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Abstract

A unified solute diffusion model is proposed for columnar and equiaxed dendritic alloy solidification, in which nucleation,
growth kinetics and dendrite morphology are taken into account. Various applications to a uniformly solidified system are
demonstrated, with emphasis on three special cases: complete solute mixing in the liquid, columnar growth with signifi-
cant dendrite tip undercooling, and equiaxed dendritic growth. Theoretical predictions of microsegregation, eutectic
fractions and cooling curves are compared with a number of previous theoretical and experimental results, and good

agreement is found. .

1. Introduction

The prediction of microstructure formation during
dendritic alloy solidification is of great importance for
the evaluation of properties and control of the quality
of castings. To this aim, a micro-macroscopic modeling
approach [1] has been proposed, in which a macro-
scopic model calculates the temperature field within a
casting, while microscopic models predict microstruc-
tural features based on the fundamental mechanisms of
nucleation and growth of dendrites. A key component
in this approach is the solute diffusion model which
provides the evolution of the local solid fraction for use
in the macroscopic energy equation, and thus provides
a major linkage between the microscopic and macro-
scopic aspects of solidification.

As reviewed by Rappaz [1], previous solute diffu-
sion models for dendritic solidification can be classi-
fied as follows: (1) equilibrium models which do not
consider nucleation and undercooling; (2) models for
columnar growth which incorporate dendrite tip
undercooling; (3) models for equiaxed growth focusing
on coupling the growth kinetics of dendrite tips to the
evolution of an equiaxed grain.

The first category of solute diffusion models essen-
tially aims at investigating the effect of back diffusion in
the solid, while the liquid is assumed to be solutally
well mixed [2, 3]. Three basic analytical equations have
been obtained depending on the extent of solute diffu-
sion in the solid: (1) the Lever rule where complete
solute mixing is also assumed in the solid [4], (2) the
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Scheil equation where solute diffusion in the solid is
absent [4], and (3) the Brody-Flemings model [5] (later
modified by Clyne and Kurz [6]) for finite rate diffusion
in the solid. More recently, Ohnaka [7] derived a simple
expression for an improved estimate of microsegrega-
tion using the integral method. Kobayashi [8] obtained
an exact solution to the solute redistribution problem,
Available in the literature are also a number of numeri-
cal models that can handle cases with variable prop-
erties and dendrite arm coarsening [2, 3, 9-11].
However, none of the above models account for den-
drite tip undercooling and are thus expected to be
inapplicable at medium and high cooling rates.

During near-rapid and rapid solidification processes
as described by Flemings [12], dendrite tip undercool-
ing at the columnar front can become sufficiently large
to affect the relationship between the solid fraction and
temperature. Several authors have therefore attempted
to incorporate the growth kinetics of the dendrite tip in
modeling columnar growth. Assuming no back diffu-
sion in the solid, Flood and Hunt [13] used the Scheil
equation truncated at the tip temperature; however,
their model suffers from the shortcoming that solute is
not conserved [1]. More recently, Giovanola and Kurz
[14] proposed an empirical approach to arrive at an
e(T,V,) relation using the Scheil equation and the
Kurz, Giovanola and Trivedi model [15] of dendrite tip
growth. Again, back diffusion in the solid is neglected.
The model divides the mushy zone into two regions,
with non-equilibrium growth allowed only in the tip
region and a state of complete solute mixing in the
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liquid assumed in the other region. Then, a curve-fitted
polynomial and the Scheil equation are utilized for the
solid fraction profiles in the two regions respectively.
Owing to the fact that the model conserves solute
everywhere, it produces the best approximation at
present, as commented on by Rappaz [1].

In order to predict microsegregation at both low and
high cooling rates, the combined effects of back diffu-
sion and dendrite tip undercooling need to be con-
sidered. Although Solari and Biloni [16] include both
effects, their analysis is obsolete because it relies on the
Brody-Flemings derivation [5] and the growth equa-
tion of Burden and Hunt for the dendrite tip [17]; the
former was modified in ref. 6 and the latter is known to
be inapplicable at high cooling rates [1]. More recently,
Exner et al. [18] reported a set of numerical results for
the eutectic fraction for various Al-Cu alloys solidified
under a wide range of cooling rates. The details of their
model [19], along with another study by Voller and
Sundarraj [20] dealing with microsegregation in the
presence of undercooling, became available after sub-
mission of the present paper. By solving numerically a
partial differential equation for solute diffusion and
incorporating both the dendrite tip and eutectic under-
coolings, Roosz and Exner [19] and Voller and Sundar-
raj [20] independently succeeded in predicting the
eutectic fraction over a wide range of cooling rates, and
achieved good agreement with Sarreal and Abba-
schian’s experiments [21].

The solute diffusion processes occurring in equiaxed
dendritic growth are even more difficult to model,
mainly because an equiaxed dendrite is not fully solid.
Several approaches have been reported in the litera-
ture. Dustin and Kurz [22] presumed that a mushy
grain has a constant internal solid fraction. Recently,
Rappaz and Thevoz [23, 24] took full account of
nucleation and growth kinetics, and introduced a
spherical grain envelope which separates the inter-
dendritic from the extradendritic liquids. The inter-
dendritic liquid is assumed to be solutally well mixed,
and the dynamics of the envelope are determined by
the growth kinetics of the dendrite tips. Both numerical
and analytical versions of this solute diffusion model
were formulated.

The objective of the present paper is to present a
unified solute diffusion model for both columnar and
equiaxed dendritic growth, which incorporates
descriptions of nucleation, growth kinetics and
dendrite morphology. The model is a simplified
version of a recently developed multiphase micro-
macroscopic model [25], which was derived using the
so-called volume averaging technique. The resulting
solute diffusion model consists of a set of ordinary dif-
ferential equations and is coupled to a characteristic
solidification equation. Various applications of the
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model are demonstrated, and the model predictions
are compared with a number of theoretical and experi-
mental results available in the literature.

2. Model and analysis
2.1. Solute diffusion equations

Consider a volume element containing either colum-
nar or equiaxed dendrites, as shown in Figs. 1(a) and

dendrite
envelope

phase s phase d phase 1

dendrite
envelope

C
c, c.
———— <Cp!
_ ly
/ Cy=x C,
—— <Cy>*
<3 d
phase s phase d phase 1
(c) A ety 1 €

Fig. 1. Schematic diagram of the physical model: (a) columnar
dendritic growth, (b) equiaxed dendritic growth, and (c) solute
profiles and diffusion lengths in the various phases.
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1(b). The volume is assumed to be at a uniform tem-
perature and is occupied by three quiescent phases: the
solid (s), the interdendritic liquid (d), and the extra-
dendritic liquid (1). The two liquid phases are asso-
ciated with different interfacial length scales and
possess different transport behaviors. Complete solute
mixing is nearly true in the interdendritic liquid
because of the large area of the solid-liquid interface,
whereas substantial undercooling may exist in the
extradendritic liquid [1, 3, 23]. This is shown schema-
tically in Fig. 1(c). The dendrite envelope is defined as
the interface separating the two liquid phases, and its
movement is governed by the growth kinetics of the
dendrite tips. The reader is referred to ref. 25 for a
more thorough discussion of this multiphase approach.
Assuming that the densities of the solid and liquid
phases are constant and equal, one can derive the fol-
lowing set of differential equations governing solute
diffusion in the present three-phase system (see
Appendix A for nomenclature):

envelope motion

S.Dym(x—1)C,
=_.._...——2—————~
xT

et €)= Soie Q) (1)

solute balance of phase s

d(e(C)) _ o de,, 8D,

dt Ydr 1,

(Ca=(CY) (2)

solute balance of phase d

g -, de,
d(edce)=(1"K)Ce &
dt ds

8D,

lsd

+ Ce %#E‘ﬂ
dt Iy

(Cu=(C)) (3)

(C.—(a)

solute balance of phase |

de(C]_ - dar , Sy
dr dr by

(C.—(O)) (4)

This set of equations has been rigorously derived by
the volume averaging technique [25]. Apart from the
physical properties which are explained in Appendix
A, several notations are clarified here. First, the term
(Cpk denotes the volume averaged intrinsic concentra-
tion of a phase k, with (-) being the conventional
symbol used in the volume averaging method. Physi-
cally, the term (C,)* is nothing else but the mean con-
centration in a phase. However, the overbar denotes an
interfacial average, so that the symbol C, stands for the
mean concentration of the envelope. Because the
interdendritic liquid is assumed to be solutally well
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mixed, C, is also equal to the equilibrium liquid con-
centration at the solid-liquid interface and is related to
the local temperature by the liquidus line of the phase
diagram. The concentration on the solid side C, is
accordingly given by

Cy=xC, (5)

Second, ¢, is the volume fraction of a phase k. Third, §
designates the area concentration of an interface,
which is defined as the ratio of the interfacial area to
the volume of the volume element. Therefore, S repre-
sents the inverse of a microscopic length scale. Note
that the area concentration of the solid-liquid interface
S, in dendritic growth is typically much larger than the
envelope area concentration S,. Last, /4 and /4 denote
the solid and liquid diffusion lengths respectively.
Their physical meanings are illustrated schematically in
Fig. 1(c).

Equations (1)-(4) all have simple physical inter-
pretations. First, eqn. (1) is a representation of con-
servation of mass inside the dendrite envelope, where
the densities of the solid and liquid phases are assumed
to be identical and constant, and the second identity in
eqn. (1) simply states a growth kinetic law for a den-
drite tip. It was derived from the Lipton, Glicksman
and Kurz model [26], which is valid for both columnar
and equiaxed growth in the case where only solutal
undercooling is important and thermal and curvature
undercoolings are negligible. Here Q is the mean
solutal supersaturation in the extradendritic liquid and
Iv~ Q) stands for the inverse function of the Ivantsov
function Iv(Pe,). Second, eqn (2) states that the increase
in mass of the solute in the solid during d results from
the combined contributions of movement of the
solid-liquid interface and solute diffusion across the
interface. For negligible back diffusion in the solid, the
last term on the right-hand side of eqn. (2) vanishes.
Similarly, each term on the right-hand side of eqn. (3)
represents a contribution to the change in mass of the
solute in the interdendritic liquid; they are due to
solid-interdendritic liquid interfacial movement (phase
change), dendrite envelope growth, and solute diffu-
sion across the two interfaces. Finally, eqn. (4) is a
mathematical statement of the solute balance in phase L.
Therefore, mathematically these equations represent
an integral analysis of solute diffusion. This type of
analysis avoids solving partial differential equations,
but produces reasonably good approximations. The
integral method has been applied successfully to a
diverse variety of scientific and engineering problems
(for example see ref. 27 for phase change problems).

The present solute diffusion model, consisting of
eqns. (1)-(4), can readily be incorporated into a
macroscopic heat flow model. In the absence of fluid
flow, this is achieved mainly through the coupling
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between the temperature field obtained from a macro-
scopic model and the solid fraction (and hence latent
heat) evolution predicted from the present solute diffu-
sion model, more details are provided in ref. 25.
Furthermore, eqns. (1)-(4) are equally applicable to
columnar and equiaxed dendritic growth, while leaving
descriptions of the different physical characteristics of
each mode of solidification to supplementary relations
for S and [ (see below). Lastly, it can be seen that the
sum of eqns. (1)-(4) leads to the overall solute balance:

d(e(C))  dleaCo) , dle(C))

=0 6
dr ds dr (6)

Integration gives
Ss< Cs>s + &4 Ce + £i< C'l>l = Co (7)

After substituting C,y by C, using eqn. (5), eqns.
(1)~(4) contain five unknowns: &, &4, {C., C, and (C).
Supplied with one additional equation, which is
referred to as the characteristic solidification equation
as described in the next subsection, the present model
is complete. The supplementary relations for the inter-
facial area concentrations, diffusion lengths and Ivant-
sov function are discussed in detail in Section 2.3.

2.2. Characteristic solidification equation

Various characteristic solidification equations are
possible depending on the actual system under con-
sideration and the simplifications made in its analysis.
For instance, many models assume that the isothermal
system is characterized by either a parabolic solidifica-
tion rate, namely

de, 1

- 8
dr 24 (8)

or a constant cooling rate, i.e.

T (9)

where f; is the final solidification time, 7 the cooling
rate and my, the slope of the liquidus line. Another
typical characteristic solidification equation is the
energy equation for an isothermal system, ie.

de, daT
qextA=V(AhE;+ ¢, _d_t) (10)

where g¢.,, is the external heat extraction rate, and A
and V are the surface area and volume of the system
respectively. The terms Ak and ¢, stand for the volu-
metric latent and specific heats respectively. With
GewA [V =c,T, the above equation can be rewritten as

Ahde, dC,
=

ny
¢, dt dr

T (11)
The above three characteristic solidification equations,

eqns. (8), (9) and (11), are employed in the following,
depending on the system considered.

2.3. Supplementary relations

The supplementary relations needed for eqns.
(1)—(4) are the Ivantsov function, the interfacial area
concentrations and the diffusion lengths.

The growth kinetic law for a dendrite tip largely
depends on the geometrical approximation made for
the tip. By assuming a hemispherical dendrite tip, a
linear Iv(Pe,) function results [4], thus

V- (Q)=Q (12)

and eqn. (1) reduces to a simple quadratic relation

=D|ml(K_ 1) Ce

s Q’ (13)

ne

However, by assuming more realistically that the den-
drite tip is a paraboloid of revolution, a complicated
Ivantsov transport function Iv(Pe,) results whose
evaluation involves an infinite series [4]. Finding the
inverse of this function is apparently of high computa-
tional cost. Several approximations to Iv(Pe,) have been
attempted in ref. 4, which are the so-called zeroth-,
first- and second-order approximations. The growth
equation for a hemispherical tip turns out to be the
zeroth-order approximation for a parabolic tip. A com-
parison of all these approximations with the exact
Ivantsov function is shown in Fig. 2. It can be seen

1 Ivantsov function
1e° Zeroth approximation )
- zli; approx?mau-on \\
nd approximation P
g 10t o) Ea(14)
P
I - ,
& 10_22 /‘/
E ,
L o
10‘32 ./‘/
E 7/
L e
10—4 ./'./.. "

1674 16-3 162 10t 108 10
Supersaturation, Q
Fig. 2. Various approximations to the inverse Ivantsov function,

Pe,=Iv™}(Q). A new correlation, eqn. (14), gives the best agree-
ment.
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none of the approximations are satisfactory for
implementation in a numerical model. Therefore, a
new simple correlation is proposed to approximate the
inverse Ivantsov function, which is

Pet=Iv"(Q)=a(lsz) (14)

where a=0.4567 and b=1.195 give the best fit. The
excellent agreement of this correlation with the exact
Ivantsov function can be seen in Fig. 2. Therefore, eqn.
(14) is used in all calculations presented in this paper.
Expressions for the interfacial area concentrations
and the diffusion lengths were derived in ref. 25 and
are summarized in Table 1. They are based on approxi-
mations of the dendrite geometry and formal micro-
scopic analyses of the solute diffusion within each
phase. The shape factor ¢, for the dendrite envelope is
introduced to account for the deviation of the actual
envelope shape from a sphere in the equiaxed case and
from a cylinder in the columnar case. It is worth men-
tioning that Rappaz and Thevoz [23, 24] assume a
spherical envelope. This is equivalent to a shape factor
of unity. It is suggested in ref. 28 that typical values of
¢. range from 0.75 to unity. An investigation of the
effect of the shape factor is conducted later. As can be
seen from Table 1, a significant feature of the geo-
metrical relations is that they directly invoke key metal-
lurgical parameters, such as the primary arm spacing,
the nuclei density and the secondary arm spacing.
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Alternatively, one could derive expressions directly for
(and measure) the interfacial area concentrations [29].
It is also noticed that the final equivalent radius of an
equiaxed grain R; is obtained from the nuclei density,
where it is implied that nucleation occurs at a single
temperature. Incorporation of other more sophisti-
cated nucleation laws [1] is straightforward.

The expression for the solid diffusion length, as
listed in Table 1, was obtained by assuming a parabolic
concentration profile in the solid (as in ref. 7), while
those for /; were derived by invoking the quasi-steady
assumption and analytically solving the one-dimen-
sional solute diffusion equation in the extradendritic
liquid.

2.4. Initial conditions
The appropriate initial conditions are,
when =0,

g,=¢e,=0
(Cr=xC,

- AT
C.=C,——
m

<Cwl>l = Co

where AT is either the nucleation undercooling, A7}, in
equiaxed growth or the initial tip undercooling AT, at
the columnar front. Generally, ATy is specified by a

TABLE 1. Summary of the supplementary relations for equiaxed and columnar systems

Quantity Equiaxed growth Columnar growth
4 -173
Final radius of dendrite R; (g nin e G
Solid-interdendritic liquid 2/A, 2/4,
interfacial area concentration .S
. 3(€s+8d)2/3 2’(£s+£d)1/2
Envelope area concentration S, —_— _—
p Rf¢e Rf¢e
Solid diffusion length / &y s
n, e B L
olid diffusion length /4 61—e) 6(1-2)

Liquid diffusion length /4
1

(1—g)3

(spherical model)
Pe=w,.R;/D,

1 3
lm/Rf=I)g {] '; exp[—Pe(1 — 51)1/3]
|

1 2 Pe
lld/Rf=f,g {1 —; CXP{E’ (1- 51)”2 In(1—¢)]

Pe(1 — &2 '
X f x’ exp{—e(—x[ﬁ— dx X f x exp[—Pe(1—¢)"” In x]dx

(1—g)i/?

(cylindrical model)
Pe = wneRf/DI
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nucleation law, whereas A7, can be determined from
the initial tip growth velocity using the growth kinetic
relation as given above.

2.5. Numerical procedures

Equations (1)-(4) and one of eqns. (8), (9) and (11)
subject to the initial conditions, eqn. (15), are not
amenable to analytical solution. Therefore, a numerical
procedure is employed which consists of the standard
fourth-order Runge-Kutta method for the set of ordi-
nary differential equations and the 21-point
Gauss-Kronrod rule for numerical integration of the
liquid diffusion length. In some extreme cases (e.g. high
cooling rates and/or large growth velocities), the pres-
ent solute diffusion model becomes a stiff problem,
thus requiring the Gear method in place of the
Runge-Kutta method. All subroutines of relevance are
available in the IMSL Mathematical Library [30].

3. Results and discussion

In this section, various applications of the present
unified solute diffusion model for columnar and equi-
axed dendritic growth are illustrated. Results are pre-
sented first for the case of equilibrium growth (i.e.
without undercooling) and then for columnar and equi-
axed solidification with tip undercooling.

3.1. Complete solute mixing in the liquid

By neglecting dendrite tip undercooling, i.e. assum-
ing complete solute mixing in the interdendritic and
extradendritic liquid, the overall solute balance, eqn.
(6), reduces to

d(e(C)) dl(1-e)C
dr de

=0 (16)

or in integrated form
85<Cs>s+<1_€s) Cezco (17)

In this case, the model reduces to a set of only three
equations: eqns. (2), (17) and one characteristic solidifi-
cation equation. It is shown below that this type of
analysis can produce simple results for microsegrega-
tion which are of considerable accuracy.

Restricting further attention to a parabolic solidifica-
tion rate, eqn. (8) is chosen as the proper characteristic
solidification equation. Rewriting eqn. (2) and changing
the coordinate from ¢ to ¢, with the help of eqn. (8),
yields

(G
&~

=(1+6a)(xkC,—(C)) (18)
de,
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where use has been made of the relations S,= 2/, and
e =&4A,/6 as given in Table 1 for both columnar and
equiaxed growth. The parameter a is the traditional
diffusion Fourier number based on the secondary den-
drite arm spacing, which represents the extent of solute
diffusion in the solid; it is defined as

4Dy
A’

a (19)

Further substituting C, for (C.) in recognition of eqn.
(17), one arrives at the following first-order differential
equation for C,:

‘ + - .
dCe+ (1+6a)k 1+6_a .- 6a c. (20)
ng 85(1—85)

1—¢ &

When a - ©, eqn. (20) reduces to an algebraic equa-
tion from which the Lever rule is recovered:

[

C, 1-(1-x)e, (21)

In the other limit, a =0, eqn. (20) admits a simple solu-
tion:

C
E:=(1-es)"‘1 (22)
which is known as the Scheil equation. For a #0, eqn.
(20) also has a closed-form analytical solution:

Ce 6all- ‘(1+6a)k—1[5 B B )
E= a( ‘8(“56)0[ j-SGa 1(1_8> (1+6a)x de (23)

0

The above expression represents an exact solution to
the integral formulation of the solute redistribution
problem, without invoking additional approximations.
While Ohnaka’s analysis [7] is also based on the in-
tegral method, his analytical result for C,/C, was
obtained with the help of an additional approximation,
which is dc/ds= 0. In terms of the present terminology,
this assumption is equivalent to the following [7]:

E C-jsd—<C‘s>s ~
di—ig—d 0 (24)

It is easy to show that eqn. (18) combined with eqn.
(24) indeed results in Ohnaka’s solution:

C.
C=(L-ye ety (25)
where
20k
r=1- 1+2a (26)
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Figure 3 compares microsegregation of P in J-Fe as
predicted by various solute diffusion models. In parti-
cular, the present solution, eqn. (23), and Ohnaka’s
result, eqns. (25) and (26), are compared with
Kobayashi’s exact solution [8]. Apparently, the addi-
tional assumption, eqn. (24), results in a considerable
loss of accuracy. Also, the present result is the most
accurate of the analytical solutions.

In cases where a parabolic solidification rate cannot
be assumed, the present model requires the solution of
only one ordinary differential equation, eqn. (2),
together with the characteristic solidification equation
and an algebraic equation, eqn. (17). In contrast to
purely numerical approaches [2, 3, 9-11], the present

3 . . - . ,
i
i
k=013 |
L il
2.5 a =040 y
il
il
i
2 AN
Scheil ]
Exact
UO
§ 1.5} This work
1®]

Clyne-Kurz, Ohnaka
Brody-Flemings
Lever rule

0.5t

1 1

0 0.2 0.4 0.6 0.8 1

0 1

Solid fraction, &g

Fig. 3. Microsegregation of P in é-Fe, as predicted by various
solute diffusion models.
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model avoids the complication of tracking a moving
boundary, thus greatly alleviating solution efforts.
However, the present analysis retains all the flexibility
that a numerical model can have. For example, cases
with variable partition and mass diffusion coefficients
can be handled, and various characteristic solidifica-
tion equations can be used.

3.2. Columnar growth with dendrite tip undercooling

At intermediate and high cooling rates, diffusion in
the solid is found to be negligible. However, another
effect begins to influence the relation between the solid
fraction and temperature: the dendrite tip temperature
falls significantly below the equilibrium liquidus tem-
perature. Some recent theoretical studies of the tip
undercooling effect have been reported by Giovanola
and Kurz [14] for an Ag—Cu alloy and by Flemings [31]
for an Al-Cu alloy. Both studies are based on the
“patching” method due to Giovanola and Kurz [14].

Numerical simulations based on the present model,
eqns. (1)-(4), together with a constant cooling rate as
the characteristic solidification equation, have been
performed for an Al-4.5wt.%Cu alloy. The physical
properties used for the results presented here are listed
in Table 2. Besides the cooling rate and the undercool-
ing prevailing around the primary dendrite tips (or the
growth velocity), the dendrite arm spacings are also
necessary inputs to the present model. These param-
eters can be estimated from the cooling rate, growth
velocity and temperature gradient via certain empirical
or theoretical relations available in the literature [4].
For example, Jones [32] shows that the secondary arm
spacing can be correlated as a function of the cooling
rate:

Ay, =50T-1/3 (27)

where 4, is the secondary arm spacing (in micrometers)
and T'is the cooling rate (in degrees kelvin per second).
The equation was obtained by correlating data from a
wide range of investigations for Al-(4-5)wt.%Cu and
Al-(7-10)wt.%Si alloys. The primary arm spacing can

TABLE 2. Physical properties of various alloys used in the calculations

Quantity Symbol Al-Cu[2] Ag-Cu|15] Al-Si[23] Unit
Eutectic concentration Ce 332 — 10.77 wt.%
Volumetric specific heat ¢, 3.4%x106 - 2.35x 106 Jm™3¥K"!
Diffusion coefficient D, 50x107° 2.0x107° 3.0x10°° m?s~!

D, 50x10°1 e — m?s™!
Gibbs-Thomson coefficient r 241x1077 1.53x1077 0.9x1077 mK
Partition coefficient K 0.17 0.41 0.117 wt.% per wt.%
Volumetric latent heat Ah 1.02x10° — 9.5x108 Jm™3
Liquidus slope m, -3.37 -6.46 =77 Kwt%™!
Melting point of pure metal T, 933 — 933 K
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be predicted from the theory developed by Hunt [33]:
Ay =[64TDm(1—x) CAG12 Y~ 14 (28)

The other theory due to Kurz and Fisher [34] basically
has the same form except for a different numerical con-
stant. Noting that the temperature gradient G is equal
to T/V,, eqn. (28) can be rewritten as

A =[64TDymy(1—x) C AT 12 Y14 (29)

for convenient use in the present numerical simula-
tions.

To examine the sole effect of dendrite tip undercool-
ing, calculations are carried out for two cooling rates
T=10% and 10° Ks~! and by setting D,=0 in the
model equations. The predicted temperature vs. solid
fraction curves are plotted in Fig. 4 together with
Flemings’ results. It can be seen that the two predic-
tions basically produce the same trend. The tempera-
ture undergoes little change during the initial long stage
of solidification, and only decreases significantly during
the last short period of solidification. The other con-
sequence of dendrite tip undercooling is a decrease in
the fraction of eutectic. It should be realized that, in
contrast to the patching method of Giovanola and Kurz
[14], a single set of equations is used in the present
model throughout the entire mushy region. By adding
up eqns. (3) and (4), transforming the coordinate from ¢
to ¢, and making some rearrangements, one arrives at

(1-e) 9% -1y .=

o |
de, g, (Bl G (@) (30)

where the interfacial terms have been cancelled out
and diffusion in the solid is neglected (i.e. D,=0). It is
now clear that, as the solidification path asymptotically

940
9201
Scheil

i S— 5
g ge0) Cooling rate = 103 K/s
§, \
g 860 e
=

8401 Cooling rate = 106 K/s

820} —---- Flemings [31]

—— Present work
800 I n " L " i n n "
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Fig. 4. Effect of dendrite tip undercooling on the temperature vs.
solid fraction relation for columnar solidification of an
Al-4.5wt.%Cu alloy.

reaches a state of complete solute mixing in the liquid,
the right-hand side of eqn. (30) vanishes, and the pre-
sent model automatically reduces to the Scheil equa-
tion (recall that C, is equal to the liquid concentration
at the solid-liquid interface).

Amnother numerical study using the present model is
conducted for an Ag-15wt.%Cu alloy, again assuming
negligible back diffusion in the solid. Calculations are
carried out using the physical properties listed in Table
2, a tip growth velocity of 12 cm s~ !, and a primary
dendrite arm spacing of 0.3 um. These data are taken
directly from the experiment of Bendersky and Boet-
tinger [35]. The predicted microsegregation profile is
plotted in Fig. 5, together with Giovanola and Kurz’s
result as well as the experimental data measured by
Bendersky and Boettinger [35]. It can be seen that all
three results are in good agreement, thus validating the
present model in accounting for the influence of den-
drite tip undercooling. Slight differences between the
present results and those from the Giovanola and Kurz
model can be observed in both Figs. 4 and 5. They can
be attributed to the simplified treatment of the dendrite
morphology in Giovanola and Kurz’ patching method
[14]. In fact, it can be argued that the present predic-
tions in Fig. 5 are in somewhat better agreement with
the experimental data.

In order to predict microsegregation over a wide
range of cooling rates, however, the effects of back dif-

25 T
2 Ag-15 wt% Cu
or Vi=0.12 m/s
€ 15} !
3 LEEEATTT T L H /
! /[ / VA
10} P g
5t  ==mm-- Scheil equation
—————— Giovanola & Kurz model
Present model .
[ZZZZZA Exp. data (Bendersky & Boettinger)
0 L L i L

e o061 0.2 03 04 05 6.6 0.7 0.8 0.9 1

Solid fraction, &g

Fig. 5. Comparisons of the present prediction of microsegrega-
tion in a rapidly solidified Ag-15wt.%Cu alloy with Giovanola
and Kurz’s calculation [14] and the experimental data of
Bendersky and Boettinger [35].
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TABLE 3. Comparison of the present theoretical predictions of the eutectic fraction with the measurements of Sarreal and
Abbaschian [21] for an Al-4.9wt.%Cu alloy (the measured values correspond to mass fractions as calculated in ref. 3)

Run Cooling Growth Eutectic Eutectic Relative

number rate velocity fraction (%) fraction (%) error
(Ks™1) (ms™) measured predicted (%)

1 0.1 107* 6.61 6.15 -6.96

2 1.05 10-* 7.74 8.22 6.20

3 11.25 1.5x1073 8.40 9.12 8.57

4 65 50%x1073 8.81 9.30 5.56

5 187 1072 9.25 941 1.73

6 1700 107! 7.56 8.43 11.5

fusion in the solid and dendrite tip undercooling need ™ Yo

to be taken into account simultaneously. Recently, 5 1.0 -

Sarreal and Abbaschian [21] presented a set of experi- &

mental data for an Al-4.9wt.%Cu alloy in order to &

demonstrate the influence of the cooling rate on micro- g o8 r ]

segregation. Interestingly, they found that the eutectic E

fraction first increases as the cooling rate rises up to g osf ]

187 K s7! and then decreases with increasing cooling 8

rate. This behavior cannot be captured by a solute dif- o a

fusion model that considers either solid diffusion only § 4T a 499 Cu 1

or dendrite tip undercooling alone, as indicated in ref. —é ) Exp. data of Sarreal & Abbaschian

2. Since the present model includes both these factors, 2 | * 28%Cu |

it can be expected to be an appropriate theoretical tool " Model calculation

for explaining the experimental observation. Several

numerical simulations are performed for solidification e e R sk .

for an Al-4.9wt.%Cu alloy at the cooling rates and
growth velocities of the experiments. In the calcula-
tions, eutectic undercooling is neglected and constant
alloy properties are assumed. The predictions of the
eutectic fraction are tabulated in Table 3 together with
the experimental data of Sarreal and Abbaschian [21],
where the experimental values correspond to the mass
fraction of eutectic as calculated in ref. 3. It is found
that the agreement between the present predictions
and the experimental results is fairly good, with the
relative error ranging from 1.73% to 11.5%. By includ-
ing eutectic undercooling and variable alloy properties,
Roosz and Exner [19] and Voller and Sundarraj [20]
obtained even better agreement. Nonetheless, the
important fact that the eutectic fraction is reduced at a
very high cooling rate (run number 6) is predicted by
the present model. This is known to be due to the effect
of dendrite tip undercooling- on microsegregation.
Figure 6 shows the effect of the cooling rate on the
normalized eutectic fraction ep/eg,,,, where &g, is
the value computed from the Scheil equation and also
represents the theoretical maximum eutectic fraction. It
can be seen that the eutectic fraction is always below
the Scheil value. At low cooling rates back diffusion in
the solid causes a reduction in the eutectic fraction,
while at high rates dendrite tip undercooling tends to

LAl PETTITY WY PR BN TTIT LA
1072 1071 109 101 102 103 104 105 108
Cooling rate, K/s

Fig. 6. Effect of cooling rate on the eutectic fraction. Compar-
ison of the present predictions with Sarreal and Abbaschian’s
experiments [21].

decrease the eutectic fraction. However, the two effects
are not additive. At low cooling rates the effect of den-
drite tip undercooling does not exist, while at very high
cooling rates diffusion in the solid phase becomes
negligible owing to the short duration of the solidifica-
tion process.

3.3. Equiaxed growth

For equiaxed dendritic solidification, the same set of
equations is employed and solved, except for the
appropriate supplementary relations as listed in Table
1. Equation (11), which represents the heat balance of
an isothermal system, is used as the characteristic soli-
dification equation for all results presented in this sub-
section.

In order to validate the present model for equiaxed
dendritic growth, solidification of an Al-5wt.%Si alloy,
whose physical properties are listed in Table 2, is
simulated. A series of predicted cooling curves for a
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cooling rate of 45 K s~! and three different final grain
radii is first compared against the more exact solution
due to Rappaz and Thevoz [23], as shown in Fig. 7.
The latter was obtained by solving a microscopic
partial differential equation for solute diffusion in the
extradendritic liquid by a finite difference technique
and was based on the quadratic growth law, eqn. (13). It
can be seen that excellent agreement between the two
predictions exists, although the present model utilizes
the simpler concept of a diffusion length together with
an integral formulation. To investigate the effect of the
liquid diffusion length, a series of preliminary calcu-
lations using different diffusion lengths has been
performed. As pointed out in ref. 25, a physically mea-
ningful diffusion length should satisfy the following
constraint:

D
fys— (31)

ne

under which d(C))!/dz is greater than zero. The equality
holds when d(C))!/dt=0 (see eqn. (4)), i.e. the average
concentration in the extradendritic liquid (C))' always
remains at the initial composition C,. This is the key
assumption made in the analytical model of Rappaz
and Thevoz [24]. However, the assumption leads to a
failure to arrive at a state of complete solute mixing in
the liquid during the later stages of solidification. As a
remedy, Rappaz and Thevoz [24] implement a certain
correction procedure to ensure a smooth transition to
the state of complete solute mixing. In contrast, the
present expression for the diffusion length given in

0.05}

@
—
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0.2}

Dimensionless temperature,

0.3}F - --- Rappaz and Thevoz [23] -
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Fig. 7. Comparisons of cooling curves for equiaxed dendritic
growth, as predicted by the present model ( ) and Rappaz
and Thevoz [23] (---) for final grain radii of (A) 100 um, (B)
1 mm and (C) 10 mm.

Unified solute diffusion model

Table 1 satisfies the above constraint, and the solution
of eqn. (4) provides the time evolution of the average
concentration in the extradendritic liquid (C,)\

Another approximate diffusion length can be
obtained by expressing the exponential function in the
integrand of the quasi-steady solution in Table 1 by a
series expansion. Choosing the first three terms only,
the integral becomes

I3 3
Integral=*3E 1 +5 (1-¢)?

1+(1—g)+(1-¢)"Pe

X Pe
1 + 1 - 811/3+<1 - 51)2/3

(32)

It should be noted that the diffusion length with the
integral evaluated by eqn. (32) also satisfies the con-
straint given by eqn. (31). A comparison has been made
(not reported here for brevity) of the predicted cooling
curves using Rappaz and Thevoz’s expression for the
diffusion length (i.e. the equality in eqn. (31)), the
approximate expression given by eqn. (32), and the
general expression given in Table 1. It is found that the
model is relatively insensitive to the choice of liquid
diffusion length. This helps to clarify the fact that the
present model and the analytical model of Rappaz and
Thevoz [24] can yield reasonably accurate results for
the cooling curves.

As shown in Fig. 8, there is, however, a relatively
large discrepancy in the predictions of the grain frac-

g
+ -
&
g
g ]
kst
& |
S o3t -~~~ Rappazand Thevoz [23] 1
——— This work
0.2 4
0.1 1
0.0 L i 1 1
u.0 0.2 0.4 0.6 0.8 1.0

. . . T
Dimensionless time, —Ap;t

Fig. 8. Comparisons of the grain fraction for equiaxed dendritic
growth, as predicted by the present model ( ) and Rappaz
and Thevoz [23] (---) for final grain radii of (A) 100 um, (B)
1 mm and (C) 10 mm.
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tion (e, + £4=1— ¢) from the two models in the case of
R;=100 um. The reason lies in a subtle difference in
the growth kinetics model for the dendrite tips. The
present model considers the driving force for the enve-
lope growth to be (C,—(C))"), the difference between
the concentration at the envelope (i.e. the tips) and the
average concentration in the extradendritic liquid.
However, Rappaz and Thevoz use (C, — Cg), where Cy
is the minimum liquid concentration located at the
outer boundary of the grain. The driving force in
Rappaz and Thevoz’s model allows for a larger growth
velocity and consequently a higher grain fraction,
because (C))' is always higher than Cy. This factor is
important in the case of R;=100 um. In contrast, in
the other two cases (i.e. R;=1 and 10 mm), the grain
growth is so fast that (C)} does not deviate much from
Cy throughout the grain growth period (ie.
(C)'= Cx = C,). Hence, virtually no difference between
the two predictions is observed. It is worth mentioning
that Kanetkar and Stefanescu [36] also use the term
(C.—(C)") as the driving force for dendrite tip growth
in their solidification kinetics-heat transfer model.

Figure 8 also provides quantitative information
about the distribution of the eutectic phase in the inter-
dendritic and extradendritic regions. For instance, in
the case of R;=100 um, the total eutectic fraction is
equal to 0.4, while the fraction of the eutectic phase
between the grains amounts to 0.18. Accordingly, the
fractions of the eutectic phase in the interdendritic and
extradendritic regions are 0.22 and 0.18 respectively.
Validation of the above predictions of the grain fraction
evolution and the eutectic fractions is not possible at
the present time owing to a lack of suitable experi-
mental data.

In comparing their model predictions to experi-
mental data, Rappaz and Thevoz [23] questioned two
assumptions underlying their model: the quadratic
growth law and the assumed spherical shape of the
dendrite envelope. The validity of both approximations
can be examined qualitatively using the present solute
diffusion model. Figure 9 shows a comparison of cool-
ing curves obtained using the quadratic relation, eqgn.
(13), as well as the more exact growth law based on the

Ivantsov function, eqn. (14). As expected, the depth of

recalescence is larger for all three radii when using the
growth kinetic law for a parabolic tip. Hence, the use of
an improved growth law may lead to a better agree-
ment between experiment and theory.

However, the assumption of a spherical dendrite
envelope does not appreciably deteriorate the predic-
tions of recalescence. As shown in Fig. 10, the adop-
tion of a non-spherical envelope with a shape factor
(“sphericity”) of 0.8 brings about no significant
difference compared with the case of a spherical
envelope.
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Fig. 9. Effect of the growth kinetic law on the predicted recalesc-
ence for final grain radii of (A) 100 um, (B) 1 mm and (C) 10
mm.
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Fig. 10. Influence of a non-spherical dendrite envelope on the
predicted recalescence for final grain radii of (A) 100 um, (B)
1 mm and (C) 10 mm.

4. Conclusions

(1) A unified solute diffusion model for columnar
and equiaxed dendritic solidification is presented.
Mathematically, the model is rigorously derived using
the volume averaging technique and a multiphase
approach. Physically, the model represents an integral
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analysis, so that solute is conserved both locally within
each phase and overall for all phases.

(2) The model gives an adequate description of
crystal growth, by including basic microscopic pheno-
mena such as nucleation, back diffusion in the solid,
growth kinetics of the dendrite tip, and dendrite
morphology.

(3) In accounting for back diffusion in the solid
alone, the paper develops a closed-form exact solution
to the integral formulation of the solute redistribution
problem. The solution significantly improves Ohnaka’s
analytical result and agrees well with the exact solution
due to Kobayashi for microsegregation of P in ¢-Fe.

(4) Regarding the effect of dendrite tip undercool-
ing in columnar growth alone, the model predictions
are in agreement with those from the Giovanola and
Kurz patching method, as shown for Al-4.5wt.%Cu
and Ag-15wt.%Cu alloys. Also, the present predic-
tions agree with Bendersky and Boettinger’s experi-
ments for an Ag-15wt.%Cu alloy.

(5) For the purpose of predicting microsegregation,
the model can reflect the influences of both solid diffu-
sion and dendrite tip undercooling. The theoretical
predictions for columnar dendritic solidification of an
Al-4.9wt.%Cu alloy are in good agreement with experi-
mental data for a wide range of cooling rates.

(6) For equiaxed dendritic growth, the model suc-
cessfully predicts recalescence and the distribution of
the eutectic phase in the interdendritic and extra-
dendritic regions. The example calculations are in
excellent agreement with the more exact solutions of
Rappaz and Thevoz using a finite difference method.
In addition, the assumptions of a quadratic growth law
and a spherical dendrite envelope are examined.

(7) The present model provides a useful alternative
to current solute diffusion models for use in macro-
scopic heat transfer codes. In addition to growth
kinetics, it also incorporates back diffusion in the solid
and allows for the prediction of microsegregation over
a wide range of cooling rates. The model is equally
valid for columnar and equiaxed dendritic growth.
Therefore, efforts are under way to apply the model to
mixed columnar and equiaxed solidification of alloys.
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Appendix A: Nomenclature

coefficient in eqn. (14)
interfacial surface area
index in eqn. (14)
concentration of a chemical species
)k mean concentration in phase k
interfacial concentration at the k—j interface
volumetric specific heat
mass diffusion coefficient
temperature gradient
Ivantsov function
solute diffusion length
liquidus line slope
equiaxed nuclei density
envelope Peclet number, Pe= w, R/ D,
tip Peclet number, Pe,= VR /(2D,)
external heat extraction rate
radius
interfacial area concentration
time
final solidification time
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temperature

cooling rate

volume

dendrite tip velocity
. envelope velocity

BRSNS

Greek symbols

o diffusion Fourier number as defined in eqn.
(19)

parameter defined in eqn. (26)
Gibbs-Thomson coefficient in the kinetic
law for dendrite growth

latent heat of phase change

undercooling

volume fraction

partition coefficient

primary dendrite arm spacing

secondary dendrite arm spacing

shape factor

solutal supersaturation,
(C=(ON/IC{1=x)]

=
~N S

DS MR o >

Subscripts

columnar front

interdendritic liquid

dendrite envelope

eutectic point

final dimension of the envelope
extradendritic liquid
extradendritic-interdendritic liquid inter-
face

melting point of pure metals
nucleation

initial state

outer boundary of equiaxed grain
solid

solid-interdendritic liquid interface
dendrite tip
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