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a b s t r a c t 

Macroscale solidification models incorporate the microscale and mesoscale phenomena of dendritic grain growth 

using constitutive relations. These relations can be obtained by simulating those phenomena inside a Representa- 

tive Elementary Volume (REV) and then upscaling the results to the macroscale. In the present study, a previously 

developed mesoscopic envelope model is used to perform three-dimensional simulations of equiaxed dendritic 

growth at a spatial scale that corresponds to a REV. The mesoscopic results are upscaled by averaging them over 

the mesoscopic simulation domain. The upscaled results are used to develop new constitutive relations, which, 

unlike the currently available relations, do not rely on highly simplified assumptions about the grain envelope 

shape or the solute diffusion conditions around it. The relations are verified by comparing the predictions of the 

macroscopic model with the upscaled mesoscopic results at different solidification conditions. These relations can 

now be used in macroscopic models of equiaxed solidification to incorporate more realistically the microscale 

and mesoscale phenomena. 
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. Introduction 

Solidification is a complex multiscale problem that is controlled

y phenomena occurring at length scales that are distinct from each

ther and range over roughly five orders of magnitude [1,2] . At the

acroscale (i.e., the scale of the whole casting) heat transfer and typi-

ally melt convection take place, grains can move, and the solid might

eform. At the mesoscale (i.e., the scale of the primary dendrite arms

pacing ranging from 1 to 0.1 mm) grains grow controlled by solute and

eat diffusion and under the influence of collective interactions; this

etermines the final grain structure. At the microscale (i.e., the scale of

 dendrite tip radius ranging from 10 − 2 to 10 − 3 mm) the competition

etween the microscale heat/solute diffusion and surface tension deter-

ines the dendrite tip radius and velocity. What makes solidification

odeling a complex task is that there is a strong inter-scale coupling

etween the phenomena occurring at the different length scales. For

xample, macroscale melt convection influences the microscale solute

iffusion, and is, itself, influenced by the microscopic structure of the

emi-solid mush. Because of this coupling, a model that simulates the

acroscale behavior of a solidifying system needs to incorporate the mi-

roscale and mesoscale phenomena. Incorporating these phenomena by

irectly simulating them will, however, require having computational

ells as small as one micrometer in the simulation domain that can be

s large as few meters. This will result in having millions of cells in each
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irection. The computational cost of such a simulation will continue to

emain beyond the reach of computer powers in the foreseeable future.

herefore, one needs to find another way to incorporate the microscale

nd mesoscale phenomena in models that simulate the macroscale

ehavior. 

Microscale and mesoscale phenomena can be incorporated in the

odels that simulate the macroscale behavior using volume-averaging

ethods. Averaging concepts were first applied in the solidification field

y Beckermann and Viskanta [3] in the mid to late 1980s and later

ignificantly extended by Ni and Beckermann [4] and Wang and Beck-

rmann [5–9] . Volume-averaging is now a widely accepted method in

eveloping macroscale solidification models as is indicated by more

han one thousand citations to the original papers. Volume-averaged

acroscale models have been used to simulate solidification in systems

s large as steel ingots [10–12] . It is beyond the scope of this paper

o review the governing equations in detail, but thorough reviews are

vailable [6,13] . In brief, these models are derived by averaging the

ocal equations (i.e., equations that are valid at the microscopic scale)

or each phase over a volume that contains all the phases present in

he system and is called the Representative Elementary Volume (REV).

he size of an REV must be small compared to the size of the entire

ystem, but large compared to the scale on which the microscale phe-

omena takes place. The resulting volume-averaged equations contain

hase fractions and source terms. These source terms, which account
en, Germany. 

u (M. Torabi Rad). 
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Fig. 1. Two-dimensional schematic of a single equiaxed dendrite growing into 

an essentially infinite medium; the dendritic envelope and volume-equivalent 

sphere; regions of solid, inter-dendritic liquid, and extra-dendritic liquid; and 

an schematic of the solute distribution in the extra-dendritic liquid ahead of 

the primary tip along with the tangent to the profile at the position of the tip; 

represents the distance from the dendrite center. 
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or the microscale and mesoscale transport phenomena occurring at the

nterfaces between the different phases, depend on variables that are

ot predicted by the macroscopic model, because the lower scale in-

ormation that these variables represent has been lost in the averaging

rocess. Accurate calculation of these source terms, therefore, requires

ne to do a formal analysis on the REV scale and then pass up the in-

ormation to the macroscale, through constitutive relations, in a process

alled upscaling. The term upscaling simply means that in the ladder of

ength scales information is passed up from a smaller scale to a larger

cale by averaging. This upscaling has never been tried in the field of

olidification, mainly because of the complexity that arises as the result

f the large range of length scales that need to be resolved. In other

ords, in solidification, there is a large gap between the involved micro

nd macro length scales. Therefore, the currently available constitutive

elations have been based on somewhat simplistic assumptions rather

han a formal analysis of the REV scale. 

The gap between the micro and macro scales can be bridged using

he mesoscopic model originally developed for pure materials by Stein-

ach et al. [1,2] , extended for binary alloys by Delaleau et al. [14] , and

urther validated by Souhar et al. [15] by performing three-dimensional

imulations of equiaxed growth and comparing the results with ex-

erimental scaling laws [16] . Mesoscopic models directly resolve the

ransport phenomena on the REV scale, by solving an equation for the

eat/solute transport on this scale, and incorporate microscale phenom-

na, by using a local analytical solution for the microscale heat/solute

ransport. The computational power requirement of these models is sig-

ificantly lower than the models that resolve the microscale phenom-

na directly, such as the phase field models [1,2] . This allows one to

o three-dimensional simulations at low undercoolings, corresponding

o realistic process conditions, and at relatively large domain sizes that

orrespond to a REV. 

In this paper, the mesoscopic envelope model of Delaleau et al.

14] is used to perform three-dimensional simulations of equiaxed

rowth on a spatial scale that corresponds to a REV. Simulations are

erformed for several initial undercoolings and grain densities and the

esults were upscaled by averaging them over the volume of the REV.

he upscaled results are examined in detail and used to develop new,

ore accurate constitutive relations for macroscale solidification mod-

ls. The new constitutive relations are verified by comparing the pre-

ictions of the volume-averaged macroscopic model with the upscaled

esoscopic results at different solidification conditions. 

The paper is organized as follows: The macroscopic model is intro-

uced in Section 2 . A brief introduction of the mesoscopic model and

esoscopic results are presented in Section 3 . The constitutive relations

re developed in Section 4 and are verified in Section 5 . 

. Volume-averaged macroscopic model 

In this section, the conservation equations of the volume-averaged

acroscopic model used in the present study are first introduced. It is

hown that these equations contain variables that need to be obtained

rom constitutive relations. The constitutive relations are discussed next.

.1. Conservation equations 

Following the pioneering work of Wang and Beckermann [5–9] , to

evelop a macroscopic model for equiaxed solidification in an under-

ooled melt, a solidifying system is first assumed to consist of three

hases: solid, inter-dendritic liquid, and extra-dendritic liquid. The two

iquid phases are separated by the grain envelope, which is a virtual and

mooth surface that connects the primary tips and the tips of actively

rowing secondary arms. A secondary arm is defined as active when

t is longer than the next active secondary arm closer to the primary

ip. Two liquid phases are introduced in the model because the solute

iffusion is governed by length scales of different orders of magnitude:

he secondary arm spacing in the inter-dendritic liquid and the distance
etween grains in the extra-dendritic liquid. Fig. 1 shows a schematic

f a grain envelope and the regions of the solid, inter-dendritic liquid,

nd extra-dendritic liquid phases, denoted by s, d , and e , respectively.

riting the local (i.e., the microscopic level) equation for the mass con-

ervation in the extra-dendritic liquid in the absence of melt convection

nd solid motion, and using the averaging theorems discussed in detail

n Wang and Beckermann [5] to average that equation over the volume

f the REV, V 0 , results in the following volume-averaged equation for

he average growth kinetics: 

𝑑 𝑔 𝑒𝑛𝑣 

𝑑𝑡 
= 

1 
𝑉 0 ∬𝐴 𝑒𝑛𝑣 

𝒘 𝑒𝑛𝑣 ⋅ 𝒏 𝑑𝐴 = 𝑆 𝑒𝑛𝑣 𝑤 𝑒𝑛𝑣 (1)

here g env , A env , w env , n , S env , and w env are the envelope volume frac-

ion (i.e., grain fraction), envelope surface area, local envelope growth

elocity vector, unit vector normal to the envelope surface and pointing

utside the envelope, envelope surface area per unit volume of the REV

i.e., A env / V 0 ), and average envelope growth velocity, respectively. This

quation indicates that the envelope volume fraction g env will increase,

n other words growth will continue, as long as w env is greater than zero.

he terms on the left-hand and right-hand sides of the first equality rep-

esent the change in the mass inside the envelope and the net rate of

ass exchange at the envelope surface. 

Writing the local equation for the solute conservation in the extra-

endritic liquid and following a procedure similar to the one discussed

bove Eq. (1) gives the volume-averaged equation for the average solute

iffusion rates from the dendrite envelopes as: 

𝜕 

𝜕𝑡 

(
𝑔 𝑒 𝐶̄ 𝑒 

)
= − 

1 
𝑉 𝑅𝐸𝑉 ∬𝐴 𝑒𝑛𝑣 

𝐶 

∗ 
𝑙 
𝒘 𝑒𝑛𝑣 ⋅ 𝒏 𝑑𝐴 + 

1 
𝑉 𝑅𝐸𝑉 ∬𝐴 𝑒𝑛𝑣 

𝒋 𝑒 ⋅ 𝒏 𝑑𝐴 

= 

𝜕 𝑔 𝑒 

𝜕𝑡 
𝐶 

∗ 
𝑙 
+ 𝑆 𝑒𝑛𝑣 

𝐷 𝑙 

𝛿𝑒𝑛𝑣 

(
𝐶 

∗ 
𝑙 
− 𝐶̄ 𝑒 

)
(2) 

here 𝑔 𝑒 = 1 − 𝑔 𝑒𝑛𝑣 , 𝐶̄ 𝑒 , 𝐶 

∗ 
𝑙 
, j e , D l and 𝛿env are the extra-dendritic liq-

id fraction, average solute concentration in the extra-dendritic liquid,

quilibrium solute concentration in the liquid, solute diffusion flux in

he extra-dendritic liquid, solute mass diffusivity in the liquid, and av-

rage diffusion length around the envelopes, respectively. Note that, on

he right-hand side of the first equality, the negative and positive signs

f the first and second terms, respectively, reflect the fact that the unit

ector n is defined to be pointing outside the envelope. These terms

epresent the microscopic solute transfer (from the inter-dendritic to

xtra-dendritic) at the envelope surface. The first term represents the

olute transfer due to the growth of the envelope and can be simply

ubstituted using the first equality in Eq. (1) (note that 𝐶 

∗ 
𝑙 

is assumed
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o be uniform in the REV and be, therefore, taken outside the integral).

he second term represents the solute transfer due to the solute dif-

usion; the integral in this term can be modeled as the product of the

nvelope specific surface area S env and a mean diffusive flux at the en-

elope surface. This flux can be assumed to be directly proportional

o the driving force for diffusion, which is the difference between the

olute concentration in the extra-dendritic liquid adjacent to the enve-

ope and the average solute concentration in the extra-dendritic liquid

i.e., 𝐶 

∗ 
𝑙 
− 𝐶̄ 𝑒 ), and inversely proportional to the average diffusion length

round the envelopes 𝛿env ; 𝛿env is a measure of how far the solute has

iffused away from the envelope. To better understand the concept of

iffusion length, one can look at Fig. 1 , where a schematic of the so-

ute distribution in the extra-dendritic liquid ahead of the primary tips

s shown. The green line in the plot shows the tangent to the profile

t the primary tip. The tangent intersects with the horizontal dashed

ine representing 𝐶̄ 𝑒 , at a distance that is proportional to the envelope

iffusion length 𝛿env . Finally, the term 𝐶 

∗ 
𝑙 
− 𝐶̄ 𝑒 is linked to the average

ndercooling in the extra-dendritic liquid, which is the driving force for

rowth. 

In Eqs. (1) and (2) , the variables S env , w env , and 𝛿env need to be ob-

ained from constitutive relations. The next section discusses the proce-

ure to derive these relations and also the assumptions that have been

ommonly used in the literature to derive the currently available con-

titutive relations. 

.2. Constitutive relations 

To obtain the constitutive relations for the envelope variables S env ,

 env , and 𝛿env , the envelope is first approximated by the volume-

quivalent sphere, referred to as sphere hereafter. A schematic of the

phere is also shown in Fig. 1 . Then, the envelope variables are related

o the sphere variables as follows. 

.2.1. Relating envelope variables to sphere variables 

The envelope surface area per unit volume of the REV, S env , is related

o the sphere surface area per unit volume of the REV, S sp , directly from

he definition of the envelope sphericity 𝜓 

 𝑒𝑛𝑣 = 

𝑆 𝑠𝑝 

𝜓 
(3) 

One should note that the sphericity 𝜓 is a purely geometrical variable

i.e., it depends solely on the geometry of the envelope). The sphericity

f a sphere is equal to unity by definition, and any other shape has a

phericity less than unity (for example, the sphericity of an octahedron

s 0.85 [17] ). 

To relate the average envelope velocity, w env to the sphere growth ve-

ocity, w sp , one needs to recognize that Eq. (1) holds for any shape; since

he volume of an envelope and its sphere are equal, the time derivative

f envelope volume fraction and sphere volume fraction will be equal

nd one can, therefore, write 𝑆 𝑒𝑛𝑣 𝑤 𝑒𝑛𝑣 = 𝑆 𝑠𝑝 𝑤 𝑠𝑝 . In this relation, S env can

e substituted from Eq. (3) to give: 

 𝑒𝑛𝑣 = 𝜓 𝑤 𝑠𝑝 (4)

Next, the variation of 𝜓 during growth is discussed. Equiaxed growth

tarts from a spherical nucleus, which has 𝜓 = 1 and, from Eq. (4) ,

 𝑒𝑛𝑣 ∕ 𝑤 𝑠𝑝 = 1 . As the spherical nucleus grows into the undercooled melt

urrounding it, its shape becomes unstable and relatively fast growth

long the energetically favorable crystallographic directions, compared

o growth along the other directions, gradually transitions the shape into

 dendrite, which has 𝜓 < 1 and, again from Eq. (4) , w env / w sp < 1. There-

ore, during growth, 𝜓 and w env / w sp decrease from their initial value of

nity. 

In the current literature, there are no relations to predict the de-

rease in 𝜓 or w env / w sp during growth. Therefore, macroscopic models

ad to rely on pre-determined and constant values for 𝜓 and w env / w sp .

or example, in the study of Martorano et al . [18] , 𝜓 and w env / w sp have
een assumed to be equal to unity during the entire growth period; in

ther words, it is assumed that grains retain their initial spherical shape.

n the studies of Appolaire et al. [19] and of Ludwig and Wu [20,21] ,

 is assumed to be equal to 0.85 (i.e., the sphericity of an octahedron)

nd w env / w sp is assumed to be equal to the sphericity. Disregarding the

ecrease in 𝜓 and w env / w sp during growth can be expected to result in in-

ccuracies in the macroscopic models. In fact, Rappaz and Thevoz [22] ,

ompared the cooling curves measured in the experiments with the ones

redicted by their solute diffusion model and noticed that their model

oes not predict the recalescence very well. They attributed this partly to

he fact that in their model, sphericity was assumed to be equal to unity

uring the entire growth. As another example, Wu et al. [23,24] did

olumnar to equiaxed transition (CET) simulations with different val-

es for sphericity and found that the CET position is highly sensitive to

he sphericity value. Developing a relation to predict the decreases in

 and, therefore, in w env / w sp , during growth is one of the objectives of

his study. 

To relate 𝛿env to the sphere diffusion length, 𝛿sp , one needs to realize

hat the envelope diffusion length is determined by the diffusion field

round the envelope. It is therefore, in general, a complicated function

f the envelope shape, size and growth velocity and a relation between

env and 𝛿sp cannot be obtained from a simple and purely geometrical

nalysis, such as the one we did to obtain Eq. (4) . Such a relation has

ever been proposed in the literature mainly because the complex nature

f solute diffusion field around an envelope precludes one from finding

n analytical relation for 𝛿env . Macroscopic models, therefore, have sim-

ly assumed 𝛿𝑒𝑛𝑣 = 𝛿𝑠𝑝 [5–9,18,25] . This assumption might have reason-

ble accuracy during the initial stages of growth, when the envelope is

pherical; however, as the envelope becomes dendritic with growth, the

ssumption can be expected to become increasingly inaccurate. Devel-

ping a relation for 𝛿env is another objective of this study. 

.2.2. Relations for sphere variables 

In the previous section, the envelope variables were related to the

phere variables. In this section, the relations for the sphere variables

re outlined first and then interesting limiting cases of the relation for

𝑠𝑝 
are discussed. 

The sphere surface area per unit volume of the REV, S sp , is calculated

rom 

 𝑠𝑝 = 

4 𝜋𝑛𝑅 

2 
𝑠𝑝 

𝑉 0 
= 

4 𝜋𝑛𝑅 

2 
𝑠𝑝 (

4 𝜋𝑛𝑅 

3 
𝑠𝑝 
∕3 

)
∕ 𝑔 𝑒𝑛𝑣 

= 

3 𝑔 𝑒𝑛𝑣 
𝑅 𝑠𝑝 

(5)

here n and R sp are the effective number of grains and the sphere ra-

ius, respectively. Note that, in this equation, the first equality simply

ollows from the definition of S sp and the second equality follows from

he definition of g env (i.e., the ratio of the total envelope volume to the

EV volume V 0 ) and the fact that the envelope volume is equal to the

phere volume. The sphere radius R sp is calculated from 

𝑑 𝑅 𝑠𝑝 

𝑑𝑡 
= 𝑤 𝑠𝑝 (6) 

Next, the model needs a relation for w sp . Currently, macroscopic

odels assume simple fixed envelope geometries and therefore obtain

 sp from the primary tip velocity, V t , multiplied by a constant geomet-

ical factor [7,17–24] . In reality, w sp depends on the velocity of the

rimary and secondary tips, and on the envelope shape. Developing a

elation for w sp that accounts for the realistic evolving envelope shape

s one of the objectives of the present study. 
The sphere diffusion length 𝛿sp is calculated from the relation devel-

ped by Martorano et al. [18] 

𝛿
𝑠𝑝 

𝑅 𝑠𝑝 
= 

𝑅 𝑠𝑝 

𝑅 3 
𝑓 
− 𝑅 3 

𝑠𝑝 

{ ( 

𝑅 𝑓 𝑅 𝑠𝑝 

𝑃 𝑒 𝑠𝑝 
+ 

𝑅 2 
𝑠𝑝 

𝑃𝑒 2 
𝑠𝑝 

− 𝑅 2 
𝑓 

) 

𝑒 
− 𝑃 𝑒 𝑠𝑝 

( 
𝑅 𝑓 

𝑅 𝑠𝑝 
−1 

) 
− 

( 

𝑅 2 
𝑠𝑝 

𝑃 𝑒 𝑠𝑝 
+ 

𝑅 2 
𝑠𝑝 

𝑃𝑒 2 
𝑠𝑝 

− 
𝑅 3 
𝑓 

𝑅 𝑠𝑝 

) 

+ 𝑃 𝑒 𝑠𝑝 
𝑅 3 
𝑓 

𝑅 𝑠𝑝 

( 

𝑒 
− 𝑃 𝑒 𝑠𝑝 

( 
𝑅 𝑓 

𝑅 𝑠𝑝 
−1 

) 
Iv 
(
𝑃 𝑒 𝑠𝑝 𝑅 𝑓 ∕ 𝑅 𝑠𝑝 

)
𝑃 𝑒 𝑠𝑝 𝑅 𝑓 ∕ 𝑅 𝑠𝑝 

− 
Iv 
(
𝑃 𝑒 𝑠𝑝 

)
𝑃 𝑒 𝑠𝑝 

) } 

(7) 
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Fig. 2. Schematics of the extra-dendritic liquid solute concentration profiles 

ahead of the primary tips of two adjacent dendrites, at a time instance in the (a) 

non-interacting stage and (b) interacting stage; r represents the distance from 

the center of the left dendrite. 
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here 𝑃 𝑒 𝑠𝑝 = 𝑤 𝑠𝑝 𝑅 𝑠𝑝 ∕ 𝐷 𝑙 is the sphere growth Péclet number, R f is the

nal grain radius, and Iv() is the Ivantsov function. This equation indi-

ates that the diffusion length around a sphere depends on the radius

nd growth velocity of the sphere and the final grain radius. A better

nsight into this dependence can be obtained by simplifying Eq. (7) in

wo interesting limiting cases: the high Pe sp limit and the high R f limit

i.e., the single grain limit). This is discussed next. 

In the high Pe sp limit, 𝑒 − 𝑃 𝑒 𝑠𝑝 [ ( 𝑅 𝑓 ∕ 𝑅 𝑠𝑝 )−1 ] converges to zero and there-

ore, inside the curly brackets on the right-hand-side of the equation,

he first three terms and the seventh term can be dropped; the fifth term

ecomes negligible compared to the fourth term; and, finally, in the

ast term, Iv ( Pe sp ) can be approximated by 1 − 1∕ 𝑃 𝑒 𝑠𝑝 [26] . Therefore,

q. (7) simplifies to 

𝛿𝑠𝑝 

𝑅 𝑠𝑝 

= 

1 
𝑃 𝑒 𝑠𝑝 

(8)

Interestingly, Eq. (8) indicates that in the high Pe sp limit, 𝛿sp does

ot depend on R f . Using the definition of Pe sp , Eq. (8) can be recast into

𝑠𝑝 = 

𝐷 𝑙 

𝑤 𝑠𝑝 

(9)

The second interesting limiting case of Eq. (7) is the high R f limit. In

his limit, similar to the high Pe sp limit discussed above, 𝑒 − 𝑃 𝑒 𝑠𝑝 [ ( 𝑅 𝑓 ∕ 𝑅 𝑠𝑝 )−1 ] 

onverges to zero. Therefore, inside the curly brackets, the first three

erms and the seventh term can be dropped; the fourth and fifth terms

ecome negligible compared to the sixth term; finally, in the denom-

nator of the term outside the curly brackets, 𝑅 

3 
𝑠𝑝 

becomes negligible

ompared to 𝑅 

3 
𝑓 
; therefore, Eq. (7) reduces to 

𝛿
𝑠𝑝 

𝑅 𝑠𝑝 

= 1 − Iv 
(
𝑃 𝑒 𝑠𝑝 

)
(10)

Note that the high Pe sp limit of this equation is, as expected, identical

o the high Pe sp limit of Eq. (7) (i.e., Eq. (8) ). In the low Pe sp limit, one

as Iv( Pe sp ) →0 [18] and Eq. (10) reduces to 

𝑠𝑝 
= 𝑅 𝑠𝑝 (11)

.2.3. Primary tip velocity 

Macroscopic models need to predict the primary tip velocity, 𝑉 
𝑡 
, re-

erred to as the tip velocity hereafter, because the growth of an envelope,

t least during the early stages, is mainly driven by the growth of its pri-

ary arms. Therefore, the tip velocity, 𝑉 
𝑡 

can be expected to be one of

he main, if not the main factor, in determining 𝑤 

𝑠𝑝 
. In addition, 𝑉 

𝑡 
is

equired in predicting the primary arm length l t from 

𝑑 𝑙 𝑡 

𝑑𝑡 
= 𝑉 𝑡 (12)

To understand the variations of 𝑉 
𝑡 
during the quasi-steady growth of

n assembly of dendrites, let us first consider two dendrites located at

he distance 2 R f from each other inside a uniformly undercooled melt,

s shown schematically in Fig. 2 at (a) an early time and (b) a late

ime during growth. Due to the symmetry, only half of the dendrites are

hown. The profiles of solute concentration in the extra-dendritic liquid

re also shown in the figure. Note that the concentration at the tip is

qual to the equilibrium concentration 𝐶 

∗ 
𝑙 

and it decreases as one moves

way from the tip towards the liquid. At the early time (i.e., Fig. 2 (a)),

his decrease continues until some distance ahead of the tip, where the

oncentration reaches the initial solute concentration C 0 and remains

onstant after that; therefore, the concentration at the symmetry line

etween the grains 𝐶 

𝑓 
is equal to C 0 : 𝐶 

𝑓 
= 𝐶 0 ; at the late time (i.e.,

ig. 2 (b)), the decrease continues through the entire liquid region up

o the symmetry line between the two grains, where the concentration

eaches 𝐶 

𝑓 
, which has a value greater than C 0 : 𝐶 

𝑓 
> 𝐶 0 . 

At the early stage of growth, shown in Fig. 2 (a), there is a dis-

ance between the edges of the solutal boundary layers ahead of the
ips and, therefore, the solutal field ahead of one dendrite is not influ-

nced by the presence of the other. In other words, the dendrites are

ot interacting. This stage of growth is, therefore, referred to as the

on-interacting stage. At this stage, the growth of the dendrites is virtu-

lly the same as the growth of a single dendrite into an essentially infi-

ite medium. As the dendrites keep growing, the distance between the

dges of the boundary layers decreases and at some intermediate time

he edges meet. Once that happens, the solutal boundary layer ahead

f each of the dendrites starts to get influenced by the presence of the

ther dendrite. In other words, the dendrites start to interact. This stage

s called the interacting stage. Next, the variations of 𝐶̄ 

𝑒 
and 𝐶 

𝑓 
dur-

ng these two stages and the relationships between them and C 0 are

iscussed. During the non-interacting stage, 𝐶 

𝑓 
remains constant and

qual to 𝐶̄ 0 ; furthermore, 𝐶 

𝑓 
is less than the average solute concentra-

ion in the extra-dendritic liquid 𝐶̄ 

𝑒 
( 𝑡 ) : 𝐶 0 = 𝐶 

𝑓 
< 𝐶̄ 

𝑒 
( 𝑡 ) . During the in-

eracting stage, however, 𝐶 

𝑓 
is greater than 𝐶̄ 0 but still less than 𝐶̄ 

𝑒 
( 𝑡 ) :

 0 < 𝐶 

𝑓 
< 𝐶̄ 

𝑒 
( 𝑡 ) . These two relations are important, and will be referred

o subsequently when the time variations of 𝑉 
𝑡 

during these two stages

s discussed. 

As the primary arm of a dendrite grows, it rejects solute (assuming

 0 < 1). For growth to continue, the rejected solute needs to be dissi-

ated away from the tip towards the bulk liquid. The balance between

he solute flux rejected at the tip and the solute flux diffusing away from

he tip determines the tip velocity. The latter flux is proportional to the

olute gradient at the tip. During the non-interacting stage of growth,
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Fig. 3. Mesoscopic grain envelopes for (a) a single grain and (b) multiple grains in the BCC arrangement with the primary arms growing along the x, y, and z axes. 

t  

t  

i  

l  

a

d

 

r

Ω  

w  

s  

b  

t  

𝑃  

i  

𝜎  

i  

d  

s  

s  

v  

s  

[  

e  

p  

h  

t  

e  

a  

[  

n

 

o  

t  

s  

i  

s  

h  

w

Ω

 

T

w  

c  

n  

o

3

 

n  

[  

r  

c  

d  

e  

c  

i  

a  

c  

o  

u  

a  

l  

u  

c

a  

t  

i

3

 

i  

d  

g  

I  

i  

a  

o  

(

 

T  

i  
he diffusion field ahead of the tip and therefore the diffusion flux at

he tip remain constant. This causes 𝑉 
𝑡 

to remain constant. During the

nteracting stage, however, C f increases with time, which makes the so-

ute profiles progressively smoother; therefore, the solute diffusion flux

t the tip and consequently 𝑉 
𝑡 
both decrease with time. Prediction of 𝑉 

𝑡 

uring these stages is discussed next. 

In macroscopic models of solidification, the most commonly used

elation for predicting 𝑉 
𝑡 

is the relation proposed by Ivantsov [27] : 

𝑡,𝑒𝑓𝑓 = 𝑃 𝑒 𝑡 exp 
(
𝑃 𝑒 𝑡 

)
E 1 

(
𝑃 𝑒 𝑡 

)
(13)

here Ωt, eff is an effective tip undercooling (i.e., the undercooling corre-

ponding to the effective far-field solute concentration, which should not

e confused with the solute concentration at the symmetry line between

wo adjacent grains C f discussed earlier in connection with Fig. 2 ) and

 𝑒 𝑡 = 𝑉 𝑡 𝑅 𝑡 ∕ ( 2 𝐷 𝑙 ) is the dendrite tip Péclet number, 𝑅 

𝑡 
= 

√
𝑑 0 𝐷 𝑙 ∕ ( 𝑉 𝑡 𝜎∗ )

s the tip radius, k 0 is the partition coefficient, d 0 is the capillary length,
∗ is the tip selection parameter, and the function E 1 () is the exponential

ntegral function. Eq. (13) is the exact similarity solution for the solute

iffusion field around a paraboloid of revolution during its quasi-steady

hape-preserving growth into an infinite medium with uniform and con-

tant far-field undercooling Ωt, eff. This equation has been shown to pro-

ide accurate predictions of the primary tip velocity V t during the quasi-

teady growth of a single dendrite into an essentially infinite medium

28] . For the quasi-steady growth of multiple dendrites, Eq. (13) can be

xpected to accurately predict V t during the non-interacting stage. To

redict V t during the interacting stage, modifications to this equation

ave been proposed [29,30] . These modifications are, however, limited

o isothermal dendrites and specific dendritic arrangements and a gen-

rally valid relation to predict 𝑉 𝑡 during the interacting stage is still not

vailable. Therefore, similar to the numerous studies in the literature

5,7,8,18,31] , in this paper, Eq. (13) is used to predict 𝑉 
𝑡 

during both

on-interacting and interacting stages. 

In using Eq. (13) to predict 𝑉 
𝑡 
during the growth of multiple dendrites

ne should keep in mind that, as depicted in Fig. 2 and discussed in

he figure discussion, during both the interacting and non-interacting

tages, one has 𝐶 𝑓 < 𝐶̄ 𝑒 ; since the effective far-field solute concentration

s equal to and less than C f during the non-interacting and interacting

tages, respectively, the effective tip undercooling Ω
𝑡,𝑒𝑓𝑓 

will be always

igher than the average undercooling in the extra-dendritic liquid Ω
𝑒 
,

hich is defined as 

𝑒 = 

𝐶 

∗ 
𝑙 
− 𝐶̄ 𝑒 (

1 − 𝑘 0 
)
𝐶 

∗ (14) 
𝑙 t  
In other words, during the entire growth period, one has Ωe < Ωt, eff.

herefore, if, in Eq. (13) , Ωe is used instead of Ωt, eff, the tip velocity 𝑉 
𝑡 

ill be underpredicted. Using Ωe in this equation has been, however, a

ommon practice in the literature [5,7,8] because, currently, there are

o relations to predict Ω
𝑡,𝑒𝑓𝑓 

. Developing a relation to predict Ω
𝑡,𝑒𝑓𝑓 

is

ne of the objectives of this study. 

. Mesoscopic envelope model 

The mesoscopic envelope model used in the present study was origi-

ally developed by Delaleau et al. [14] and recently used by Souhar et al .

15] to perform three-dimensional simulations of equiaxed growth. The

eader is referred to these papers for the details of the model and the

omplete set of equations. In brief, the model approximates the complex

endritic structure with an envelope and a solid fraction field inside the

nvelope. The normal growth velocity at any point on the envelope is

alculated from the local dendrite tip velocity, obtained from an analyt-

cal stagnant film model, and the angle between the growing dendrite

rm and the envelope normal. The stagnant film model gives the tip lo-

al velocity as a function of the undercooling of the liquid in the vicinity

f the envelope. The envelope growth and the solute transport in the liq-

id around the envelope are thus coupled. The liquid inside the envelope

nd on the envelope surface is assumed to be well-mixed and in equi-

ibrium with the solid while the liquid outside the envelope is generally

ndercooled. The solid fraction field inside the envelope and the solute

oncentration field in the extra-dendritic liquid outside the envelope C e 

re obtained from the numerical solution of a solute conservation equa-

ion that is valid both inside and outside the envelope. Hence, the solutal

nteractions between the growing grains are fully resolved. 

.1. Mesoscopic simulations 

The first set of mesoscopic simulations were performed for the

sothermal growth of a single grain growing into an essentially infinite

omain ( Fig. 3 (a)) and for multiple grains ( Fig. 3 (b)) with high/low

rain densities of R f /[ D l / V Iv ( Ω0 )] = 4.03/6.31, where V Iv ( Ω0 ) is the

vantsov tip velocity (i.e., the velocity predicted by Eq. (13) ) correspond-

ng to the initial undercooling Ω0 . Each case was simulated for Ω0 = 0.05

nd 0.15. For the multiple grain cases, the grains were arranged peri-

dically in a BCC lattice, with the primary arms growing along the axes

 Fig. 3 (b)). 

In Fig. 4 , an example of the mesoscopic simulation results is shown.

he figure, which is for the multiple grain case with the low undercool-

ng ( Ω0 = 0 . 05 ) and high grain density ( 𝑅 𝑓 ∕ [ 𝐷 𝑙 ∕ 𝑉 𝐼𝑣 ( Ω0 ) ] = 4 . 03 ), shows

he solid fraction, g , and the solute concentration in the extra-dendritic
s 
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Fig. 4. Mesoscopic simulation results showing solid fraction g s (plotted in the interior of the envelopes) and solute concentration in the extra-dendritic liquid C e 
(plotted in the exterior of the envelopes) at different non-dimensional times 𝜏 = 𝑡𝑉 2 

𝐼𝑣 
( Ω0 )∕ 𝐷 𝑙 : (a) 𝜏 = 0, (b) 0.37, (c) 1.48, (d) 2.23, (e) 2.97, and (f) 5.94. This 

simulations is for the isothermal case with low undercooling ( Ω0 = 0.05) and high grain density ( R f /[ D l / V Iv ( Ω0 )] = 4.03). 

l  

t  

t  

V  

b  

g  

i  

a  

c  

t  

o  

d  

h  

c

 

F  
iquid C e , plotted in the interior and exterior of the envelopes, respec-

ively, at different times. The dimensionless time, 𝜏, is scaled by the

ime needed for a steady-state tip to advance by one diffusion length:

 Iv ( Ω0 )/( D l / V Iv ( Ω0 )) . It can be seen that, as expected (see the discussion

elow Eq. (4) ), the envelope is initially spherical (see Fig. 4 (a)), but it

radually becomes dendritic during growth. It can also be seen that dur-

ng the growth, the envelopes reject solute to the extra-dendritic liquid

nd, therefore, C e increases. At the early times (i.e., 𝜏 < 0.37), this in-
rease is limited to a relatively small distance ahead of the envelopes;

herefore, C e further away from the envelopes is still at the initial value

f 0.5 wt. pct.. At the later times (i.e., 𝜏 > 2.23), C e everywhere in the

omain has become greater than 0.5. Finally, at 𝜏 = 5 . 94 , C e everywhere

as reached the equilibrium solute concentration 𝐶 

∗ 
𝑙 
= 0 . 523 ; the under-

ooling has fully vanished and the growth has ended. 

Another example of the mesoscopic simulation results is shown in

ig. 5 . The figure, which, similar to Fig. 4 , is for the multiple grain
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Fig. 5. Mesoscopic simulation results showing profiles of liquid solute concen- 

tration along the line connecting the primary arms of two dendrites growing 

towards each other. Different curves show the profiles at different times. 
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ase with the low undercooling and high grain density, shows the final

nvelope shape and the profiles of solute concentration in liquid along

he line connecting the primary arms of two dendrites growing towards

ach other. Different curves show the profiles at different times. From

he plot it can be seen that at 𝜏 = 2 . 6 the solutal fields ahead of the grain

nvelopes overlap and, therefore, the grains start interacting. 

.2. Upscaling mesoscopic results 

To upscale the mesoscopic simulations results, they were averaged

ver the volume of the REV. For example, at any time during growth,

he solute concentration field in the extra-dendritic liquid was averaged

ver the volume of the REV to give the value of 𝐶̄ 𝑒 at that time. In Fig. 6 ,

he upscaled mesoscopic results are plotted as a function of the non-

imensional time defined as 𝜏 = 𝑡𝑉 2 
𝐼𝑣 
( Ω0 ) ∕ 𝐷 𝑙 . Results for a single grain

re shown as black curves and for multiple grains with high and low

rain density as red and blue curves, respectively. Results for Ω0 = 0 . 05
nd 0.15 are plotted as solid and dashed curves, respectively. 

Fig. 6 (a) shows the envelope volume fraction g env . Squares in the

gure represent the start of the second stage of growth and the defini-

ions of the first and second stages will become clear subsequently, when

ig. 6 (g) is discussed. Fig. 6 (b) shows the non-dimensional average un-

ercooling in the extra-dendritic liquid Ωe / Ω0 , where Ωe was calculated

rom Eq. (14) . Fig. 6 (c) and (d), a close-up of 6 (c) around 𝜏 = 5 , show the

phericity, which was calculated using Eq. (3) after calculating S env and

 sp as follows: S env was measured directly from the simulated envelope

hape, and S sp was calculated from Eq. (5) , after computing R sp from

n equation that is derived subsequently in connection with Fig. 6 (h).

ig. 6 (e) shows the non-dimensional primary arm length l t /[ D l / V Iv ( Ω0 )],

here l t was measured directly from the simulated envelope shape. Fig.

 (f) shows the non-dimensional tip velocity V t / V Iv ( Ω0 ), where V t was

alculated from Eq. (12) . Fig. 6 (g) shows the scaled primary arm length

 

∗ 
𝑡 

defined as 

 

∗ 
𝑡 
= 

𝑙 𝑡 

𝑙 d 𝑖 f 𝑓 
(15)

here 𝑙 d 𝑖 f 𝑓 is the instantaneous diffusion length ahead of the primary

ip, which is defined as 

 d 𝑖 ff = 

𝐷 𝑙 

𝑉 𝑡 
(16) 

Fig. 6 (h) shows the non-dimensional sphere radius R sp /[ D l / V Iv ( Ω0 )].

he sphere radius, R sp , is calculated using an equation that relates R sp to
he final grain radus R f , to the envelope fraction, g env , and to the effec-

ive number of grains inside the REV, n . In what follows, this equation

s first derived using a formal procedure, to show that the equation is

he integrated form of Eq. (1) . Next, it is discussed that the equation can

e written directly from the definition of the sphere. The formal deriva-

ion of the equation starts with first substituting the right-hand side of

q. (1) using 𝑆 𝑒𝑛𝑣 𝑤 𝑒𝑛𝑣 = 𝑆 𝑠𝑝 𝑤 𝑠𝑝 (see the discussion above Eq. (4) ); then,

 sp and w sp are substituted from Eqs. (5) and (6) , respectively, to give 

1 
𝑔 𝑒𝑛𝑣 

𝑑 𝑔 𝑒𝑛𝑣 

𝑑𝑡 
𝑑 𝑡 = 

3 
𝑅 𝑠𝑝 

𝑑 𝑅 𝑠𝑝 

𝑑 𝑡 
(17)

Next, the definite integrals of both sides of this equation are taken

rom time zero to time t to give 

𝑔 𝑒𝑛𝑣 

𝑔 𝑒𝑛𝑣 ( 𝑡 = 0 ) 
= 

[ 
𝑅 𝑠𝑝 

𝑅 𝑠𝑝 ( 𝑡 = 0 ) 

] 3 
(18) 

In this equation, 𝑔 𝑒𝑛𝑣 ( 𝑡 = 0 ) and 𝑅 𝑠𝑝 ( 𝑡 = 0 ) are the envelope fraction

nd sphere radius corresponding to the initial spherical seeds. Since the

nitial seeds have the same size, 𝑔 𝑒𝑛𝑣 ( 𝑡 = 0 ) and 𝑅 𝑠𝑝 ( 𝑡 = 0 ) can be related

s 𝑅 𝑠𝑝 ( 𝑡 = 0 ) = 2 [ 3∕ ( 4 𝜋𝑛 ) ] 1∕3 𝑅 𝑓 𝑔 
1∕3 
𝑒𝑛𝑣 ( 𝑡 = 0 ) , where n is the effective num-

er of grains inside the REV, which is equal to unity for a single grain

nd two for multiple grains in the BCC arrangement. Substituting this

quation into Eq. (18) gives 

 𝑠𝑝 = 2 
( 3 
4 𝜋𝑛 

)1∕3 
𝑅 𝑓 𝑔 

1∕3 
𝑒𝑛𝑣 (19)

Note that this equation has a simple physical meaning: it indicates

hat, as expected, at any time during growth, the total volume of the

pheres (i.e., 𝑛 × 4 𝜋𝑅 

3 
𝑠𝑝 
∕3 ) is equal to the total volume of the envelopes

i.e., 8 𝑅 

3 
𝑓 
𝑔 𝑒𝑛𝑣 ). In fact, one can write this equation directly from the

efinition of the sphere. Here, however, the more formal procedure to

erive it is provided to show that Eq. (19) is indeed the integrated form

f Eq. (1) . 

Fig. 6 (i) shows the non-dimensional sphere velocity w sp / V Iv ( Ω0 ),

here w sp was calculated from Eq. (6) . Fig. 6 (j) shows the

on-dimensional average diffusion length around the envelopes

env /[ D l / V Iv ( Ω0 )], where 𝛿env was determined from Eq. (2) by solving

his equation for 𝛿env , using the upscaled mesoscopic values for all the

ther quantities. Finally, Fig. 7 shows the comparison between the meso-

copic primary tip velocities and the Ivantsov tip velocities correspond-

ng to Ωe . Next, the important observations that can be made from these

lots are discussed. 

From Fig. 6 (a) and (b) it can be seen that for a single grain g env and Ωe 

emain close to zero and Ω0 , respectively, during the entire growth. This

s because for the single grain cases the size of the simulation domain

as chosen to be large enough to remain much larger than the envelope

ize during the entire growth. For the multigrain cases, however, the

nvelope fraction increase relatively fast initially because Ωe , which is

he driving force for growth, is relatively high; as Ωe decreases, due to

he solute rejection from the envelopes to the extra-dendritic liquid, the

ate of increase in g env decreases. Finally, when the undercooling is fully

onsumed (at 𝜏 about 4 and 9 for the high and low grain density cases,

espectively) g env ceases to increase further and growth ends. 

From Fig. 6 (c) and (d) it can be seen that, as expected, the initial

alue of 𝜓 is equal to unity and as the envelope becomes progressively

ore dendritic with growth, 𝜓 decreases. For a single grain, this de-

rease continues until 𝜏 = 40 . At this time, we stopped the simulations

ecause the diffusion field around the envelope started to interact with

he boundaries of the simulation domain. For the multigrain cases, how-

ver, after a relatively small initial decrease (of about 0.1 for the high

rain density cases and 0.2 for the low grain density cases) 𝜓 stops to

ecrease further and then remains constant. 

From Fig. 6 (f) it can be seen that at an early stage of growth ( 𝜏 less

han two) we have 1 < 𝑉 
𝑡 
∕ 𝑉 

𝐼𝑣 
( Ω0 ) : the mesoscopic tip velocities 𝑉 

𝑡 
are

reater than the Ivantsov tip velocities corresponding to the initial un-

ercooling 𝑉 
𝐼𝑣 
( Ω0 ) . This is because of the presence of an initial transient
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Fig. 6. (a)–(j) Upscaled mesoscopic results plotted as a function of non-dimensional time. High and low grain density cases correspond to R f /[ D l / V Iv ( Ω0 )] = 4.03 and 

6.31, respectively. 
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Fig. 6. Continued 
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tage in the mesoscopic simulations, where the C e field is transitioning

rom the initial value of 𝐶 𝑒 = 𝐶 0 (see Fig. 6 (a)) to the quasi-steady val-

es. During this stage, the solutal gradient ahead of the tip and there-

ore the tip velocity is greater than the quasi-steady values predicted by

q. (13) . 

At the end of the initial transient stage ( 𝜏 about 2), the quasi-steady

tage starts. During this stage, 𝑉 
𝑡 
for a single grain (i.e. the black curves)

emains, as expected, constant, but at a value that is slightly (about 10

ercent) lower than the Ivantsov tip velocity corresponding to the ini-

ial undercooling Ω0 . This minor underprediction of the tip velocities by

he mesoscopic model is of no significant consequence and should not

istract; however, for the sake of completeness, the reason for it is ex-

lained next. As already discussed in detail by Steinbach et al. [1,2] and

ouhar et al. [15,32] , in the mesoscopic model, the predicted tip veloc-

ties depend on a parameter in the model known as the stagnant film

hickness 𝛿f . For the high values of 𝛿f (i.e. 𝛿𝑓 > 3 𝑙 d 𝑖 f 𝑓 [15,32] ) the meso-

copic tip velocity for a single grain will be equal to the Ivantsov tip

elocity. However, with such a high value of 𝛿f , the predicted grain en-

elope shapes will be unrealistic (compared to the experimentally ob-

erved ones [16] ). Therefore, to have relatively accurate predictions for

oth V t and the envelope shape, a compromising intermediate value for

f needs to be chosen. As a result of this compromise, the quasi-steady
esoscopic tip velocities are slightly lower than the Ivantsov tip

elocities. 

The tip velocity 𝑉 
𝑡 

for the multiple grain cases starts to rapidly

ecrease at some intermediate time (about 𝜏 = 2 for the high grain

ensity cases and 4.5 for the low grain density cases). This rapid de-

rease is physically important and indicates that the tips are solutally

nteracting. 

From Fig. 6 (g) it can be seen that 𝑙 ∗ 
𝑡 
, which was defined in Eq. (15) ,

or single grain cases increases with time during the entire growth pe-

iod. For the multigrain cases, however, 𝑙 ∗ 
𝑡 

increases with time initially,

ut, at some intermediate time which is denoted by the squares in the

gure, 𝑙 ∗ 
𝑡 

starts to decrease with time and eventually reaches zero (since

 d 𝑖 f 𝑓 → ∞ as the result of V t →0). Therefore, the entire growth period

an be divided into two stages: the first stage, where 𝑑𝑙 ∗ 
𝑡 
∕ 𝑑𝑡 > 0 , and

he second stage, where 𝑑𝑙 ∗ 
𝑡 
∕ 𝑑𝑡 ≤ 0 . These two stages should not be

onfused with the non-interacting and interacting stages discussed in

onnection with Fig. 2 . The interacting and non-interacting stages con-

erned the growth of the primary arms, while the first and second stages

ntroduced here concern the average growth kinetics of the envelopes. It

ill be shown below that the first and second stages can be referred to

s variable-sphericity and constant-sphericity stages, respectively. Di-

iding the entire growth period into variable-sphericity and constant-
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Fig. 7. Comparison between the mesoscopic primary tip velocities and the 

Ivantsov primary tip velocities corresponding to the average undercooling in 

the extra-dendritic liquid. 
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t  
phericity stages based on the sign of 𝑑𝑙 ∗ 
𝑡 

is an important premise that

s proposed in this study and will be used in Section 4 , where the con-

titutive relations are developed. 

Variations of 𝑙 ∗ 
𝑡 

during these two stages can be understood by follow-

ng the variations of l t and V t , shown in Fig. 6 (e) and (f), respectively,

nd focusing on how the nominator and denominator of Eq. (15) change

ith time. During the first stage, V t is relatively high (i.e., greater

han 0.8 ×V Iv ( Ω0 )) and therefore, l t , which appears in the nominator

f Eq. (15) , increases relatively fast; this causes 𝑙 ∗ 
𝑡 

to increase with time

uring the first stage. When the second stage starts, V t has an interme-

iate value and, more importantly, is decreasing fast. Therefore, unlike

n the first stage, the increase in 𝑙 
𝑡 

is not fast anymore and becomes in-

ignificant compared to the fast increase in 𝑙 
d 𝑖 f 𝑓 

, which appears in the

enominator of Eq. (15) ; this causes, 𝑙 ∗ 
𝑡 

to decrease with time during the

econd stage. 

There is one last interesting point about Fig. 6 (c) that can be dis-

ussed now because the first and second stages of growth were defined.

t can be seen from this figure that the variations of the sphericity during

he second stage of growth (i.e., the right-hand side of the squares) are

egligible compared to these variations during the first stage of growth

nd, therefore, the sphericity can be assumed to be constant during the

econd stage of growth. Consequently, in the rest of the paper, the first

nd second stages of growth are referred to as variable-sphericity and

onstant-sphericity stages, respectively. 

Fig. 6 (i) shows the time variations of the non-dimensional sphere ve-

ocity. From the figure, it can be seen that during the variable-sphericity

tage of growth (i.e., the left-hand side of the squares), the multigrain

urves collapse on the single grain curves. This indicates that during the

ariable-sphericity stage of growth, w sp for multigrain and single grain

ases can be expected to be predicted by the same relation. When the

onstant-sphericity stage starts, however, the multigrain curves cease to

ollapse on the single grain curves, and they start decreasing relatively

apidly. This indicates that w sp during the constant-sphericity stage of

rowth needs to be predicted from a separate relation. 

Comparing the time variations of V t , shown in Fig. 6 (f), and time

ariations of w sp , shown in Fig. 6 (i), reveals another interesting obser-

ation. Focusing first on the low grain density cases (the blue curves),

ne can see that at 𝜏 ∼8, V t is zero: the primary tips have fully stopped.

t the same time, however, w sp is still greater than zero: the envelopes
re still growing. This indicates that growth continues (at least until

∼10) even after the primary tips stop. A similar trend is observed for

he low grain density curves. Growth of an envelope after the primary

ips stop is due to the growth of the secondary arms. 

In Fig. 7 , the mesoscopic primary tip velocities (the thin curves) are

ompared with the Ivantsov tip velocities, predicted using Eq. (13) with

𝑡,𝑒𝑓𝑓 = Ω𝑒 (the thick curves). Data are shown only for the multigrain

ases. One can see from the figure that, as expected (see the discussion

elow Eq. (14) ), setting Ω𝑡,𝑒𝑓𝑓 = Ω𝑒 in the Ivantsov solution significantly

nderpredicts the tip velocities. 

Finally, this section is ended by summarizing the important observa-

ions that can be made from the upscaled mesoscopic results: (1) for the

ultiple grain cases, the entire growth period can be divided into the

ariable-sphericity and constant-sphericity stages and these two stages

orrespond to the positive and negative values of 𝑑𝑙 ∗ 
𝑡 
, respectively; (2)

or the single grain cases, the growth takes place entirely in the first

tage; (3) setting Ω𝑡,𝑒𝑓𝑓 = Ω𝑒 in the Ivantsov relation will significantly

nderpredict the tip velocities. 

. Constitutive relations 

.1. Postulates 

It is postulated that during the variable-sphericity stage of growth,

 is a function of l t / R sp only and during the constant-sphericity stage of

rowth, 𝜓 is, obviously, constant. 

𝑑𝑙 ∗ 
𝑡 
> 0 → 𝜓 = 𝜓 

( 

𝑙 𝑡 

𝑅 𝑠𝑝 

) 

𝑑𝑙 ∗ 
𝑡 
< = 0 → 𝑑𝜓 = 0 

(20) 

It is known from the literature [27] that the shape of a dendrite

epends on the surface tension anisotropy; therefore, one might wonder

hy such a dependence is not introduced in Eq. (20) . This is because in

his equation (and through the entire paper) 𝜓 is the sphericity of the

endrite envelope and, therefore, depends on the envelope shape (which

hall not be confused with the dendrite shape). From what is available

n the literature, it is not clear whether the envelope shape depends on

he surface tension anisotropy or not. What is known from the literature

s that the envelope shape, and therefore, the sphericity predicted by the

esoscopic model, has been validated against experiments of equiaxed

olidification of SCN-acetone [1,15] and of directional solidification of

l-Cu [14] . Since, as will be shown in Section 5 , the mesoscopic values of

 are accurately predicted by taking the sphericity as a function of l t / R sp 

nly, introducing surface tension anisotropy effects in Eq. (20) does not

eem to be necessary. 

To develop a relation for w sp , one first needs to recognize that the

verage growth kinetics, and therefore w sp , are in general determined by

he growth of both the primary and the secondary arms. At early stages

f growth, the primary arms grow much faster than the secondary arms.

herefore, their velocity can be expected to be the main factor in deter-

ining w sp . As the growth continues, the primary arms slow down and

nally stop, but the secondary arms and therefore the sphere continue

o grow, until the undercooling in the extra-dendritic liquid fully van-

shes (i.e., the average undercooling in the extra-dendritic liquid reaches

ero). In other words, at some intermediate time during growth, the

ain mechanism that drives the envelope growth, and thus determines

 sp , transitions from the primary tip velocity to the average undercool-

ng of the extra-dendritic liquid. This transition and the time at which it

ccurs need to be properly taken into account in developing the relation

or w sp . In this paper, it is first postulated that the transition occurs when

he constant-sphericity stage of growth starts. The postulates to deter-

ine w sp during the variable-sphericity and constant-sphericity stages

re discussed next. 

During the variable-sphericity stage, w sp is assumed to scale with

he primary tip velocity V t . It should be noted that w sp / V t cannot be
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Fig. 8. The envelope sphericity as a function of the ratio of the primary arm 

length to sphere radius. The green curve represents our curve fit. 
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aken as constant because the shape of the envelope changes signifi-

antly during the variable-sphericity stage. In the macroscopic model,

he envelope shape is represented solely by the envelope sphericity 𝜓 .

n other words, 𝜓 is assumed to contain all the geometrical information

bout the envelope shape. Since 𝜓 itself is postulated to be a function

f l t / R sp only (see Eq. (20) ), w sp / V t is similarly postulated to be a func-

ion of l t / R sp only. During the constant-sphericity stage, w sp is assumed

o scale with w sp ( t s ), where t s is the time at the start of the constant-

phericity stage, and the ratio w sp / w sp ( t s ) is postulated to be a function

f the scaled Ivantsov velocity corresponding to Ωe , V Iv ( Ωe )/ V Iv [ Ωe ( t s )],

nly. The above three postulates can be expressed mathematically as 

𝑙 ∗ 
𝑡 
> 0 →

𝑤 𝑠𝑝 

𝑉 𝑡 
= 

𝑤 𝑠𝑝 

𝑉 𝑡 

( 

𝑙 𝑡 

𝑅 𝑠𝑝 

) 

𝑙 ∗ 
𝑡 
≤ 0 →

𝑤 𝑠𝑝 

𝑤 𝑠𝑝 

(
𝑡 𝑠 
) = 

𝑤 𝑠𝑝 

𝑤 𝑠𝑝 

(
𝑡 𝑠 
)
{ 

𝑉 𝐼𝑣 
(
Ω𝑒 

)
𝑉 𝐼𝑣 

[
Ω𝑒 

(
𝑡 𝑠 
)]

} 

(21) 

Through the entire growth period, Ωt, eff is assumed to scale with Ωe ,

nd the ratio Ω
𝑡,𝑒𝑓𝑓 

∕ Ω𝑒 is assumed to be a function of the scaled length

f the free liquid region ahead of the primary tip up to the symmetry

ine between two adjacent grains 𝑙 ∗ 
𝑙 
= 𝑅 

∗ 
𝑓 
− 𝑙 ∗ 

𝑡 
, where 𝑅 

∗ 
𝑓 
= 𝑅 𝑓 ∕ 𝑙 d 𝑖 f 𝑓 : 

Ω
𝑡,𝑒𝑓𝑓 

Ω𝑒 

= 

Ω
𝑡,𝑒𝑓𝑓 

Ω𝑒 

(
𝑙 ∗ 
𝑙 

)
(22) 

The envelope diffusion length, 𝛿
𝑒𝑛𝑣 

, is assumed to scale with the

phere diffusion length, 𝛿
𝑠𝑝 

( Eq. (7) ), and the ratio 𝛿
𝑒𝑛𝑣 

∕ 𝛿
𝑠𝑝 

is assumed

o be a function of sphericity only: 

𝛿
𝑒𝑛𝑣 

𝛿
𝑠𝑝 

= 

𝛿
𝑒𝑛𝑣 

𝛿
𝑠𝑝 

( 𝜓 ) (23) 

Note that 𝛿
𝑒𝑛𝑣 

∕ 𝛿
𝑠𝑝 

could have been formulated as a function of l t / R sp 

nstead of 𝜓 , because 𝜓 is a function of l t / R sp only (see Eq. (20) ) but

ere it is formulated as a function of the envelope sphericity 𝜓 to better

llustrate that the ratio of the envelope diffusion length to the sphere

iffusion length is a function of the envelope geometry, which is repre-

ented by the envelope sphericity. 

.2. Fitting functions 

In this section, the upscale mesoscopic results, presented in

ection 3.2 , are used to plot the left-hand-side of Eqs. (20) –(23) as a
ig. 9. Scaled sphere growth velocity during (a) the variable-sphericty stage of grow

b) the constant-sphericity stage of growth as a function of scaled Ivantsov velocity

reen curves represent our curve fits. 
unction of the independent variable on the right-hand-side. The con-

titutive relations are then developed by curve fitting these plots. In

he following figures, mesoscopic results for a single grain are shown

s black curves and for multiple grains with high and low grain density

s red and blue curves, respectively. Results for Ω0 = 0 . 05 and 0.15 are

lotted as solid and dashed curves, respectively; the green curves depict

ur curve fits and the squares show the start of the constant-sphericity

tage of growth. 

In Fig. 8 , the sphericity 𝜓 is plotted as a function of the ratio of

he primary dendrite arm length to the sphere radius l t / R sp . It can be

een that for a single grain, the mesoscopic simulation results for the

wo different initial undercoolings Ω collapse onto a single curve. This
0 

th as a function of the ratio of primary arm length to sphere radius, and during 

 corresponding to the average undercooling in the extra-dendritic liquid. The 
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Fig. 10. The scaled effective far-field undercooling as a function of the scaled 

length of the liquid region ahead of the tip up to the symmetry line between two 

adjacent grains. The green curve represents our curve fit. 

i  

m  

d  

Fig. 11. The ratio of the envelope diffusion length to the sphere diffusion length 

as a function of the envelope sphericity for a single grain at two different initial 

undercoolings. The green curve represents our curve fit. 

t  

a  

𝜓  

T  

F

w

ndicates that the sphericity is indeed a function of l t / R sp only. The

ultigrain data in the plot fall on the same curve as the single grain

ata during the variable-sphericity stage of growth. However, when
ig. 12. Comparison between the mesoscopic and macroscopic quantities plotted as 

ith high grain density and low undercooling: 𝑅 𝑓 ∕[ 𝐷 𝑙 ∕ 𝑉 𝐼𝑣 ( Ω0 ) ] = 4 . 03 . 
he constant-sphericity stage starts, the multigrain data start to devi-

te slightly from the sphericity curve for a single grain. The variation of

 during this stage are, however, extremely small and are disregarded.

he final fit of the sphericity data for both the single grain and the multi-
a funciton of non-dimensional time. This comparison is for the isothermal case 
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Fig. 13. Comparison between the mesoscopic and macroscopic quantities plotted as a function of non-dimensional time. This comparison is for the isothermal case 

with low grain density and low undercooling: 𝑅 𝑓 ∕[ 𝐷 𝑙 ∕ 𝑉 𝐼𝑣 ( Ω0 ) ] = 6 . 31 . 
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rain cases is then given by: 

𝑑𝑙 ∗ 
𝑡 
> 0 → 𝜓 = 1 − 

6 . 34 
6 . 02 + 

8 . 08 (
𝑙 𝑡 ∕ 𝑅 𝑠𝑝 −1 

)1 . 93 
𝑙 ∗ 
𝑡 
< = 0 → 𝑑𝜓 = 0 (24)

This equality can be understood as follows. Initially (i.e., 𝜏 = 0 ), the

nvelope is spherical and l t / R sp is equal to unity; therefore the denomi-

ator on the right-hand side will be large, which will make the sphericity

ecome equal to unity. During growth, as the envelope shape transitions

rom a spherical to a dendritic, l t / R sp increases; the second term on the

ight-hand-side increases, and therefore 𝜓 decreases. 

In Fig. 9 (a), w sp / V t during the variable-sphericity stage of growth

s plotted as a function of l t / R sp . It can be seen that w sp / V t decreases

onotonically as l t / R sp increases. Since the single grain and multi-

rain data for the two different initial undercoolings Ω0 collapse, w sp / V t 

uring the variable-sphericity stage of growth is indeed a function of

 t / R sp only, and can be fit by 𝑤 𝑠𝑝 ∕ 𝑉 𝑡 = 0 . 80 − 0 . 78 [ 1 − 1∕( 𝑙 𝑡 ∕ 𝑅 𝑠𝑝 ) ] 0 . 85 . In
ig. 9 (b), w sp / w sp ( t s ) is plotted as a function of V Iv ( Ωe )/ V Iv [ Ωe ( t s )]. Sin-

le grain data cannot be included in this plot because, as discussed
ig. 14. Comparison between the mesoscopic and macroscopic quantities plotted as 

ensity: 𝑅 𝑓 = 0 . 8 mm . 
n connection with Fig. 6 (g), for a single grain growth takes place

olely at the variable-sphericity stage. One can see that the multi-

rain data for the two different initial undercoolings Ω0 collapse onto

 single curve. This indicates that w sp / w sp ( 𝜏s ) is indeed a function of

 Iv ( Ωe )/ V Iv [ Ωe ( 𝜏s )] only. The final fit for w sp / w sp ( 𝜏s ) is then given by

 𝑠𝑝 ∕ 𝑤 𝑠𝑝 ( 𝑡 𝑠 ) = { 𝑉 𝐼𝑣 ( Ω𝑒 )∕ 𝑉 𝐼𝑣 [ Ω𝑒 ( 𝑡 𝑠 ) ] } 0 . 50 . Summarizing the fits proposed

n Fig. 9 (a) and (b), we get 

𝑙 ∗ 
𝑡 
> 0 →

𝑤 𝑠𝑝 

𝑉 𝑡 
= 0 . 80 − 0 . 78 

( 

1 − 

1 
𝑙 𝑡 ∕ 𝑅 𝑠𝑝 

) 0 . 85 

𝑙 ∗ 
𝑡 
≤ 0 →

𝑤 𝑠𝑝 

𝑤 𝑠𝑝 

(
𝑡 𝑠 
) = 

{ 

𝑉 𝐼𝑣 
(
Ω𝑒 

)
𝑉 𝐼𝑣 

[
Ω𝑒 

(
𝑡 𝑠 
)]

} 0 . 50 

(25) 

In Fig. 10 , the scaled effective far-field undercooling Ωt, eff/ Ωe is plot-

ed as a function of 𝑙 ∗ 
𝑙 
; Ωt, eff was calculated from Eq. (13) , together with

he relation for the tip radius (see the discussion below Eq. (13) ), using

he mesoscopic values for V t . Note that Ωt, eff is an effective undercooling

hat is to be used in the Ivantsov relation ( Eq. (13) ) in order to obtain

ccurate tip velocities for the primary tips of interacting dendrites. Data

s shown only during the variable-sphericity stage of growth because
a function of time. This comparison is for the recalescence case with high grain 
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Fig. 14. Continued 
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he curves for the different mesoscopic cases did not collapse during the

onstant-sphericity stage of growth. This, however, should not distract

ecause, as will become clear at the end of this section, in the macro-

copic model, the calculation of V t and therefore Ωt, eff are not required

uring the constant-sphericity stage. Variations of Ωt, eff/ Ωe with 𝑙 ∗ 
𝑙 

can

e best understood by first focusing on the data for the high undercool-

ng low grain density case (i.e., the dashed blue curve). Initially (i.e., at

= 0 ), 𝑙 ∗ 
𝑙 

has its highest value (about six) and Ωt, eff is slightly greater

han Ωe , which is equal to Ω0 ; this is because, as shown in Fig. 6 (f) and

ue to the presence of the initial transient stage, V t is initially greater

han V Iv ( Ω0 ). During growth, 𝑙 
𝑡 
increases and therefore 𝑙 ∗ 

𝑙 
decreases. For

 

∗ 
𝑙 
> 2 , Ωt, eff/ Ωe remains almost constant because the rate of decrease in

t, eff and Ωe are almost the same; however, at 𝑙 ∗ 
𝑙 

about two, Ωt, eff/ Ωe 

tarts to increase because the rate of decrease in Ωe starts to become

reater than the rate of decrease in Ωt, eff. The curves for the other meso-

copic cases behave in a similar fashion and, despite the minor spread

etween them, they can be fit by a single curve given by 

Ω𝑡,𝑒𝑓𝑓 

Ω
𝑒 

= 

1 
0 . 97 − 

0 . 28 
1+ ( 𝑙 𝑙 ∗ ∕1 . 3 ) 1 . 95 

(26) 
There are two more points about Fig. 10 and Eq. (26) that need to

e discussed before pursuing. First, focusing on the blue curves in the

gure, it can be seen that they do not collapse fully and have a minor

pread. This minor spread causes imperfections in the fit for Ωf / Ωe and is

ttributed to the presence of an initial transient stage in the mesoscopic

imulations. The collapse between these curves cannot reasonably be

xpected to be better because, as was shown in Fig. 6 (f), the curves

epresenting V t for the mesoscopic cases with different initial under-

oolings did not collapse during the initial transient stage. Similarly,

he collapse between the red curves in Fig. 10 cannot be expected to be

etter. Second, the first term in the denominator of the right-hand-side

s chosen to be slightly less than unity. In this way, for free growth of

 single grain and at the early stages of multigrain growth, where the

econd term in the denominator is almost zero because l l 
∗ is high, Ωt, eff

ecomes slightly higher than Ωe ( Ω𝑡,𝑒𝑓𝑓 = 1 . 031 Ω𝑒 ). Therefore, initially

i.e., at 𝜏 = 0 ), the predicted tip velocity V t will be higher than V Iv ( Ω0 ).

his means that the macroscopic model can predict the initial transient

ffects on the tip velocity. However, since the stagnant-film model used

o calculate the tip velocity in the mesoscopic model is based on the

ssumption of a steady-state diffusion field within the stagnant film,

he tip velocities predicted by the macroscopic model during the initial

ransient stage can only be expected to be approximate. 
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In Fig. 11 , 𝛿env / 𝛿sp for the single grain cases is plotted as a func-

ion of 𝜓 . It can be seen that as 𝜓 decreases during growth, 𝛿env / 𝛿sp 

ncreases monotonically above unity. This indicates that the diffusion

ength around a complex shaped dendritic envelope is greater than the

iffusion length for the sphere. Since the data for the two different ini-

ial undercoolings collapse, 𝛿env / 𝛿sp is indeed a function of 𝜓 only. A

urve fit to the data for the single grain is given by: 

𝛿
𝑒𝑛𝑣 

𝛿
𝑠𝑝 

= 1 + 1 . 3 × ( 1 − 𝜓 ) 2 . 5 (27)

In summary, the macroscopic model consists of Eqs. (1) –(7) , (12) –

16) , and (24) –(27) . It requires two inputs: the initial undercooling Ω0 

nd the final grain radius R f . Also, note that l t and V t appear only in the

rst relation of Eqs. (24) and (25) , respectively. Therefore, the model

eeds to calculate V t during the variable-sphericity stage only. 
ig. 15. Comparison between the mesoscopic and macroscopic quantities plotted as a

rain density: 𝑅 𝑓 = 1 . 6 mm . 
. Comparing the macroscopic predictions with the upscaled 

esoscopic results 

In this section, the constitutive relations are verified by comparing

he predictions of the macroscopic model against the upscaled meso-

copic results. It is pointed out that the individual constitutive relations

hat were each separately fitted to the upscaled mesoscopic simulations

re now used in conjunction in a closed macroscopic model. The com-

arisons are first made for the isothermal mesoscopic cases, presented

n Section 3.2 , and used in Section 4 to develop the constitutive rela-

ions. Next, to provide further confidence in the constitutive relations,

omparisons are made against new upscaled mesoscopic results that

re representative for conditions in solidification processing of metal

lloys. 
 function of time. This comparison is for the recalescence case with intermediate 
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Fig. 15. Continued 
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.1. Isothermal cases 

Figs. 12 and 13 show the comparisons between the predictions of

he macroscopic model for different quantities (the thick curves) with

he corresponding upscaled mesoscopic results (the thin curves) for

he four isothermal cases. Fig. 12 shows the comparisons for the low

rain density cases with the low/high undercoolings (the solid/dashed

urves) and Fig. 13 shows the similar comparison for the high grain

ensity cases. For all the four cases, the overall agreements between the

acroscopic predictions and the upscaled mesoscopic results are good

nd, as is discussed next, cannot realistically be expected to be much

etter. 

In Figs. 12 (e) and 12 (e) the tip velocities predicted by the macro-

copic model are compared with the mesoscopic tip velocities. Note

hat, as discussed at the end of Section 4 , in the macroscopic model the

ip velocities need to be predicted only during the variable-sphericity

tage. Plotting the tip velocities during the constant-sphericity stage for

he isothermal cases is only because, for these cases, the mesoscopic

nd macroscopic predictions of the tip velocity were in good agree-

ent. It can be seen that, during the entire growth period, the predicted

ip velocities agree reasonably well with the mesoscopic tip velocities.

ontrasting this agreement with the vast difference that was observed in
ig. 7 between the mesoscopic tip velocities and the Ivantsov velocities

orresponding to Ωe , one can easily acknowledge that the tip veloci-

ies predicted by our model (i.e., the Ivantsov velocities corresponding

o Ωt, eff) are, as expected, significantly more accurate (when compared

gainst the mesoscopic tip velocities) than the Ivantsov velocities corre-

ponding to Ωe . 

The minor difference between the macroscopic and mesoscopic tip

elocities is attributed to the presence of the initial transient stage in the

esoscopic simulations, which, as discussed in connection with Fig. 10 ,

auses imperfections in our fit for Ωt, eff/ Ωe . 

Before proceeding, it is necessary to iterate that the constitutive rela-

ions developed in this paper are based only on the upscaled mesoscopic

esults for a single grain growing into an essentially infinite medium as

ell as multiple grains with the periodic arrangement. In reality, how-

ver, grains can have a random arrangement. Therefore, a necessary

uture work is to examine the agreement between the predictions of

he macroscopic model and the upscaled mesoscopic results for multi-

le grains with a random arrangement. If this agreement is found to be

ot as good as the agreement that was achieved in Figs. 12 and 13 , then

he constitutive relations will need to be improved. We, however, ex-

ect that the predictions of the relation for 𝜓 (i.e., Eq. (24) ), and the

elation for w sp during the variable-sphericity stage of growth (i.e., the
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rst equality in Eq. (25) ), will be still in a good agreement with the

orresponding mesoscopic results for multiple grains with random ar-

angment. This is because, for 𝜓 and w sp during the variable-sphericity

tage, the mesoscopic data for multiple grains with BCC arrangement

ollapsed on the data for a single grain (see Figs. 8 and 9 (a)); there-

ore, it can be expected that data for multiple grains with random ar-

angement will also collapse on the single grain data. As a result, it is

xpected that the fit in Fig. 8 , and therefore the relation for 𝜓 , and also

he fit in Fig. 9 (a), and therefore the relation for w sp during the variable-

phericity stage of growth, will remain unchanged even if mesoscopic

ata for multiple grains with random arrangement is added to Figs.

 and 9 (a). The agreements between the predictions of the relations

or w sp during the constant-sphericity stage of growth, Ωt, eff and 𝛿
𝑒𝑛𝑣 

ith the corresponding mesoscopic values might not be as good as the

greement observed in Figs. 12 and 13 . If that turns out to be the case,

hese relations will need to be improved, and this is a necessary future
ork. 
e  

ig. 16. Comparison between the mesoscopic and macroscopic quantities plotted as 

ensity: 𝑅 𝑓 = 2 . 4 𝑚𝑚 . 
.2. Recalescence cases 

To further verify the constitutive relations, new mesoscopic simu-

ations were performed and the predictions of the macroscopic model

ere compared with the upscaled mesoscopic results. These new cases

re inspired by the experiments of Rappaz and Thevoz [22] , which in-

olve solidification of Al-7 wt. pct. Si in a small unit cell, with uniform

emperature, under external cooling. These cases are called the recales-

ence cases because, as is shown below, a temperature recalescence was

bserved in the cooling curves. To simulate these cases with the macro-

copic model, this model needs to be supplemented by three additional

quations that are discussed next. 

The equation for the energy conservation reads 

 𝑝 

𝜕𝑇 

𝜕𝑡 
= 𝐿 𝑓 

𝜕 𝑔 𝑠 

𝜕𝑡 
+ 𝑞̇ (28)

here c p , L f , and 𝑞̇ are the specific heat capacity, latent heat, and heat

xtraction rate, respectively. To predict the solid fractions, the solute
a function of time. This comparison is for the recalescence case with low grain 
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Fig. 16. Continued 
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oncentration in the inter-dendritic liquid (i.e., the liquid inside the en-

elopes) was first calculated from [33] : 

 𝑙 

𝜕 𝐶̄ 𝑑 

𝜕𝑡 
= 

(
1 − 𝑘 0 

)
𝐶̄ 𝑑 

𝜕 𝑔 𝑠 

𝜕𝑡 
− 

𝜕 

𝜕𝑡 

[
𝑔 𝑒 
(
𝐶̄ 𝑒 − 𝐶̄ 𝑑 

)]
(29)

here 𝑔 𝑙 = 1 − 𝑔 𝑠 is the liquid fraction. Then, since the inter-dendritic

iquid is not undercooled, the solid fraction can be calculated by equat-

ng the inter-dendritic liquid solute concentration with the equilibrium

olute concentration 𝐶 

∗ 
𝑙 
: 

For 𝑇 < 𝑇 𝑙𝑖𝑞 
(
𝐶̄ 𝑒 

)
− Δ𝑇 𝑛𝑢𝑐 ∶ 𝐶̄ 𝑑 = 𝐶 

∗ 
𝑙 

(30)

here ΔT nuc is the nucleation undercooling and 𝐶 

∗ 
𝑙 

is calculated from

he liquidus line of the phase diagram 

 

∗ 
𝑙 
= 

𝑇 − 𝑇 𝑓 

𝑚 𝑙 

(31)

here m l is the slope of the liquidus line and T f is the melting point

f the pure material. Note that Eq. (30) assumes that nucleation occurs

nstantaneously at the nucleation temperature. 

Similar to the isothermal cases, the recalescence cases corre-

pond to the growth of multiple grains, in a BCC arrangement, with

ow/intermediate/high grain densities (i.e., 𝑅 𝑓 = 0.8/1.6/2.4 mm). In
he simulations, the properties were taken from Rappaz and Thevoz

22] ; the initial temperature was set equal to the liquidus temperature

i.e., no initial undercooling), and the nucleation undercooling was set

o zero. 

Figs. 14–16 show the comparisons between the macroscopic pre-

ictions of the different quantities (the blue curves) with the cor-

esponding upscaled mesoscopic results (the red curves) for the re-

alescence cases with low/intermediate/high grain densities. For the

ecalescence cases, the tip velocities are shown only during the

ariable-sphericity stage of growth because the mesoscopic and macro-

copic predictions of V t did not agree during the constant-sphericity

tage. This, however, should not distract because, as discussed earlier,

n the macroscopic model, calculation of V t are not required during the

onstant-sphericity stage. From the plots it can be seen that the overall

greement between the macroscopic and mesoscopic predictions of the

ifferent quantities is good. For example, the recalescence observed in

he mesoscopic simulations is predicted to within better than 0.5 K ac-

uracy and the mesoscopic and macroscopic solid fractions are in an al-

ost excellent agreement. Note that the existence of a minor difference

etween the macroscopic and mesoscopic temperatures while the solid

ractions are in excellent agreement, shows extremely high sensitivity

f the system (See Eq. (28) and note that c p , L f , and 𝑞̇ are constant). Pre-
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[  
icting temperatures with accuracy of 0.5 K for such a sensitive system

s a remarkable achievement of the new constitutive relations. 

Finally, it is useful to mention that, for the recalescence cases, the

acroscopic and mesoscopic values of V t are initially in an excellent

greement. This is because these cases do not have an initial transient

tage as they start with undercooling zero. This also further supports the

rgument that we had at the end of Section 5.1 , where we attributed the

inor difference between macroscopic and mesoscopic values of V t to

he presence of an initial transient stage. 

. Conclusions 

A previously developed mesoscopic envelope model was used to per-

orm three-dimensional simulations of equiaxed dendritic growth on a

patial scale that corresponds to a REV, which is used in developing

olume-averaged macroscopic models. The first set of mesoscopic simu-

ations were performed for isothermal growth at a large range of initial

ndercoolings and grain densities (including a single grain). The results

ere upscaled by averaging them over the REV. The upscaled results

ere examined in detail. It was found that the entire growth period can

e divided into variable-sphericity and constant-sphericity stages based

n the sign of the time derivative of the scaled primary arm length. Dur-

ng the variable-sphericity stage, the envelope growth is mainly due to

he growth of the primary arms, while during the constant-sphericity

tage it is mainly due to the growth of the secondary arms. It was also

ound that using the average undercooling in the extra-dendritic liquid

n the Ivantsov solution significantly underpredicts the tip velocities. 

For the first time in the field of solidification, the upscaled meso-

copic results were used to develop constitutive relations for macro-

copic models of equiaxed solidification. Relations were proposed for

he envelope sphericity, average growth velocity, far-field undercooling

hat needs to be used in the Ivantsov solution to accurately predict the

rimary tip velocities, and for the average diffusion length around the

nvelopes. 

The constitutive relations were verified by comparing the predictions

f the macroscopic model with the upscaled mesoscopic results for the

sothermal and also for the new mesoscopic cases. These new cases in-

olve external cooling and a recalescence in the cooling curves. For all

he cases, the predicted macroscopic quantities were found to be in good

greement with the corresponding upscaled mesoscopic results. The mi-

or difference between the two was attributed to a minor difference in

he macroscopic and mesoscopic values of the primary tip velocity, and

hat was attributed to the presence of an initial transient stage in the

esoscopic simulations. 

A necessary future work is comparing the predictions of the macro-

copic model with the upscaled mesoscopic results for multiple grains in

 random arrangement. Determining the final grain radius R f for this ar-

angement will be a key factor in macroscopic simulations. This can be

chieved using methods such as grain count or linear intercept that are

ommonly used in microstructure analysis [34] . Extension of the meso-

copic model for multicomponent alloys and incorporating melt flow in

he model are also of great interest. 
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