the parcel will

etain its composition because its mass diffusivity is much lower than its

eat diffusivity. If the local flow velocity and isotherm are misaligned

uch that the parcel moves towards the low solid fraction regions of the

ush, where the temperature is higher, the still highly segregated, dis-

laced parcel will delay solidification or even locally re-melt the solid.
hat will increase the local permeability of the mush. The local increase

n the permeability allows the subsequent parcels to flow more easily.

his, in turn, delays solidification (or enhances re-melting) even further

ntil open channels form that are completely free of solid. 

It is also interesting to note that in different models channels start

o appear at different heights of the cavity. In the Scheil-type model,

hannels appear only in the top one-third of the cavity around the top

ight corner. This is because at lower heights of the cavity the local

sotherms and flow direction are both nearly vertical. Around that cor-

er, however, the flow starts to turn left and therefore makes an angle

ith respect to the isotherms that are still nearly vertical. Since mis-

lignment between the local flow direction and isotherms is necessary

or channels to form, they form only around the top right corner. In

he three-phase and truncated-Scheil-type models, however, channels

re observed also at lower heights and even close to the bottom of the

avity. Formation of channels at such low heights indicates that in the

hree-phase and truncated-Scheil-type models, the local flow direction

nd the isotherms become misaligned not only at the top right corner

ut also at lower heights. 

In Fig. 8 , the final macrosegregation patterns (i.e., the final distri-

ution of the mixture concentration C ) predicted by the three models

re shown. Again, results for the three-phase and truncated-Scheil-type

odels are shown for 𝜎∗ = 0 . 02 and 200. First, the macrosegregation

attern predicted by the Scheil model, and shown in contour plot 8(a),

s analyzed. To more easily discuss the pattern in the plot, four different

egions, enclosed by the closed curves which are numbered one to four,

re identified in the plot. Next, the segregation patterns in these regions

re discussed. Region one is negatively segregated (i.e., it has C < C 0 )

ecause during solidification of this part of the cavity, the local melt

ow is relatively strong and, therefore, it carries away the solute that is
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Fig. 8. Final macrosegregation maps predicted by the Scheil-type, three-phase, and truncated-Scheil-type models. 
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ejected locally during solidification. In region two, macrosegregation is

ominated by the formation of three highly segregated channels, which

re separated from each other by regions of very low segregation. Re-

ion three has solute concentrations that are nearly equal to the nominal

olute composition C ref ; in other words, there is no significant solute seg-

egation in this region. This is because, during solidification of region

hree, the local melt flow is relatively weak (as that region solidifies

nly after about three quarters of the cavity has been already occupied

y the mush). Region four has solute concentrations much higher than

 ref (i.e., it is highly segregated) because when highly segregated, and

herefore relatively light, liquid parcels reach that region of the cavity,

hey stay there and do not move to the other parts of the cavity anymore.

By examining the other plots in Fig. 8 , one can see that the three-

hase and truncated-Scheil-type models predict overall macrosegrega-

ion patterns, which is a term used to refer to segregation patterns ex-

luding channel segregates, that are very similar to the pattern predicted

y the Scheil-type model. In other words, accounting for liquid under-

ooling has no significant influence on the overall macrosegregation

attern. This is because, regardless of whether liquid undercooling is

aken into account or not, regions one and three solidify in the pres-

nce and absence of strong local melt flow, respectively; region four

s the region where light and highly segregated liquid parcels accumu-

ate. Therefore, regions one and four always exhibit negative and highly

ositive macrosegregation, respectively, while region three solidifies

ith no significant macrosegregation. The only major difference that

s observed between the segregation patterns predicted by the different

odels and/or the different values of 𝜎∗ is the form of the predicted

hannel segregates. In other words, accounting for liquid undercooling

hanges the form of the predicted channel segregates but not the over-

ll macrosegregation pattern. The difference in the form of the channel

egregates is attributed to the difference in the flow pattern around the
 m
olumnar front during solidification, which was discussed in connec-

ion with Fig. 5 . It is emphasized that, although it was shown here that

iquid undercooling has no significant impact on the final macrosegre-

ation pattern, accounting for it in solidification models remains criti-

al because some important phenomena, such as nucleation of equiaxed

rains, can be predicted only if liquid undercooling is accounted for. 

. Conclusions 

A truncated-Scheil-type two-phase model was developed for colum-

ar solidification of binary alloys in the presence of melt convection and

iquid undercooling ahead of the columnar front. The model was derived

rom a three-phase columnar solidification model, which takes into ac-

ount liquid undercooling both ahead and behind the columnar front. A

ast and robust numerical scheme to calculate solid fractions during so-

idification was developed. A key advantage of the scheme, compared to

imilar schemes that are available in the literature, is that its implemen-

ation in the open-source widely-used CFD package OpenFOAM does

ot require parallel-specific programming. This allowed us to perform

igh-resolution simulations where channel segregates are fully resolved.

n addition, for the first time in the field of macroscale modeling of so-

idification, complex movements of the columnar front in the presence

f melt convection, liquid undercooling, and channel segregates were

racked. 

These models were used to perform simulations of a numerical

olumnar solidification benchmark problem, and the results were com-

ared with the predictions of a Scheil-type model, which neglects liquid

ndercooling entirely. It was found that the predictions of the truncated-

cheil-type model and the three-phase model are nearly identical. This

ndicates that, for columnar solidification, the truncated-Scheil-type

odel can be used instead of the more complex three-phase model. 
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It was also found that, in the truncated-Scheil-type and three-phase

odels, the dendrite tip selection parameter 𝜎∗ is a key parameter. With

he realistic value of 𝜎∗ (i.e., 𝜎∗ = 0 . 02 ), these models account for liquid

ndercooling; as the value of 𝜎∗ is increased, the predicted liquid un-

ercooling vanishes and the predictions of these models converge to the

redictions of the Scheil-type model. It was also found that accounting

or liquid undercooling had no significant impact on the final macroseg-

egation patterns but changed the flow pattern around the primary tips

uring solidification as well as the form of the channel segregates. It is

mphasized that liquid undercooling is nonetheless very important to

ccount for because some important phenomena, such as nucleation of

quiaxed grains, can be predicted only if liquid undercooling is taken

nto account. 

Future work will include incorporating equiaxed growth so that the

olumnar to equiaxed transition can be predicted. It would also be inter-

sting to use the three-phase and truncated-Scheil-type models to per-

orm three-dimensional simulations of the numerical benchmark prob-

em and investigate the effect of liquid undercooling on the shape of the

hannel segregates in 3D. 
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