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Macroscale solidification models incorporate the microscale and mesoscale phenomena of dendritic grain growth
using constitutive relations. These relations can be obtained by simulating those phenomena inside a Representa-
tive Elementary Volume (REV) and then upscaling the results to the macroscale. In the present study, a previously
developed mesoscopic envelope model is used to perform three-dimensional simulations of equiaxed dendritic
growth at a spatial scale that corresponds to a REV. The mesoscopic results are upscaled by averaging them over
the mesoscopic simulation domain. The upscaled results are used to develop new constitutive relations, which,
unlike the currently available relations, do not rely on highly simplified assumptions about the grain envelope
shape or the solute diffusion conditions around it. The relations are verified by comparing the predictions of the
macroscopic model with the upscaled mesoscopic results at different solidification conditions. These relations can
now be used in macroscopic models of equiaxed solidification to incorporate more realistically the microscale

and mesoscale phenomena.

1. Introduction

Solidification is a complex multiscale problem that is controlled
by phenomena occurring at length scales that are distinct from each
other and range over roughly five orders of magnitude [1,2]. At the
macroscale (i.e., the scale of the whole casting) heat transfer and typi-
cally melt convection take place, grains can move, and the solid might
deform. At the mesoscale (i.e., the scale of the primary dendrite arms
spacing ranging from 1 to 0.1 mm) grains grow controlled by solute and
heat diffusion and under the influence of collective interactions; this
determines the final grain structure. At the microscale (i.e., the scale of
a dendrite tip radius ranging from 10~2 to 10~3 mm) the competition
between the microscale heat/solute diffusion and surface tension deter-
mines the dendrite tip radius and velocity. What makes solidification
modeling a complex task is that there is a strong inter-scale coupling
between the phenomena occurring at the different length scales. For
example, macroscale melt convection influences the microscale solute
diffusion, and is, itself, influenced by the microscopic structure of the
semi-solid mush. Because of this coupling, a model that simulates the
macroscale behavior of a solidifying system needs to incorporate the mi-
croscale and mesoscale phenomena. Incorporating these phenomena by
directly simulating them will, however, require having computational
cells as small as one micrometer in the simulation domain that can be
as large as few meters. This will result in having millions of cells in each

direction. The computational cost of such a simulation will continue to
remain beyond the reach of computer powers in the foreseeable future.
Therefore, one needs to find another way to incorporate the microscale
and mesoscale phenomena in models that simulate the macroscale
behavior.

Microscale and mesoscale phenomena can be incorporated in the
models that simulate the macroscale behavior using volume-averaging
methods. Averaging concepts were first applied in the solidification field
by Beckermann and Viskanta [3] in the mid to late 1980s and later
significantly extended by Ni and Beckermann [4] and Wang and Beck-
ermann [5-9]. Volume-averaging is now a widely accepted method in
developing macroscale solidification models as is indicated by more
than one thousand citations to the original papers. Volume-averaged
macroscale models have been used to simulate solidification in systems
as large as steel ingots [10-12]. It is beyond the scope of this paper
to review the governing equations in detail, but thorough reviews are
available [6,13]. In brief, these models are derived by averaging the
local equations (i.e., equations that are valid at the microscopic scale)
for each phase over a volume that contains all the phases present in
the system and is called the Representative Elementary Volume (REV).
The size of an REV must be small compared to the size of the entire
system, but large compared to the scale on which the microscale phe-
nomena takes place. The resulting volume-averaged equations contain
phase fractions and source terms. These source terms, which account
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for the microscale and mesoscale transport phenomena occurring at the
interfaces between the different phases, depend on variables that are
not predicted by the macroscopic model, because the lower scale in-
formation that these variables represent has been lost in the averaging
process. Accurate calculation of these source terms, therefore, requires
one to do a formal analysis on the REV scale and then pass up the in-
formation to the macroscale, through constitutive relations, in a process
called upscaling. The term upscaling simply means that in the ladder of
length scales information is passed up from a smaller scale to a larger
scale by averaging. This upscaling has never been tried in the field of
solidification, mainly because of the complexity that arises as the result
of the large range of length scales that need to be resolved. In other
words, in solidification, there is a large gap between the involved micro
and macro length scales. Therefore, the currently available constitutive
relations have been based on somewhat simplistic assumptions rather
than a formal analysis of the REV scale.

The gap between the micro and macro scales can be bridged using
the mesoscopic model originally developed for pure materials by Stein-
bach et al. [1,2], extended for binary alloys by Delaleau et al. [14], and
further validated by Souhar et al. [15] by performing three-dimensional
simulations of equiaxed growth and comparing the results with ex-
perimental scaling laws [16]. Mesoscopic models directly resolve the
transport phenomena on the REV scale, by solving an equation for the
heat/solute transport on this scale, and incorporate microscale phenom-
ena, by using a local analytical solution for the microscale heat/solute
transport. The computational power requirement of these models is sig-
nificantly lower than the models that resolve the microscale phenom-
ena directly, such as the phase field models [1,2]. This allows one to
do three-dimensional simulations at low undercoolings, corresponding
to realistic process conditions, and at relatively large domain sizes that
correspond to a REV.

In this paper, the mesoscopic envelope model of Delaleau et al.
[14] is used to perform three-dimensional simulations of equiaxed
growth on a spatial scale that corresponds to a REV. Simulations are
performed for several initial undercoolings and grain densities and the
results were upscaled by averaging them over the volume of the REV.
The upscaled results are examined in detail and used to develop new,
more accurate constitutive relations for macroscale solidification mod-
els. The new constitutive relations are verified by comparing the pre-
dictions of the volume-averaged macroscopic model with the upscaled
mesoscopic results at different solidification conditions.

The paper is organized as follows: The macroscopic model is intro-
duced in Section 2. A brief introduction of the mesoscopic model and
mesoscopic results are presented in Section 3. The constitutive relations
are developed in Section 4 and are verified in Section 5.

2. Volume-averaged macroscopic model

In this section, the conservation equations of the volume-averaged
macroscopic model used in the present study are first introduced. It is
shown that these equations contain variables that need to be obtained
from constitutive relations. The constitutive relations are discussed next.

2.1. Conservation equations

Following the pioneering work of Wang and Beckermann [5-9], to
develop a macroscopic model for equiaxed solidification in an under-
cooled melt, a solidifying system is first assumed to consist of three
phases: solid, inter-dendritic liquid, and extra-dendritic liquid. The two
liquid phases are separated by the grain envelope, which is a virtual and
smooth surface that connects the primary tips and the tips of actively
growing secondary arms. A secondary arm is defined as active when
it is longer than the next active secondary arm closer to the primary
tip. Two liquid phases are introduced in the model because the solute
diffusion is governed by length scales of different orders of magnitude:
the secondary arm spacing in the inter-dendritic liquid and the distance
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Fig. 1. Two-dimensional schematic of a single equiaxed dendrite growing into
an essentially infinite medium; the dendritic envelope and volume-equivalent
sphere; regions of solid, inter-dendritic liquid, and extra-dendritic liquid; and
an schematic of the solute distribution in the extra-dendritic liquid ahead of
the primary tip along with the tangent to the profile at the position of the tip;
represents the distance from the dendrite center.

between grains in the extra-dendritic liquid. Fig. 1 shows a schematic
of a grain envelope and the regions of the solid, inter-dendritic liquid,
and extra-dendritic liquid phases, denoted by s, d, and e, respectively.
Writing the local (i.e., the microscopic level) equation for the mass con-
servation in the extra-dendritic liquid in the absence of melt convection
and solid motion, and using the averaging theorems discussed in detail
in Wang and Beckermann [5] to average that equation over the volume
of the REV, V), results in the following volume-averaged equation for
the average growth kinetics:

dg 1
delnv = 70 //A Weyy * ndA = Senuwenv (1)

where g,., Aenys Wenys T, Seny, and w,,,, are the envelope volume frac-
tion (i.e., grain fraction), envelope surface area, local envelope growth
velocity vector, unit vector normal to the envelope surface and pointing
outside the envelope, envelope surface area per unit volume of the REV
>i.e., A,/ V), and average envelope growth velocity, respectively. This
equation indicates that the envelope volume fraction g,,, will increase,
in other words growth will continue, as long as w,,,, is greater than zero.
The terms on the left-hand and right-hand sides of the first equality rep-
resent the change in the mass inside the envelope and the net rate of
mass exchange at the envelope surface.

Writing the local equation for the solute conservation in the extra-
dendritic liquid and following a procedure similar to the one discussed
above Eq. (1) gives the volume-averaged equation for the average solute
diffusion rates from the dendrite envelopes as:

d = 1 1

—(&.C,) = — Cy -ndA+ jo-ndA

ot (ge E) VREV//A 1 Wens " B VREV//A Jert
D
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where g, = 1 = .5 C,; C}, jo, D and &y, are the extra-dendritic lig-
uid fraction, average solute concentration in the extra-dendritic liquid,
equilibrium solute concentration in the liquid, solute diffusion flux in
the extra-dendritic liquid, solute mass diffusivity in the liquid, and av-
erage diffusion length around the envelopes, respectively. Note that, on
the right-hand side of the first equality, the negative and positive signs
of the first and second terms, respectively, reflect the fact that the unit
vector n is defined to be pointing outside the envelope. These terms
represent the microscopic solute transfer (from the inter-dendritic to
extra-dendritic) at the envelope surface. The first term represents the
solute transfer due to the growth of the envelope and can be simply
substituted using the first equality in Eq. (1) (note that C} is assumed
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to be uniform in the REV and be, therefore, taken outside the integral).
The second term represents the solute transfer due to the solute dif-
fusion; the integral in this term can be modeled as the product of the
envelope specific surface area S,,, and a mean diffusive flux at the en-
velope surface. This flux can be assumed to be directly proportional
to the driving force for diffusion, which is the difference between the
solute concentration in the extra-dendritic liquid adjacent to the enve-
lope and the average solute concentration in the extra-dendritic liquid
(e, C; = C,), and inversely proportional to the average diffusion length
around the envelopes 6,,,; 6., is @ measure of how far the solute has
diffused away from the envelope. To better understand the concept of
diffusion length, one can look at Fig. 1, where a schematic of the so-
lute distribution in the extra-dendritic liquid ahead of the primary tips
is shown. The green line in the plot shows the tangent to the profile
at the primary tip. The tangent intersects with the horizontal dashed
line representing C,, at a distance that is proportional to the envelope
diffusion length §,,,. Finally, the term C; — C, is linked to the average
undercooling in the extra-dendritic liquid, which is the driving force for
growth.

In Egs. (1) and (2), the variables S,,,, W, and &, need to be ob-
tained from constitutive relations. The next section discusses the proce-
dure to derive these relations and also the assumptions that have been
commonly used in the literature to derive the currently available con-
stitutive relations.

2.2. Constitutive relations

To obtain the constitutive relations for the envelope variables S,,,,
Weny, and &gy, the envelope is first approximated by the volume-
equivalent sphere, referred to as sphere hereafter. A schematic of the
sphere is also shown in Fig. 1. Then, the envelope variables are related
to the sphere variables as follows.

2.2.1. Relating envelope variables to sphere variables

The envelope surface area per unit volume of the REV, S,,,,, is related
to the sphere surface area per unit volume of the REV, S, directly from
the definition of the envelope sphericity y

Ssp
Senv v 3)

One should note that the sphericity y is a purely geometrical variable
(i.e., it depends solely on the geometry of the envelope). The sphericity
of a sphere is equal to unity by definition, and any other shape has a
sphericity less than unity (for example, the sphericity of an octahedron
is 0.85 [17]).

To relate the average envelope velocity, w,,, to the sphere growth ve-
locity, wg,, one needs to recognize that Eq. (1) holds for any shape; since
the volume of an envelope and its sphere are equal, the time derivative
of envelope volume fraction and sphere volume fraction will be equal
and one can, therefore, write S,,,,w,,, = S;,w;,. In this relation, S, can
be substituted from Eq. (3) to give:

Wepy = YWy, 4)

Next, the variation of y during growth is discussed. Equiaxed growth
starts from a spherical nucleus, which has w =1 and, from Eq. (4),
Weny /Wy, = 1. As the spherical nucleus grows into the undercooled melt
surrounding it, its shape becomes unstable and relatively fast growth
along the energetically favorable crystallographic directions, compared
to growth along the other directions, gradually transitions the shape into
a dendrite, which has y <1 and, again from Eq. (4), W,q,/wg, <1. There-
fore, during growth, y and w,,,/wg, decrease from their initial value of
unity.

In the current literature, there are no relations to predict the de-
crease in y Or e, /Wy, during growth. Therefore, macroscopic models
had to rely on pre-determined and constant values for y and Wy, /wg,.
For example, in the study of Martorano et al. [18], y and w,,,/w, have
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been assumed to be equal to unity during the entire growth period; in
other words, it is assumed that grains retain their initial spherical shape.
In the studies of Appolaire et al. [19] and of Ludwig and Wu [20,21],
v is assumed to be equal to 0.85 (i.e., the sphericity of an octahedron)
and w,,,/wy, is assumed to be equal to the sphericity. Disregarding the
decrease in y and w,,,,, /W, during growth can be expected to result in in-
accuracies in the macroscopic models. In fact, Rappaz and Thevoz [22],
compared the cooling curves measured in the experiments with the ones
predicted by their solute diffusion model and noticed that their model
does not predict the recalescence very well. They attributed this partly to
the fact that in their model, sphericity was assumed to be equal to unity
during the entire growth. As another example, Wu et al. [23,24] did
columnar to equiaxed transition (CET) simulations with different val-
ues for sphericity and found that the CET position is highly sensitive to
the sphericity value. Developing a relation to predict the decreases in
v and, therefore, in w,,,/w,,, during growth is one of the objectives of
this study.

To relate 6.y, to the sphere diffusion length, &5, one needs to realize
that the envelope diffusion length is determined by the diffusion field
around the envelope. It is therefore, in general, a complicated function
of the envelope shape, size and growth velocity and a relation between
eny and &g, cannot be obtained from a simple and purely geometrical
analysis, such as the one we did to obtain Eq. (4). Such a relation has
never been proposed in the literature mainly because the complex nature
of solute diffusion field around an envelope precludes one from finding
an analytical relation for §,,,. Macroscopic models, therefore, have sim-
ply assumed §,,,,, = 6;, [5-9,18,25]. This assumption might have reason-
able accuracy during the initial stages of growth, when the envelope is
spherical; however, as the envelope becomes dendritic with growth, the
assumption can be expected to become increasingly inaccurate. Devel-
oping a relation for §,,, is another objective of this study.

2.2.2. Relations for sphere variables
In the previous section, the envelope variables were related to the
sphere variables. In this section, the relations for the sphere variables
are outlined first and then interesting limiting cases of the relation for
8, are discussed.
The sphere surface area per unit volume of the REV, S, is calculated
from
s 47mR§p B 47mR§p 38w
= Ty =R 5)
0 (4R /3 ) g R

where n and Ry, are the effective number of grains and the sphere ra-
dius, respectively. Note that, in this equation, the first equality simply
follows from the definition of Sy, and the second equality follows from
the definition of g,,, (i.e., the ratio of the total envelope volume to the
REV volume V;)) and the fact that the envelope volume is equal to the
sphere volume. The sphere radius Ry, is calculated from
dR
G ©
Next, the model needs a relation for wy,. Currently, macroscopic
models assume simple fixed envelope geometries and therefore obtain
wq, from the primary tip velocity, V,, multiplied by a constant geomet-
rical factor [7,17-24]. In reality, wy, depends on the velocity of the
primary and secondary tips, and on the envelope shape. Developing a
relation for wg, that accounts for the realistic evolving envelope shape

is one of the objectives of the present study.
The sphere diffusion length §, is calculated from the relation devel-

oped by Martorano et al. [18]

2 2 2 3
5, R, RiRy Ky o \re(i) (Ro, By K
R, R -R Pe, P2, Pe,  Pel R,

sp sp
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where Pey, = w,,R,,/D, is the sphere growth Péclet number, Ry is the
final grain radius, and Iv() is the Ivantsov function. This equation indi-
cates that the diffusion length around a sphere depends on the radius
and growth velocity of the sphere and the final grain radius. A better
insight into this dependence can be obtained by simplifying Eq. (7) in
two interesting limiting cases: the high Peg, limit and the high R limit
(i.e., the single grain limit). This is discussed next.

In the high Pey, limit, e~"*»((R7/R»)=11 converges to zero and there-
fore, inside the curly brackets on the right-hand-side of the equation,
the first three terms and the seventh term can be dropped; the fifth term
becomes negligible compared to the fourth term; and, finally, in the
last term, Iv(Pesp) can be approximated by 1 -1/ Pey, [26]. Therefore,
Eq. (7) simplifies to
S _ @®)

Rsp Pesp

Interestingly, Eq. (8) indicates that in the high Peg, limit, 6, does
not depend on Ry. Using the definition of Peg,, Eq. (8) can be recast into

5, = ! ©

sp wy,

The second interesting limiting case of Eq. (7) is the high Ry limit. In
this limit, similar to the high Peg, limit discussed above, e~ Pespl(Ry/Rsp)=11
converges to zero. Therefore, inside the curly brackets, the first three
terms and the seventh term can be dropped; the fourth and fifth terms
become negligible compared to the sixth term; finally, in the denom-
inator of the term outside the curly brackets, pr becomes negligible
compared to R3f ; therefore, Eq. (7) reduces to

o,
sp

=1-1v(Pe,,) 10)
sp

Note that the high Peg, limit of this equation is, as expected, identical
to the high Peg, limit of Eq. (7) (i.e., Eq. (8)). In the low Peg, limit, one
has IV(PeSp) — 0 [18] and Eq. (10) reduces to
5,=Ry, an
2.2.3. Primary tip velocity

Macroscopic models need to predict the primary tip velocity, V,, re-
ferred to as the tip velocity hereafter, because the growth of an envelope,
at least during the early stages, is mainly driven by the growth of its pri-
mary arms. Therefore, the tip velocity, ¥, can be expected to be one of
the main, if not the main factor, in determining w, > In addition, V, is
required in predicting the primary arm length [, from

di,

=V 12
i ! (12)

To understand the variations of ¥, during the quasi-steady growth of
an assembly of dendrites, let us first consider two dendrites located at
the distance 2R from each other inside a uniformly undercooled melt,
as shown schematically in Fig. 2 at (a) an early time and (b) a late
time during growth. Due to the symmetry, only half of the dendrites are
shown. The profiles of solute concentration in the extra-dendritic liquid
are also shown in the figure. Note that the concentration at the tip is
equal to the equilibrium concentration C;" and it decreases as one moves
away from the tip towards the liquid. At the early time (i.e., Fig. 2(a)),
this decrease continues until some distance ahead of the tip, where the
concentration reaches the initial solute concentration C, and remains
constant after that; therefore, the concentration at the symmetry line
between the grains C, is equal to Cy: C, = Cy; at the late time (i.e.,
Fig. 2(b)), the decrease continues through the entire liquid region up
to the symmetry line between the two grains, where the concentration
reaches C ., which has a value greater than Cy: C, > C,,.

At the early stage of growth, shown in Fig. 2(a), there is a dis-
tance between the edges of the solutal boundary layers ahead of the
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Fig. 2. Schematics of the extra-dendritic liquid solute concentration profiles
ahead of the primary tips of two adjacent dendrites, at a time instance in the (a)
non-interacting stage and (b) interacting stage; r represents the distance from
the center of the left dendrite.

tips and, therefore, the solutal field ahead of one dendrite is not influ-
enced by the presence of the other. In other words, the dendrites are
not interacting. This stage of growth is, therefore, referred to as the
non-interacting stage. At this stage, the growth of the dendrites is virtu-
ally the same as the growth of a single dendrite into an essentially infi-
nite medium. As the dendrites keep growing, the distance between the
edges of the boundary layers decreases and at some intermediate time
the edges meet. Once that happens, the solutal boundary layer ahead
of each of the dendrites starts to get influenced by the presence of the
other dendrite. In other words, the dendrites start to interact. This stage
is called the interacting stage. Next, the variations of C, and C, dur-
ing these two stages and the relationships between them and C, are
discussed. During the non-interacting stage, C ; remains constant and
equal to Co; furthermore, C

f
tion in the extra-dendritic liquid C,(1): C, = C < C,(». During the in-

is less than the average solute concentra-

teracting stage, however, C P is greater than C but still less than C,(1):

¢, <C < C‘e(t). These two relations are important, and will be referred
to subsequently when the time variations of ¥, during these two stages
is discussed.

As the primary arm of a dendrite grows, it rejects solute (assuming
ko <1). For growth to continue, the rejected solute needs to be dissi-
pated away from the tip towards the bulk liquid. The balance between
the solute flux rejected at the tip and the solute flux diffusing away from
the tip determines the tip velocity. The latter flux is proportional to the
solute gradient at the tip. During the non-interacting stage of growth,
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(a)

the diffusion field ahead of the tip and therefore the diffusion flux at
the tip remain constant. This causes ¥, to remain constant. During the
interacting stage, however, Cr increases with time, which makes the so-
lute profiles progressively smoother; therefore, the solute diffusion flux
at the tip and consequently ¥, both decrease with time. Prediction of V,
during these stages is discussed next.

In macroscopic models of solidification, the most commonly used
relation for predicting V, is the relation proposed by Ivantsov [27]:

Q oy = Pe,exp (Pe,)E, (Pe,) (13)

where Q; . is an effective tip undercooling (i.e., the undercooling corre-
sponding to the effective far-field solute concentration, which should not
be confused with the solute concentration at the symmetry line between
two adjacent grains Cy discussed earlier in connection with Fig. 2) and
Pe, = V,R,/(2D)) is the dendrite tip Péclet number, R, = \/dyD,/(V,c*)
is the tip radius, k is the partition coefficient, d, is the capillary length,
o* is the tip selection parameter, and the function E; () is the exponential
integral function. Eq. (13) is the exact similarity solution for the solute
diffusion field around a paraboloid of revolution during its quasi-steady
shape-preserving growth into an infinite medium with uniform and con-
stant far-field undercooling ©; .4 This equation has been shown to pro-
vide accurate predictions of the primary tip velocity V, during the quasi-
steady growth of a single dendrite into an essentially infinite medium
[28]. For the quasi-steady growth of multiple dendrites, Eq. (13) can be
expected to accurately predict V, during the non-interacting stage. To
predict V, during the interacting stage, modifications to this equation
have been proposed [29,30]. These modifications are, however, limited
to isothermal dendrites and specific dendritic arrangements and a gen-
erally valid relation to predict ¥, during the interacting stage is still not
available. Therefore, similar to the numerous studies in the literature
[5,7,8,18,31], in this paper, Eq. (13) is used to predict ¥, during both
non-interacting and interacting stages.

In using Eq. (13) to predict V, during the growth of multiple dendrites
one should keep in mind that, as depicted in Fig. 2 and discussed in
the figure discussion, during both the interacting and non-interacting
stages, one has C < C,; since the effective far-field solute concentration
is equal to and less than C; during the non-interacting and interacting
stages, respectively, the effective tip undercooling Q will be always
higher than the average undercooling in the extra-dendritic liquid Q,,
which is defined as

¢ -G,

Q=—1"< 14
S TEar: (14)
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(b)

Fig. 3. Mesoscopic grain envelopes for (a) a single grain and (b) multiple grains in the BCC arrangement with the primary arms growing along the x, y, and z axes.

In other words, during the entire growth period, one has Q, <Q; ..
Therefore, if, in Eq. (13), Q, is used instead of Q, ., the tip velocity V,
will be underpredicted. Using Q, in this equation has been, however, a
common practice in the literature [5,7,8] because, currently, there are
no relations to predict Q el /" Developing a relation to predict Q el ) is
one of the objectives of this study.

3. Mesoscopic envelope model

The mesoscopic envelope model used in the present study was origi-
nally developed by Delaleau et al. [14] and recently used by Souhar et al.
[15] to perform three-dimensional simulations of equiaxed growth. The
reader is referred to these papers for the details of the model and the
complete set of equations. In brief, the model approximates the complex
dendritic structure with an envelope and a solid fraction field inside the
envelope. The normal growth velocity at any point on the envelope is
calculated from the local dendrite tip velocity, obtained from an analyt-
ical stagnant film model, and the angle between the growing dendrite
arm and the envelope normal. The stagnant film model gives the tip lo-
cal velocity as a function of the undercooling of the liquid in the vicinity
of the envelope. The envelope growth and the solute transport in the lig-
uid around the envelope are thus coupled. The liquid inside the envelope
and on the envelope surface is assumed to be well-mixed and in equi-
librium with the solid while the liquid outside the envelope is generally
undercooled. The solid fraction field inside the envelope and the solute
concentration field in the extra-dendritic liquid outside the envelope C,
are obtained from the numerical solution of a solute conservation equa-
tion that is valid both inside and outside the envelope. Hence, the solutal
interactions between the growing grains are fully resolved.

3.1. Mesoscopic simulations

The first set of mesoscopic simulations were performed for the
isothermal growth of a single grain growing into an essentially infinite
domain (Fig. 3(a)) and for multiple grains (Fig. 3(b)) with high/low
grain densities of Ry/[Dy/V,(Qy)] = 4.03/6.31, where V,(Q) is the
Ivantsov tip velocity (i.e., the velocity predicted by Eq. (13)) correspond-
ing to the initial undercooling Q. Each case was simulated for Q, = 0.05
and 0.15. For the multiple grain cases, the grains were arranged peri-
odically in a BCC lattice, with the primary arms growing along the axes
(Fig. 3(b)).

In Fig. 4, an example of the mesoscopic simulation results is shown.
The figure, which is for the multiple grain case with the low undercool-
ing (Q) = 0.05) and high grain density (R, /[D,/V},())] = 4.03), shows
the solid fraction, g, and the solute concentration in the extra-dendritic
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Fig. 4. Mesoscopic simulation results showing solid fraction g; (plotted in the interior of the envelopes) and solute concentration in the extra-dendritic liquid C,
(plotted in the exterior of the envelopes) at different non-dimensional times r = tVIZU(QO)/D,: (a) =0, (b) 0.37, (c) 1.48, (d) 2.23, (e) 2.97, and (f) 5.94. This
simulations is for the isothermal case with low undercooling (Q, = 0.05) and high grain density (Rf/ [D;/V},(€25)] =4.03).

liquid C,, plotted in the interior and exterior of the envelopes, respec-
tively, at different times. The dimensionless time, 7, is scaled by the
time needed for a steady-state tip to advance by one diffusion length:
Vi (Q0)/(Dy/ Vi, (€0)). It can be seen that, as expected (see the discussion
below Eq. (4)), the envelope is initially spherical (see Fig. 4(a)), but it
gradually becomes dendritic during growth. It can also be seen that dur-
ing the growth, the envelopes reject solute to the extra-dendritic liquid
and, therefore, C, increases. At the early times (i.e., 7 <0.37), this in-

crease is limited to a relatively small distance ahead of the envelopes;
therefore, C, further away from the envelopes is still at the initial value
of 0.5wt. pct.. At the later times (i.e., 7> 2.23), C, everywhere in the
domain has become greater than 0.5. Finally, at r = 5.94, C, everywhere
has reached the equilibrium solute concentration C; = 0.523; the under-
cooling has fully vanished and the growth has ended.

Another example of the mesoscopic simulation results is shown in
Fig. 5. The figure, which, similar to Fig. 4, is for the multiple grain
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Fig. 5. Mesoscopic simulation results showing profiles of liquid solute concen-
tration along the line connecting the primary arms of two dendrites growing
towards each other. Different curves show the profiles at different times.

case with the low undercooling and high grain density, shows the final
envelope shape and the profiles of solute concentration in liquid along
the line connecting the primary arms of two dendrites growing towards
each other. Different curves show the profiles at different times. From
the plot it can be seen that at = = 2.6 the solutal fields ahead of the grain
envelopes overlap and, therefore, the grains start interacting.

3.2. Upscaling mesoscopic results

To upscale the mesoscopic simulations results, they were averaged
over the volume of the REV. For example, at any time during growth,
the solute concentration field in the extra-dendritic liquid was averaged
over the volume of the REV to give the value of C, at that time. In Fig. 6,
the upscaled mesoscopic results are plotted as a function of the non-
dimensional time defined as 7 = tVIZU(QO)/ D;. Results for a single grain
are shown as black curves and for multiple grains with high and low
grain density as red and blue curves, respectively. Results for &, = 0.05
and 0.15 are plotted as solid and dashed curves, respectively.

Fig. 6(a) shows the envelope volume fraction g,,,. Squares in the
figure represent the start of the second stage of growth and the defini-
tions of the first and second stages will become clear subsequently, when
Fig. 6(g) is discussed. Fig. 6(b) shows the non-dimensional average un-
dercooling in the extra-dendritic liquid Q,/Q,, where Q, was calculated
from Eq. (14). Fig. 6(c) and (d), a close-up of 6(c) around = = 5, show the
sphericity, which was calculated using Eq. (3) after calculating S,,,, and
Sy as follows: S, was measured directly from the simulated envelope
shape, and S, was calculated from Eq. (5), after computing Ry, from
an equation that is derived subsequently in connection with Fig. 6(h).
Fig. 6(e) shows the non-dimensional primary arm length [,/[D;/V}, (241,
where [, was measured directly from the simulated envelope shape. Fig.
6(f) shows the non-dimensional tip velocity V,/V;,(Q), where V, was
calculated from Eq. (12). Fig. 6(g) shows the scaled primary arm length
I¥ defined as

I}
= (15)
Lagr
where Iy, is the instantaneous diffusion length ahead of the primary
tip, which is defined as
I D (16)
G = —
iff v,

Fig. 6(h) shows the non-dimensional sphere radius Rsp/ [Dy/ V3, (Qy)].

The sphere radius, R, is calculated using an equation that relates R, to
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the final grain radus Ry, to the envelope fraction, g, and to the effec-
tive number of grains inside the REV, n. In what follows, this equation
is first derived using a formal procedure, to show that the equation is
the integrated form of Eq. (1). Next, it is discussed that the equation can
be written directly from the definition of the sphere. The formal deriva-
tion of the equation starts with first substituting the right-hand side of
Eq. (1) using S,y Wen, = St (see the discussion above Eq. (4)); then,
Ssp and wy, are substituted from Egs. (5) and (6), respectively, to give

1 dgey 3 dR,,

dt = 17
dt R,, dt an

8env sp

Next, the definite integrals of both sides of this equation are taken
from time zero to time t to give

3
&env [ RSP ]

Zen=0) | R,(t=0)

In this equation, g,,,(f = 0) and R,,(t = 0) are the envelope fraction
and sphere radius corresponding to the initial spherical seeds. Since the
initial seeds have the same size, g,,,(r = 0) and R,,(t = 0) can be related
as R, (1=0) = 2[3/(47zn)]1/3nge1,{3(t = (), where n is the effective num-
ber of grains inside the REV, which is equal to unity for a single grain
and two for multiple grains in the BCC arrangement. Substituting this

equation into Eq. (18) gives

(18)

1/3
Ry=2(2) " Rylld 19)

Note that this equation has a simple physical meaning: it indicates
that, as expected, at any time during growth, the total volume of the
spheres (i.e., n x 47rR§p /3) is equal to the total volume of the envelopes
(ie., SRj,ge,w). In fact, one can write this equation directly from the
definition of the sphere. Here, however, the more formal procedure to
derive it is provided to show that Eq. (19) is indeed the integrated form
of Eq. (1).

Fig. 6(i) shows the non-dimensional sphere velocity wsp/V,V(QO),
where wg, was calculated from Eq. (6). Fig. 6(j) shows the
non-dimensional average diffusion length around the envelopes
Seny/ [D)/ Vi, (Q9)], where §,,, was determined from Eq. (2) by solving
this equation for §,,,, using the upscaled mesoscopic values for all the
other quantities. Finally, Fig. 7 shows the comparison between the meso-
scopic primary tip velocities and the Ivantsov tip velocities correspond-
ing to Q,. Next, the important observations that can be made from these
plots are discussed.

From Fig. 6(a) and (b) it can be seen that for a single grain g,,,, and Q,
remain close to zero and Q, respectively, during the entire growth. This
is because for the single grain cases the size of the simulation domain
was chosen to be large enough to remain much larger than the envelope
size during the entire growth. For the multigrain cases, however, the
envelope fraction increase relatively fast initially because Q,, which is
the driving force for growth, is relatively high; as Q, decreases, due to
the solute rejection from the envelopes to the extra-dendritic liquid, the
rate of increase in g,,, decreases. Finally, when the undercooling is fully
consumed (at = about 4 and 9 for the high and low grain density cases,
respectively) g, ceases to increase further and growth ends.

From Fig. 6(c) and (d) it can be seen that, as expected, the initial
value of y is equal to unity and as the envelope becomes progressively
more dendritic with growth, y decreases. For a single grain, this de-
crease continues until 7 = 40. At this time, we stopped the simulations
because the diffusion field around the envelope started to interact with
the boundaries of the simulation domain. For the multigrain cases, how-
ever, after a relatively small initial decrease (of about 0.1 for the high
grain density cases and 0.2 for the low grain density cases) y stops to
decrease further and then remains constant.

From Fig. 6(f) it can be seen that at an early stage of growth (z less
than two) we have 1 < V,/ V;,(Q0): the mesoscopic tip velocities V, are
greater than the Ivantsov tip velocities corresponding to the initial un-
dercooling ¥, (€). This is because of the presence of an initial transient
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Fig. 6. (a)-(j) Upscaled mesoscopic results plotted as a function of non-dimensional time. High and low grain density cases correspond to Ry/ [Dy/V;,(24)]1=4.03 and

6.31, respectively.
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Fig. 6. Continued

stage in the mesoscopic simulations, where the C, field is transitioning
from the initial value of C, = C, (see Fig. 6(a)) to the quasi-steady val-
ues. During this stage, the solutal gradient ahead of the tip and there-
fore the tip velocity is greater than the quasi-steady values predicted by
Eq. (13).

At the end of the initial transient stage (z about 2), the quasi-steady
stage starts. During this stage, V, for a single grain (i.e. the black curves)
remains, as expected, constant, but at a value that is slightly (about 10
percent) lower than the Ivantsov tip velocity corresponding to the ini-
tial undercooling Q,. This minor underprediction of the tip velocities by
the mesoscopic model is of no significant consequence and should not
distract; however, for the sake of completeness, the reason for it is ex-
plained next. As already discussed in detail by Steinbach et al. [1,2] and
Souhar et al. [15,32], in the mesoscopic model, the predicted tip veloc-
ities depend on a parameter in the model known as the stagnant film
thickness &5 For the high values of 3¢ (i.e. 8y > 3lgifs [15,32]) the meso-
scopic tip velocity for a single grain will be equal to the Ivantsov tip
velocity. However, with such a high value of 4, the predicted grain en-
velope shapes will be unrealistic (compared to the experimentally ob-
served ones [16]). Therefore, to have relatively accurate predictions for
both V, and the envelope shape, a compromising intermediate value for
d¢ needs to be chosen. As a result of this compromise, the quasi-steady

mesoscopic tip velocities are slightly lower than the Ivantsov tip
velocities.

The tip velocity ¥, for the multiple grain cases starts to rapidly
decrease at some intermediate time (about r=2 for the high grain
density cases and 4.5 for the low grain density cases). This rapid de-
crease is physically important and indicates that the tips are solutally
interacting.

From Fig. 6(g) it can be seen that [}, which was defined in Eq. (15),
for single grain cases increases with time during the entire growth pe-
riod. For the multigrain cases, however, /5 increases with time initially,
but, at some intermediate time which is denoted by the squares in the
figure, I7 starts to decrease with time and eventually reaches zero (since
lgifr — oo as the result of V, — 0). Therefore, the entire growth period
can be divided into two stages: the first stage, where dI*/dt > 0, and
the second stage, where d!}/dt <0. These two stages should not be
confused with the non-interacting and interacting stages discussed in
connection with Fig. 2. The interacting and non-interacting stages con-
cerned the growth of the primary arms, while the first and second stages
introduced here concern the average growth kinetics of the envelopes. It
will be shown below that the first and second stages can be referred to
as variable-sphericity and constant-sphericity stages, respectively. Di-
viding the entire growth period into variable-sphericity and constant-
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Fig. 7. Comparison between the mesoscopic primary tip velocities and the
Ivantsov primary tip velocities corresponding to the average undercooling in
the extra-dendritic liquid.

sphericity stages based on the sign of dI is an important premise that
is proposed in this study and will be used in Section 4, where the con-
stitutive relations are developed.

Variations of /; during these two stages can be understood by follow-
ing the variations of [, and V,, shown in Fig. 6(e) and (f), respectively,
and focusing on how the nominator and denominator of Eq. (15) change
with time. During the first stage, V, is relatively high (i.e., greater
than 0.8 x V},(Q()) and therefore, [, which appears in the nominator
of Eq. (15), increases relatively fast; this causes /;° to increase with time
during the first stage. When the second stage starts, V; has an interme-
diate value and, more importantly, is decreasing fast. Therefore, unlike
in the first stage, the increase in /, is not fast anymore and becomes in-
significant compared to the fast increase in / aff which appears in the
denominator of Eq. (15); this causes, /;' to decrease with time during the
second stage.

There is one last interesting point about Fig. 6(c) that can be dis-
cussed now because the first and second stages of growth were defined.
It can be seen from this figure that the variations of the sphericity during
the second stage of growth (i.e., the right-hand side of the squares) are
negligible compared to these variations during the first stage of growth
and, therefore, the sphericity can be assumed to be constant during the
second stage of growth. Consequently, in the rest of the paper, the first
and second stages of growth are referred to as variable-sphericity and
constant-sphericity stages, respectively.

Fig. 6(i) shows the time variations of the non-dimensional sphere ve-
locity. From the figure, it can be seen that during the variable-sphericity
stage of growth (i.e., the left-hand side of the squares), the multigrain
curves collapse on the single grain curves. This indicates that during the
variable-sphericity stage of growth, wg, for multigrain and single grain
cases can be expected to be predicted by the same relation. When the
constant-sphericity stage starts, however, the multigrain curves cease to
collapse on the single grain curves, and they start decreasing relatively
rapidly. This indicates that wg, during the constant-sphericity stage of
growth needs to be predicted from a separate relation.

Comparing the time variations of V;, shown in Fig. 6(f), and time
variations of W, shown in Fig. 6(i), reveals another interesting obser-
vation. Focusing first on the low grain density cases (the blue curves),
one can see that at = ~ 8, V, is zero: the primary tips have fully stopped.
At the same time, however, w, is still greater than zero: the envelopes
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are still growing. This indicates that growth continues (at least until
7 ~10) even after the primary tips stop. A similar trend is observed for
the low grain density curves. Growth of an envelope after the primary
tips stop is due to the growth of the secondary arms.

In Fig. 7, the mesoscopic primary tip velocities (the thin curves) are
compared with the Ivantsov tip velocities, predicted using Eq. (13) with
Q.rr = Q, (the thick curves). Data are shown only for the multigrain
cases. One can see from the figure that, as expected (see the discussion
below Eq. (14)), setting Q, , ; = Q, in the Ivantsov solution significantly
underpredicts the tip velocities.

Finally, this section is ended by summarizing the important observa-
tions that can be made from the upscaled mesoscopic results: (1) for the
multiple grain cases, the entire growth period can be divided into the
variable-sphericity and constant-sphericity stages and these two stages
correspond to the positive and negative values of d!I, respectively; (2)
for the single grain cases, the growth takes place entirely in the first
stage; (3) setting Q,,,, = Q, in the Ivantsov relation will significantly
underpredict the tip velocities.

4. Constitutive relations
4.1. Postulates

It is postulated that during the variable-sphericity stage of growth,
v is a function of [,/R, only and during the constant-sphericity stage of
growth, y is, obviously, constant.

* _ I
dl; >0—>y/—u/<R—;’>

(20
dif <=0—-dy =0

It is known from the literature [27] that the shape of a dendrite
depends on the surface tension anisotropy; therefore, one might wonder
why such a dependence is not introduced in Eq. (20). This is because in
this equation (and through the entire paper) y is the sphericity of the
dendrite envelope and, therefore, depends on the envelope shape (which
shall not be confused with the dendrite shape). From what is available
in the literature, it is not clear whether the envelope shape depends on
the surface tension anisotropy or not. What is known from the literature
is that the envelope shape, and therefore, the sphericity predicted by the
mesoscopic model, has been validated against experiments of equiaxed
solidification of SCN-acetone [1,15] and of directional solidification of
Al-Cu [14]. Since, as will be shown in Section 5, the mesoscopic values of
w are accurately predicted by taking the sphericity as a function of [,/R,
only, introducing surface tension anisotropy effects in Eq. (20) does not
seem to be necessary.

To develop a relation for wg,, one first needs to recognize that the
average growth kinetics, and therefore w,, are in general determined by
the growth of both the primary and the secondary arms. At early stages
of growth, the primary arms grow much faster than the secondary arms.
Therefore, their velocity can be expected to be the main factor in deter-
mining wg,. As the growth continues, the primary arms slow down and
finally stop, but the secondary arms and therefore the sphere continue
to grow, until the undercooling in the extra-dendritic liquid fully van-
ishes (i.e., the average undercooling in the extra-dendritic liquid reaches
zero). In other words, at some intermediate time during growth, the
main mechanism that drives the envelope growth, and thus determines
Wy, transitions from the primary tip velocity to the average undercool-
ing of the extra-dendritic liquid. This transition and the time at which it
occurs need to be properly taken into account in developing the relation
for wg,. In this paper, it is first postulated that the transition occurs when
the constant-sphericity stage of growth starts. The postulates to deter-
mine wy, during the variable-sphericity and constant-sphericity stages
are discussed next.

During the variable-sphericity stage, wg, is assumed to scale with

P
the primary tip velocity V,. It should be noted that wg,/V, cannot be
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taken as constant because the shape of the envelope changes signifi-
cantly during the variable-sphericity stage. In the macroscopic model,
the envelope shape is represented solely by the envelope sphericity .
In other words, y is assumed to contain all the geometrical information
about the envelope shape. Since y itself is postulated to be a function
of I,/Rg, only (see Eq. (20)), wg,/V, is similarly postulated to be a func-
tion of [,/Rg, only. During the constant-sphericity stage, wy, is assumed
to scale with wg,(t;), where ¢ is the time at the start of the constant-
sphericity stage, and the ratio wg,/wg,(t,) is postulated to be a function
of the scaled Ivantsov velocity corresponding to Q,, V,(2,)/V}, [Q,(t)],
only. The above three postulates can be expressed mathematically as

dli¥ >0 - w”—w”( by >
k =

Vi Vi \Ry

w w Vi (Q
ar<0—-» —2_ - % { 10(€) } @)
wsp(ts) wSP(tS) I/IU[QE(IS)]

Through the entire growth period, Q; .4 is assumed to scale with Q,,
and the ratio Q, , /e s assumed to be a function of the scaled length
of the free liquid region ahead of the primary tip up to the symmetry
line between two adjacent grains I} = R - 17, where Rl =R, [aifr:
wa/. _ Qm/.f (l*) )

Q, Q, !

The envelope diffusion length, §,,,, is assumed to scale with the
sphere diffusion length, 5“’ (Eq. (7)), and the ratio §,, / 55,) is assumed
to be a function of sphericity only:

e

1) 1)
;"U = ;—"”(w) (23)
sp sp
Note that §,,, /6, could have been formulated as a function of [,/Rg,

instead of y, because y is a function of lt/RSp only (see Eq. (20)) but
here it is formulated as a function of the envelope sphericity y to better
illustrate that the ratio of the envelope diffusion length to the sphere
diffusion length is a function of the envelope geometry, which is repre-
sented by the envelope sphericity.

4.2. Fitting functions

In this section, the upscale mesoscopic results, presented in
Section 3.2, are used to plot the left-hand-side of Eqs. (20)-(23) as a
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Fig. 8. The envelope sphericity as a function of the ratio of the primary arm
length to sphere radius. The green curve represents our curve fit.

function of the independent variable on the right-hand-side. The con-
stitutive relations are then developed by curve fitting these plots. In
the following figures, mesoscopic results for a single grain are shown
as black curves and for multiple grains with high and low grain density
as red and blue curves, respectively. Results for Q; = 0.05 and 0.15 are
plotted as solid and dashed curves, respectively; the green curves depict
our curve fits and the squares show the start of the constant-sphericity
stage of growth.

In Fig. 8, the sphericity y is plotted as a function of the ratio of
the primary dendrite arm length to the sphere radius [/Rg,. It can be
seen that for a single grain, the mesoscopic simulation results for the
two different initial undercoolings Q, collapse onto a single curve. This
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Fig. 9. Scaled sphere growth velocity during (a) the variable-sphericty stage of growth as a function of the ratio of primary arm length to sphere radius, and during
(b) the constant-sphericity stage of growth as a function of scaled Ivantsov velocity corresponding to the average undercooling in the extra-dendritic liquid. The

green curves represent our curve fits.
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adjacent grains. The green curve represents our curve fit.

indicates that the sphericity is indeed a function of [,/Ry, only. The
multigrain data in the plot fall on the same curve as the single grain
data during the variable-sphericity stage of growth. However, when
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grain cases is then given by:

6.34

6.02 + — 308
(]’/RSP_])1.93

d[;‘ <=0->dy =0 (24)

aif >0 - y=1-

This equality can be understood as follows. Initially (i.e., = = 0), the
envelope is spherical and [,/Ry, is equal to unity; therefore the denomi-
nator on the right-hand side will be large, which will make the sphericity
become equal to unity. During growth, as the envelope shape transitions
from a spherical to a dendritic, [,/Ry, increases; the second term on the
right-hand-side increases, and therefore y decreases.

In Fig. 9(a), wg,/V, during the variable-sphericity stage of growth
is plotted as a function of [,/Rg,. It can be seen that w,/V, decreases
monotonically as [,/Ry, increases. Since the single grain and multi-
grain data for the two different initial undercoolings Q, collapse, wg,/V,
during the variable-sphericity stage of growth is indeed a function of
1/Rg, only, and can be fit by w,,/V, = 0.80 — 0.78[1 — 1/(I,/R,,)]*%. In
Fig. 9(b), wg,/wg, (&) is plotted as a function of Vy,(R,)/Vy, [Q,(t,)]. Sin-
gle grain data cannot be included in this plot because, as discussed
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in connection with Fig. 6(g), for a single grain growth takes place
solely at the variable-sphericity stage. One can see that the multi-
grain data for the two different initial undercoolings Q, collapse onto
a single curve. This indicates thatwg,/wg,(z) is indeed a function of
Vi (Q)/ Vi [Q,(7)] only. The final fit for wg,/wg,(7,) is then given by
wg, /W) = {V,(Q,)/Vy,[Q,()1}%. Summarizing the fits proposed
in Fig. 9(a) and (b), we get

w. 0.85
ad =O.80—O.78<1— 1 )
Vt lt/Rsp

0.50
wsp _ { VIU(Qe) } (25)
wsn(IS) Vi [Qe(IS)]

InFig. 10, the scaled effective far-field undercooling Q; ¢/, is plot-
ted as a function of l;"; Q off Was calculated from Eq. (13), together with
the relation for the tip radius (see the discussion below Eq. (13)), using
the mesoscopic values for V,. Note that Q, .4 is an effective undercooling
that is to be used in the Ivantsov relation (Eq. (13)) in order to obtain
accurate tip velocities for the primary tips of interacting dendrites. Data
is shown only during the variable-sphericity stage of growth because
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Fig. 14. Comparison between the mesoscopic and macroscopic quantities plotted as a function of time. This comparison is for the recalescence case with high grain

density: R, = 0.8 mm.
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Fig. 14. Continued

the curves for the different mesoscopic cases did not collapse during the
constant-sphericity stage of growth. This, however, should not distract
because, as will become clear at the end of this section, in the macro-
scopic model, the calculation of V, and therefore Q; . are not required
during the constant-sphericity stage. Variations of Q, .¢/Q, with /] can
be best understood by first focusing on the data for the high undercool-
ing low grain density case (i.e., the dashed blue curve). Initially (i.e., at
7 =0), /; has its highest value (about six) and Q; . is slightly greater
than Q,, which is equal to Q; this is because, as shown in Fig. 6(f) and
due to the presence of the initial transient stage, V, is initially greater
than V;,(€). During growth, /, increases and therefore /; decreases. For
I > 2, Q; o/Q, remains almost constant because the rate of decrease in
Q o and Q, are almost the same; however, at /] about two, Q, .¢/Q,
starts to increase because the rate of decrease in Q, starts to become
greater than the rate of decrease in Q; .¢ The curves for the other meso-
scopic cases behave in a similar fashion and, despite the minor spread
between them, they can be fit by a single curve given by

Q eff 1
: = 26
Q 0.97 - — 228 @0

, 028
14+(1,*/1.3)1°

There are two more points about Fig. 10 and Eq. (26) that need to
be discussed before pursuing. First, focusing on the blue curves in the
figure, it can be seen that they do not collapse fully and have a minor
spread. This minor spread causes imperfections in the fit for Q¢/Q, and is
attributed to the presence of an initial transient stage in the mesoscopic
simulations. The collapse between these curves cannot reasonably be
expected to be better because, as was shown in Fig. 6(f), the curves
representing V; for the mesoscopic cases with different initial under-
coolings did not collapse during the initial transient stage. Similarly,
the collapse between the red curves in Fig. 10 cannot be expected to be
better. Second, the first term in the denominator of the right-hand-side
is chosen to be slightly less than unity. In this way, for free growth of
a single grain and at the early stages of multigrain growth, where the
second term in the denominator is almost zero because ;" is high, Q; ¢
becomes slightly higher than Q, (,,,, = 1.031Q,). Therefore, initially
(i.e., at = 0), the predicted tip velocity V, will be higher than V;,(€).
This means that the macroscopic model can predict the initial transient
effects on the tip velocity. However, since the stagnant-film model used
to calculate the tip velocity in the mesoscopic model is based on the
assumption of a steady-state diffusion field within the stagnant film,
the tip velocities predicted by the macroscopic model during the initial
transient stage can only be expected to be approximate.
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In Fig. 11, ,y,/6g, for the single grain cases is plotted as a func-
tion of y. It can be seen that as y decreases during growth, 8.,/
increases monotonically above unity. This indicates that the diffusion
length around a complex shaped dendritic envelope is greater than the
diffusion length for the sphere. Since the data for the two different ini-
tial undercoolings collapse, J.,,/dy, is indeed a function of y only. A
curve fit to the data for the single grain is given by:

(Zﬂ =1+13%x(1—-y)>? (27
sp
In summary, the macroscopic model consists of Egs. (1)-(7),(12)-
(16), and (24)—(27). It requires two inputs: the initial undercooling Q,
and the final grain radius Ry. Also, note that [, and V, appear only in the
first relation of Egs. (24) and (25), respectively. Therefore, the model
needs to calculate V, during the variable-sphericity stage only.
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5. Comparing the macroscopic predictions with the upscaled
mesoscopic results

In this section, the constitutive relations are verified by comparing
the predictions of the macroscopic model against the upscaled meso-
scopic results. It is pointed out that the individual constitutive relations
that were each separately fitted to the upscaled mesoscopic simulations
are now used in conjunction in a closed macroscopic model. The com-
parisons are first made for the isothermal mesoscopic cases, presented
in Section 3.2, and used in Section 4 to develop the constitutive rela-
tions. Next, to provide further confidence in the constitutive relations,
comparisons are made against new upscaled mesoscopic results that
are representative for conditions in solidification processing of metal
alloys.
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Fig. 15. Comparison between the mesoscopic and macroscopic quantities plotted as a function of time. This comparison is for the recalescence case with intermediate

grain density: R, = 1.6 mm.
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5.1. Isothermal cases

Figs. 12 and 13 show the comparisons between the predictions of
the macroscopic model for different quantities (the thick curves) with
the corresponding upscaled mesoscopic results (the thin curves) for
the four isothermal cases. Fig. 12 shows the comparisons for the low
grain density cases with the low/high undercoolings (the solid/dashed
curves) and Fig. 13 shows the similar comparison for the high grain
density cases. For all the four cases, the overall agreements between the
macroscopic predictions and the upscaled mesoscopic results are good
and, as is discussed next, cannot realistically be expected to be much
better.

In Figs. 12(e) and 12(e) the tip velocities predicted by the macro-
scopic model are compared with the mesoscopic tip velocities. Note
that, as discussed at the end of Section 4, in the macroscopic model the
tip velocities need to be predicted only during the variable-sphericity
stage. Plotting the tip velocities during the constant-sphericity stage for
the isothermal cases is only because, for these cases, the mesoscopic
and macroscopic predictions of the tip velocity were in good agree-
ment. It can be seen that, during the entire growth period, the predicted
tip velocities agree reasonably well with the mesoscopic tip velocities.
Contrasting this agreement with the vast difference that was observed in

Fig. 7 between the mesoscopic tip velocities and the Ivantsov velocities
corresponding to Q,, one can easily acknowledge that the tip veloci-
ties predicted by our model (i.e., the Ivantsov velocities corresponding
to Q; o) are, as expected, significantly more accurate (when compared
against the mesoscopic tip velocities) than the Ivantsov velocities corre-
sponding to Q,.

The minor difference between the macroscopic and mesoscopic tip
velocities is attributed to the presence of the initial transient stage in the
mesoscopic simulations, which, as discussed in connection with Fig. 10,
causes imperfections in our fit for Q; ,5/Q,.

Before proceeding, it is necessary to iterate that the constitutive rela-
tions developed in this paper are based only on the upscaled mesoscopic
results for a single grain growing into an essentially infinite medium as
well as multiple grains with the periodic arrangement. In reality, how-
ever, grains can have a random arrangement. Therefore, a necessary
future work is to examine the agreement between the predictions of
the macroscopic model and the upscaled mesoscopic results for multi-
ple grains with a random arrangement. If this agreement is found to be
not as good as the agreement that was achieved in Figs. 12 and 13, then
the constitutive relations will need to be improved. We, however, ex-
pect that the predictions of the relation for y (i.e., Eq. (24)), and the
relation for wy, during the variable-sphericity stage of growth (i.e., the
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first equality in Eq. (25)), will be still in a good agreement with the
corresponding mesoscopic results for multiple grains with random ar-
rangment. This is because, for y and wy, during the variable-sphericity
stage, the mesoscopic data for multiple grains with BCC arrangement
collapsed on the data for a single grain (see Figs. 8 and 9(a)); there-
fore, it can be expected that data for multiple grains with random ar-
rangement will also collapse on the single grain data. As a result, it is
expected that the fit in Fig. 8, and therefore the relation for y, and also
the fit in Fig. 9(a), and therefore the relation for Wy during the variable-
sphericity stage of growth, will remain unchanged even if mesoscopic
data for multiple grains with random arrangement is added to Figs.
8 and 9(a). The agreements between the predictions of the relations
for wg, during the constant-sphericity stage of growth, Q, . and §,,,
with the corresponding mesoscopic values might not be as good as the
agreement observed in Figs. 12 and 13. If that turns out to be the case,
these relations will need to be improved, and this is a necessary future
work.
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5.2. Recalescence cases

To further verify the constitutive relations, new mesoscopic simu-
lations were performed and the predictions of the macroscopic model
were compared with the upscaled mesoscopic results. These new cases
are inspired by the experiments of Rappaz and Thevoz [22], which in-
volve solidification of Al-7 wt. pct. Si in a small unit cell, with uniform
temperature, under external cooling. These cases are called the recales-
cence cases because, as is shown below, a temperature recalescence was
observed in the cooling curves. To simulate these cases with the macro-
scopic model, this model needs to be supplemented by three additional
equations that are discussed next.

The equation for the energy conservation reads
CP(;_T; = L‘f% +4 (28)
where & Lps and ¢ are the specific heat capacity, latent heat, and heat
extraction rate, respectively. To predict the solid fractions, the solute
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Fig. 16. Comparison between the mesoscopic and macroscopic quantities plotted as a function of time. This comparison is for the recalescence case with low grain

density: R, = 2.4 mm.
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concentration in the inter-dendritic liquid (i.e., the liquid inside the en-
velopes) was first calculated from [33]:
aéd = ag: Jd
—4 = (1-k)C -2
85 (1-k0)C or o
where g; = 1 — g, is the liquid fraction. Then, since the inter-dendritic
liquid is not undercooled, the solid fraction can be calculated by equat-

ing the inter-dendritic liquid solute concentration with the equilibrium
solute concentration C;':

[g.(C. = C4)] 9)

For T < T;,,(C,) = AT, : Cy=C; (30)

where AT, is the nucleation undercooling and C; is calculated from
the liquidus line of the phase diagram

L I-T;
cr = 31

my

where my is the slope of the liquidus line and Ty is the melting point
of the pure material. Note that Eq. (30) assumes that nucleation occurs
instantaneously at the nucleation temperature.

Similar to the isothermal cases, the recalescence cases corre-
spond to the growth of multiple grains, in a BCC arrangement, with
low/intermediate/high grain densities (i.e., R, = 0.8/1.6/2.4mm). In
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the simulations, the properties were taken from Rappaz and Thevoz
[22]; the initial temperature was set equal to the liquidus temperature
(i.e., no initial undercooling), and the nucleation undercooling was set
to zero.

Figs. 14-16 show the comparisons between the macroscopic pre-
dictions of the different quantities (the blue curves) with the cor-
responding upscaled mesoscopic results (the red curves) for the re-
calescence cases with low/intermediate/high grain densities. For the
recalescence cases, the tip velocities are shown only during the
variable-sphericity stage of growth because the mesoscopic and macro-
scopic predictions of V, did not agree during the constant-sphericity
stage. This, however, should not distract because, as discussed earlier,
in the macroscopic model, calculation of V, are not required during the
constant-sphericity stage. From the plots it can be seen that the overall
agreement between the macroscopic and mesoscopic predictions of the
different quantities is good. For example, the recalescence observed in
the mesoscopic simulations is predicted to within better than 0.5K ac-
curacy and the mesoscopic and macroscopic solid fractions are in an al-
most excellent agreement. Note that the existence of a minor difference
between the macroscopic and mesoscopic temperatures while the solid
fractions are in excellent agreement, shows extremely high sensitivity
of the system (See Eq. (28) and note that ¢, Ly, and ¢ are constant). Pre-
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dicting temperatures with accuracy of 0.5K for such a sensitive system
is a remarkable achievement of the new constitutive relations.

Finally, it is useful to mention that, for the recalescence cases, the
macroscopic and mesoscopic values of V; are initially in an excellent
agreement. This is because these cases do not have an initial transient
stage as they start with undercooling zero. This also further supports the
argument that we had at the end of Section 5.1, where we attributed the
minor difference between macroscopic and mesoscopic values of V; to
the presence of an initial transient stage.

6. Conclusions

A previously developed mesoscopic envelope model was used to per-
form three-dimensional simulations of equiaxed dendritic growth on a
spatial scale that corresponds to a REV, which is used in developing
volume-averaged macroscopic models. The first set of mesoscopic simu-
lations were performed for isothermal growth at a large range of initial
undercoolings and grain densities (including a single grain). The results
were upscaled by averaging them over the REV. The upscaled results
were examined in detail. It was found that the entire growth period can
be divided into variable-sphericity and constant-sphericity stages based
on the sign of the time derivative of the scaled primary arm length. Dur-
ing the variable-sphericity stage, the envelope growth is mainly due to
the growth of the primary arms, while during the constant-sphericity
stage it is mainly due to the growth of the secondary arms. It was also
found that using the average undercooling in the extra-dendritic liquid
in the Ivantsov solution significantly underpredicts the tip velocities.

For the first time in the field of solidification, the upscaled meso-
scopic results were used to develop constitutive relations for macro-
scopic models of equiaxed solidification. Relations were proposed for
the envelope sphericity, average growth velocity, far-field undercooling
that needs to be used in the Ivantsov solution to accurately predict the
primary tip velocities, and for the average diffusion length around the
envelopes.

The constitutive relations were verified by comparing the predictions
of the macroscopic model with the upscaled mesoscopic results for the
isothermal and also for the new mesoscopic cases. These new cases in-
volve external cooling and a recalescence in the cooling curves. For all
the cases, the predicted macroscopic quantities were found to be in good
agreement with the corresponding upscaled mesoscopic results. The mi-
nor difference between the two was attributed to a minor difference in
the macroscopic and mesoscopic values of the primary tip velocity, and
that was attributed to the presence of an initial transient stage in the
mesoscopic simulations.

A necessary future work is comparing the predictions of the macro-
scopic model with the upscaled mesoscopic results for multiple grains in
arandom arrangement. Determining the final grain radius R for this ar-
rangement will be a key factor in macroscopic simulations. This can be
achieved using methods such as grain count or linear intercept that are
commonly used in microstructure analysis [34]. Extension of the meso-
scopic model for multicomponent alloys and incorporating melt flow in
the model are also of great interest.
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