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Abstract

A method is developed to numerically simulate coupled solidification and deformation of dendrites. Dendritic solidification is mod-
eled using the phase-field method. The elasto-viscoplastic deformation of the growing solid is computed using the material point method.
The stress analysis assumes a sharp and stress free solid-liquid interface, with the zero contour line of the phase field used to identify the
interface. The deformation-induced flow in the liquid is approximated through a zero-gradient extension of the deformation velocities in
the solid. Changes in the crystallographic orientation angle and advection of the phase and temperature fields due to solid deformation
are all accounted for. Numerous tests are performed to validate the various numerical procedures. The full model is then applied to sim-
ulate in two dimensions the compression of a single dendrite of a pure substance growing in an undercooled melt. The development of
complex stress and strain distributions is observed. The deformations result in variations in the crystallographic orientation angle within
the dendrite that, in turn, affect the subsequent solidification behavior. The modeling of the deformation of polycrystalline solidifying

structures, including the formation of grain boundaries, is described in a companion paper.
© 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Deformation of the solid is a common occurrence dur-
ing metal casting processes [1,2]. Often the solid deforms
simply due to thermal stresses, but sometimes the deforma-
tion is caused by external forces, for example through the
rolls in continuous casting, mold wall movement, or an
applied pressure. When the casting is still solidifying, the
deformations can extend into the semi-solid mushy zone.
This mushy zone is typically composed of solid dendrites
surrounded by liquid. Deformation of the mush can lead
to numerous defects in a solidified casting, including hot
tears, macrosegregation and porosity. Therefore, under-
standing the mechanical behavior of mush is of great inter-
est for advancing casting simulations incorporating a stress
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analysis and, ultimately, for preventing defects in castings
3]

The overall goal of the present study is to develop a
numerical method for simulating the deformation of a
solidifying mush on the scale of the evolving microstruc-
ture. Such direct numerical simulations may lead to
improved constitutive models for use in macroscopic stress
simulations. Mush deformation is a complex process
involving multiple physical phenomena: solidification and
formation of bridges or grain boundaries between den-
drites, large inelastic solid deformation with contacts,
liquid flow, etc. Simulating all of these processes simulta-
neously would be a very challenging task. A few research-
ers have developed methods to investigate the mechanical
behavior of mush. Phillion et al. [4] and Fuloria and Lee
[5] calculated inelastic deformation of multi-grain and den-
dritic microstructures, respectively, without considering
solidification. Uehara et al. [6] performed thermal stress
simulations in a confined solidifying microstructure. Fully
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coupled solidification and deformation simulations of den-
dritic microstructures have not been performed in the past.
The coupling of the solidification and deformation calcula-
tions is important not only because the deformations are a
function of the morphology of the evolving solid, but also
because the solidification patterns are affected by the defor-
mations. In order to simplify the problem, we focus in the
present study on dendritic solidification and solid deforma-
tion of a pure substance in two dimensions. Stresses that
are exerted by the liquid on the solid are neglected. This
assumption is realistic when the liquid can “drain” freely.
In fact, the flow of the liquid is not modeled at all. Trans-
formation stresses/strains, stress-induced phase transfor-
mations, and heat generation due to inelastic deformation
are not considered. These assumptions are all appropriate
for a slowly deforming mush. All material properties are
assumed to be constant, and the thermophysical properties
of the solid and liquid are assumed to be equal.

The simulation of dendritic solidification with large
solid deformations necessitates numerous choices regard-
ing the models to be used and the numerical methods to
be employed. The phase-field method [7,8] is used in the
present study to simulate solidification. Since it employs
a diffuse interface concept, it is especially well suited for
handling morphological changes and singularities, such as
those caused by portions of a dendrite impinging on one
another. Such wetting and bridging phenomena are not
well handled by traditional sharp interface approaches. In
addition, phase-field methods are available to simulate
solidification of multiple crystals while accounting for their
individual crystallographic orientations and the formation
of grain boundaries [9]. The main new feature of the pres-
ent phase-field calculations is that due to the deformation
of the solid, the crystallographic orientation angle is no
longer uniform within a single dendrite and continuously
evolves. Furthermore, the phase-field and the temperature
field are advected by the deformation velocity. The stress
model for simulating the elasto-viscoplastic deformation
of the solid assumes that the solid-liquid interface is sharp.
The zero contour line of the phase field is used to identify
the interface. The stress model is only solved in the solid
and the solid-liquid interface is taken as stress free. The
numerical method employed in the solution of the stress
model needs to be able to handle large strains, self-contact
and impingement of solid. Particle methods or meshless
methods are attractive for this purpose, because they do
not suffer from the mesh collapse or entanglement prob-
lems typical of Lagrangian finite-element methods (FEMs).
In the present study, the material point method [10] is
selected. The main feature of this method is that is uses,
as in a particle method, a Lagrangian description for the
motion of material points, and a fixed Eulerian back-
ground mesh for solving the equation of motion. The latter
feature makes the material point method well suited for
coupling with the (Eulerian) phase-field method.

The present paper is limited to the simulation of the cou-
pled solidification and deformation of a single dendrite.

This simplification is made in order to allow for detailed
testing and validation of the methods employed. Several
examples are presented that illustrate the complex physical
phenomena involved. A companion paper [11] then extends
the present method to consider multiple dendrites and
grain boundaries.

2. Models and numerical procedures

2.1. Phase-field method for dendritic solidification in the
presence of solid deformation

The standard phase-field model of Karma and Rappel
[12] is used to simulate dendritic solidification of a pure
substance from an undercooled liquid melt. Let ¢ denote
the phase field, where ¢ = +1 refers to the bulk solid and
liquid phases, respectively. The anisotropic form of the
two-dimensional phase-field evolution equation is given by:
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where r(/)(oc)zroéz(oc) and W(a) = (&(«) are orientation-
dependent relaxation time and diffuse interface thickness
parameters, respectively, in which « is the (crystallographic
orientation) angle between the interface normal and the
crystal axes. The usual 4-fold crystalline anisotropy func-
tion £ =1+ ¢cos (4a) is used, where ¢ is the anisotropy
strength of the surface energy. The phenomenological bulk
free energy function is given by f (¢, 10) = q(¢) + 210p(¢),
in which ¢(¢) = —¢*/2+ ¢*/4 is a double-well function
and p(¢)= ¢ — 2¢°/3+ ¢°/5 is an odd function. The
dimensionless temperature is given by 0 =(T — T,,)/(L/
¢p), in which T, T,,,, L and c, are the temperature, melting
point, latent heat and specific heat, respectively. The cou-
pling constant, A, and the relaxation time, 7y, are chosen
in accordance with the thin-interface analysis of Karma
and Rappel [12] in order to model kinetics-free growth.
The parameter W, has to be reduced until a converged
solution that is independent of the diffuse interface thick-
ness is obtained. The temperature field is obtained from
the following heat equation:
%+v-V0:DV20+%(GB—?+v'V¢>, 2)
where D is the thermal diffusivity. All other details can be
found in the original Ref. [12].

The terms in Egs. (1) and (2) involving the velocity vec-
tor, v, account for advection of the phase field and the tem-
perature field. Since Eqgs. (1) and (2) are solved over the
entire computational domain, the velocity field must be
known everywhere. The deformation velocity in the solid
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(¢ > 0) is given by the stress model (see below). However,
since the flow in the liquid (¢ <0) is not modeled in the
present study (see Introduction), a liquid velocity field must
be prescribed. Setting the velocity in the liquid phase to
zero would not be appropriate, because it would lead to
an unrealistic velocity variation inside of the diffuse inter-
face and no advection of the temperature field in the liquid.
Instead, it is assumed that the liquid velocity is given by a
zero-gradient extension of the solid velocity in the direction
normal to the solid-liquid interface, i.e. the liquid at any
point in space and time has the same velocity as the closest
solid. The PDE-based scheme of Gibou et al. [13]is used to
perform the velocity extension. The inverse of the phase
field is used as a signed-distance (level set) function [14],
and the PDE-based reinitialization scheme of Osher and
Fedkiw [15] is employed to maintain an accurate signed-
distance function over the entire computational domain.
Due to the continuity of the solid and liquid velocities at
the solid-liquid interface (for equal densities), the present
approach can be expected to yield realistic liquid velocities
near the interface. However, the liquid velocity field away
from the interface can be affected by many factors aside
from the solid deformation. Nonetheless, a full solution
of the Navier-Stokes equations for the liquid is outside
the scope of the present study.

The solid deformation also changes the crystallographic
orientation angle, . The angle can evolve in time due to
advection and rotation, such that the following evolution
equation can be written:

%+V-Voc:V><v. (3)

The term on the right-hand side of Eq. (3) is needed so
that for a spatially uniform angle, i.e. for an undeformed
crystal where Vo =0, rigid-body rotational movement of
the solid still results in angle changes. Since the orientation
angle is only defined for the solid, but Eq. (3) is solved over
the entire domain, the orientation angle is numerically
extended into the liquid using again the extension scheme
of Gibou et al. [13]. While there is no physical meaning
associated with this procedure, it results in the liquid hav-
ing an orientation angle equal to the one of the closest
solid.

The above model neglects the formation of a grain
boundary when there is a crystallographic orientation
angle mismatch between two interacting portions of a
deformed dendrite. In other words, the model is limited
to situations where solid regions with different orientations
do not impinge on or grow into each other. As already
mentioned, the companion paper [11] includes these inter-
actions via a polycrystalline phase-field model [9].

The above equations are solved numerically on a fixed
Eulerian mesh using a standard explicit finite-difference dis-
cretization. The fractional step or operator splitting
approach [16] is employed to allow for different time steps
to be used for the advection and diffusion terms. Special
care needs to be taken in the numerical treatment of the

advection terms, i.e. those involving v -V, especially for
the phase-field [17]. In the present study, the CIP method
[18] is adopted for this purpose. It is a third-order scheme
that prevents the numerical solution from oscillating and
smearing.

2.2. Stress model and material point method

The stress model for calculating the elasto-viscoplastic
deformation of the solid assumes that the solid-liquid
interface is sharp. In other words, the stress model is only
solved in that region of the computational domain that is
solid. The zero contour of the phase field is taken as the
sharp solid-liquid interface and, hence, defines the bound-
ary of the solid at any point in time. The solid-liquid inter-
face is treated as stress free, since the stresses from the
liquid are neglected. The development of a phase-field
method that solves a unified equation of motion for the
solid and liquid is beyond the scope of the present study.
It is unclear how the mechanical property variations within
the diffuse interface could be specified. Furthermore, the
constitutive equations for the stresses would have to tran-
sition across the diffuse interface from those for an elas-
to-viscoplastic solid to those for a Newtonian fluid. These
are important topics of future research.

The equation of motion for the solid is given by:

dv
Pt
where p is the density, ¢ is the Cauchy stress tensor and b is
the gravity force vector. An elasto-viscoplastic constitutive
model is used for the mechanical behavior of the solid,
where the total strain, e, is decomposed into elastic, &°,
and viscoplastic, &7, parts (thermal strains are neglected).
Two-dimensional plain-strain conditions are assumed.
The elastic strains and stresses are related by Hooke’s
law. The elastic stiffness tensor is defined in terms of the
Young’s modulus, E, and the Poisson ratio, v. For simplic-
ity, a Perzyna-type model [19] is used for the viscoplastic
material response. Hardening is neglected, i.e. the solid
near the melting point is assumed to be perfectly viscoplas-
tic. The viscoplastic strain rate is obtained from the J; asso-
ciative flow rule:

=V -6+ pb, 4)

de’ (9fy

- =y 5
=5 (5)
where 7 is a consistency parameter defined as:

=, ©)

where 7, 1 a viscosity coefficient and {} are the Macaulay
brackets [19]. The yield function, fy, is given by the stan-
dard von Mises yield criterion, in which oy is the yield
stress. The stress is integrated using the radial return map-
ping method [20].

The material point method [10] is used to solve the stress
model. It originates from the particle-in-cell (PIC) method
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[21] and takes advantage of both Eulerian and Lagrangian
approaches. The solid is represented by a collection of
Lagrangian material points, while the equation of motion
is solved on fixed Eulerian background nodes (the same
ones as used in the phase-field equation). The generalized
interpolation material point method (GIMP) [22] is used
to specify the mapping between the material points and
the grid nodes. The mapping function is represented by
the combination of a linear shape function, as in standard
FEMs, and a Heaviside function, which specifies the sup-
port domain of each material point. The GIMP suppresses
spurious oscillations when a material point passes through
an Eulerian cell boundary. The details of the derivations
and numerical implementation can be found in Refs.
[22,23]. Since an explicit time integration scheme is used,
the time step is small enough that the incremental strain
can be assumed to be infinitesimal and the quadratic strain
term is negligible. In order to maintain objectivity of the
stress tensor under large deformation, the Jaumann stress
rate is used.

For the newly solidified portion of a dendrite, new mate-
rial points are inserted at the intersection of the zero phase-
field contour with the fixed computational background
mesh. These new material points are assigned zero initial
stress and strain. This procedure is appropriate because it
is assumed in the present study that the liquid does not
transmit stresses to the solid. The mass of the new material
points is chosen so as to match the amount of new solid for
each cell from the phase-field computations.

2.3. Numerical tests and validation

2.3.1. Phase-field advection

The present implementation of the CIP method for the
advection of the phase field is tested using the diagonal
translation of a circle problem [17]. The advection part of
the phase-field equation is solved by setting the right-hand
side of Eq. (1) to zero. The square computational domain
of side length 1.0, shown in Fig. 1a, is discretized using a
80 x 80 grid. Initially, a circle of radius 0.15 is placed at
(0.25, 0.25). The circle is defined by the zero phase-field
contour, and the phase field is initialized with the hyper-
bolic tangent profile ¢ = — tanh(n//2W), where n is the
normal to the circle and W = 2Ax. The velocity field is uni-
form in the diagonal direction, advecting the circle to the
(0.75, 0.75) position (half translation) and then back to
the initial position (full translation).

Fig. 1c and d show the computed phase field when the
circle is at the half and full translation positions, respec-
tively. The initial, half translation and full translation zero
phase-field contours are superimposed in Fig. 1b. It can be
seen that the circular shape is well maintained during the
translation. A grid convergence study showed that the
order of accuracy of the CIP method for this problem is
between 2.6 and 3.0. The nearly third-order accuracy is
similar to the one for the CENO scheme used in Ref. [17].

2.3.2. Dendritic solidification with prescribed deformation

The phase-field model is first tested for dendritic solidi-
fication of a single crystal into an undercooled melt with
prescribed deformation velocity fields for the solid (i.e.
the stress model is not solved). Numerical tests are per-
formed for both a rotational and a linear shear velocity
field. Initially, a small solid seed is placed in the center of
the computational domain, while the melt is uniformly
undercooled. Symmetry conditions are imposed on the
boundaries of the square computational domain. The
domain is discretized using 641 node points in each direc-
tion with a uniform spacing of Ax/W, = 0.4. The dendritic
solidification conditions are the same as in the second entry
in Table 1 of Ref. [24]: a dimensionless initial melt underco-
oling of 6; = —0.55, a dimensionless thermal diffusivity of
Dty/W: =3, a dimensionless capillary length of dy/
Wy =0.185, and an anisotropy strength of ¢ =0.05. The
reader is referred to Ref. [24] for all other details of the
computations. It is shown in that reference that the present
phase-field model, without flow and deformation, predicts
steady dendrite tip growth velocities and radii that are in
good agreement with the exact solution from microscopic
solvability theory. Since the present phase-field model (with
v = 0) is the same as that in Ref. [24], the same agreement is
obtained here. Fig. 2a provides a snapshot of the predicted
phase field for the case of v = 0. A typical 4-fold dendritic
solidification pattern can be observed. Note that the actual
computational domain is much larger than what is shown
in Fig. 2.

In the first test case, a constant rotational velocity field is
imposed over the entire computational domain, such that
the dendrite rotates about its center as a rigid solid body.
Since the melt is rotated at the same rate as the solid, the
growth should be unaffected by the rotation. Fig. 2b shows
the predicted phase field after a n/4 rotation. The rotational
velocity was chosen such that after the n/4 rotation the den-
drite has the same size as without rotation. No smearing of
the phase field can be observed and the dendrite appears the
same as without rotation. The zero phase-field contours
with and without rotation are superimposed in Fig. 2d. In
this figure, the dendrite of Fig. 2b is rotated back to the ini-
tial position. There is excellent agreement between the con-
tours, indicating that the numerical treatment of the
temperature, phase field and angle advection terms is satis-
factory. The importance of accurately solving the crystallo-
graphic orientation angle evolution equation is illustrated in
Fig. 2¢c. For that figure, Eq. (3) was not solved and the angle
was kept at its original value at each location. An unrealistic
“swirling” dendrite shape results.

In the second test case, a downward linear shear velocity
field is imposed over the entire computational domain, as
illustrated in Fig. 3a. The vertical velocity is zero at the ori-
gin of the dendrite and increases linearly in the horizontal
direction. The velocity gradient is chosen such that the den-
drite experiences significant bending during its growth (see
Ref. [25] for details). Computed zero phase-field contours
are shown for several intermediate times in Fig. 3b. The
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Fig. 1. Test of the high-order advection algorithm. (a) Schematic of the diagonal translation of a circle problem. (b

) Calculated zero phase-field contours

after half and full domain translation superimposed on the initial contour. Computed phase fields after half (c) dl’ld full (d) domain translation.

trajectory of the tip of the horizontally growing dendrite
arm is indicated in Fig. 3b as a bold solid line. This trajec-
tory is in close agreement with one obtained analytically by
superimposing the dendrite tip growth velocity in the
absence of deformation with the given linear shear velocity
field [25]. This superposition assumes that the flow that is
approximately normal to the growth direction does not
affect the tip growth [24]. The good agreement in the tip
trajectory demonstrates that non-uniform and continu-
ously changing velocities and crystallographic orientation
angles are effectively handled by the present computational
method. Note that at the left vertical axis, the upward
pointing dendrite arm grows faster than the downward
growing arm. This can be attributed to the advection of
heat by the velocity field in the liquid. It is shown in Ref.
[24] that flow in the direction opposite to the dendrite tip
growth direction results in an enhancement of the tip
velocity.

2.3.3. Solid deformation without solidification

The present implementation of the material point
method for the stress analysis is tested using several numer-
ical examples that do not involve solidification.

The elastic part of the stress model is validated using the
Timoshenko cantilever problem illustrated in Fig. 4 [26].
The left edge of the cantilever is fixed, and a vertical load
of P=100N is imposed on the right edge. The length
and height of the cantilever are given by /=8 m and
h = 1m, respectively. The material properties are set to
E=3x10"Pa, v=0.3, and p = 1000 kg/m>. As shown
in the lower panel of Fig. 4, the cantilever is represented
by 144 cells and 512 material points (2 x 2 points in each
cell). The fixed background mesh extends well beyond the
cantilever. Fig. 5 provides a comparison of the computed
vertical displacement profile along the horizontal centerline
with the analytical solution of Timoshenko [26]. Excellent
agreement can be observed.

The elasto-viscoplastic computations are tested using
the dogbone-like rectangular tension specimen of the
dimensions shown in Fig. 6. The specimen is represented
by 288 material points (2 x 2 points in each cell). First,
the purely elastoplastic material response is examined by
setting the viscosity coefficient, 7,;,., to a very large num-
ber. A cyclic displacement profile is imposed at the top
and bottom ends of the specimen, with maximum tension
and compression strains of 4 0.5%. The same elastic prop-
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Fig. 2. Phase-field simulation of dendritic solidification with an imposed rotational velocity field. (a) Snapshot of the predicted phase field without
rotation. (b) Calculated phase-field after a 45° revolution. (c) Swirling dendrite resulting from the lack of considering the crystallographic orientation angle
changes in the phase-field equation. (d) Superimposed zero phase-field contours corresponding to (a) and (b).
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Fig. 3. Phase-field simulation of dendritic solidification under a linear shear velocity field. (a) Schematic of the computational domain and boundary
conditions. (b) Predicted zero phase-field contours (every 5000 time steps) and dendrite tip trajectory.

erties as in the previous example are used, and the yield  puted stress—strain curve for one loading cycle. Yielding
stress was set to oy = 6 x 10* Pa. Fig. 7a shows the com- occurs exactly at the yield stress and the strains evolve as
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Fig. 4. Schematic of the Timoshenko cantilever problem (upper panel)
and distribution of the Lagrangian material points on the fixed Eulerian
background mesh (lower panel); the dimensions are in meters (i.e. / = 8 m
and 2 = 1m).
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Fig. 5. Comparison of the predicted vertical displacement along the
cantilever axis by the material point method with the analytical solution of
Timoshenko (in meters).

expected. Second, the elasto-viscoplastic computations are
tested for #,,. = 3 x 10° Pa s. Simulations are performed
for simple tensile loading of the specimen at three different
strain rates. The resulting stress—strain curves are shown in
Fig. 7(b). As expected, the yield stress increases with
increasing strain rate. Oscillations in the calculated stresses
are kept to a minimum.

The final test of the stress model is designed to examine
the present implementation of the material point method
for the case of large deformations. As illustrated in the left
panel of Fig. 8§, a rectangular bar (L = 1 m) is sheared by
imposing equal rightward and leftward displacements at
the top and bottom ends, respectively, such that the total
shear is 40%. The solid is treated as a purely elastoplastic
material with the same mechanical properties as in the pre-
vious example, except oy = 4 x 10° Pa. This test case also
serves to check the advection of the phase field by the com-
puted solid velocities. The initial representation of the bar
by the phase field on the fixed background mesh is shown

Displacement 6

ittt
L

N 5

A

1.0

3.0

4.0

Fig. 6. Schematic of the specimen used in the tension—compression tests
(left panel) and distribution of the Lagrangian material points on the fixed
Eulerian background mesh (right panel); the dimensions are in meters.

in the right panel of Fig. 8. The background mesh is chosen
to be five times as wide as the bar, in order to allow for the
tracking of large lateral deformations. Computed von
Mises stress (upper panels) and equivalent plastic strain
(lower panels) contours for a shear of 40% are shown in
Fig. 9. In this figure, the material point method results (left
panels) are compared to standard FEM results (right pan-
els) that were obtained using ANSYS 12.0 [27]. Overall,
good agreement can be observed. The bar is predicted to
yield everywhere except for a large complex-shaped central
portion and small regions along the edges. The 40% shear
represents the maximum that could be simulated using
the FEM. Already, large amounts of finite-clement mesh
distortion and entanglement can be seen in the upper right
and lower left corners of the bar. The material point
method does not suffer from these problems. A more quan-
titative comparison of the material point method and FEM
results is shown in Fig. 10. The computed von Mises stres-
ses along the data sampling line indicated in the upper right
panel of Fig. 9 are compared in Fig. 10a. While the agree-
ment is qualitatively good, the material point method
appears to better resolve the stress variations in the center
of the bar. These stresses are very sensitive to the large
deformations at the ends of the bar, where the FEM suffers
from mesh entanglement. Fig. 10b shows a comparison of
the deformed shape of the bar predicted by the FEM with
the zero contour line of the phase field, which was advected
using the solid velocity from the material point method
stress analysis. The good agreement validates not only
the material point method deformation calculations, but
also the coupling with the phase-field advection algorithm.

3. Results and discussion

Simulations of the deformation of a single dendrite are
performed using the physical system illustrated in Fig. 11
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Fig. 7. Predicted stress—strain curves for the specimen of Fig. 6. (a) Fully
reversed cyclic loading for an elastic—perfectly plastic solid. (b) Tension
loading for an elastic—perfectly viscoplastic solid at three different strain
rates.

. The rectangular domain is defined by 1200 x 800 grid
points, with Ax/W,=0.4, and is bounded by adiabatic
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walls. Initially, the domain contains an undercooled liquid,
except for a solid seed at the center. The seed grows freely
into the undercooled melt and develops into a dendrite.
Unless otherwise noted, the dendritic growth conditions
are the same as in the example of Section 2.3.2. Once the
vertical dendrite arms reach the top and bottom walls,
the walls start to move inwards at a prescribed rate. This
imposes a compression loading on the growing dendrite.
In order for some solidification to occur during the com-
pression, the displacement rate of the top and bottom walls
was chosen to be approximately equal to the dendrite tip
growth velocity. This can be best observed in the figures
below by the movement of the tips of the horizontally
growing dendrite arms relative to the changes in the posi-
tion of the top and bottom walls. Unless otherwise noted,
the mechanical properties for the solid dendrite are taken
as E=50GPa, v=0.33, p=7800kg/m*, gy =5 MPa
and n,, =1x 10’ Pa-s. These values are intended to
approximately represent the mechanical properties of met-
als near the melting point [3].

Before presenting the results of the simulations, it is nec-
essary to explain the numerical treatment of the moving
domain walls when solving the phase-field model. A special
procedure is needed, because the numerical grid is fixed and
does not deform. Hence, the moving domain walls cut
through the computational cells at continuously changing
positions. While the advection of the field variables by
the motion of the solid is accounted for in the governing
equations, it is important to accurately impose the bound-
ary conditions at the moving domain walls. The cut-cell
technique [28,29] is used for this purpose. Special boundary
nodes are introduced and the equations are discretized
using uneven node spacings. Special care is taken not to
let the node spacings at the moving walls become smaller
than half the node spacing of the fixed grid. The nodes
behind the moving walls are deactivated. A validation test
is presented in Ref. [25], where it is shown that the com-
puted phase-field contours for a dendrite attached to a wall
are indistinguishable for cases run with and without wall
motion.

Fig. 8. Schematic of the specimen used in the large shear deformation test (left panel) and initial phase-field contours used to track the specimen boundary

(right panel); L = 50 m.
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Fig. 9. Computed von Mises stress (upper panels) and equivalent plastic strain (lower panels) contours for the 40% shear deformation test of Fig. 8. The
left panels are the results from the material point method, while the right panels are the results from the standard FEM code ANSYS 12.0.
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Fig. 10. Comparison of material point method and finite-element method results for the 40% shear deformation test of Fig. 8. (a) Predicted von Mises
stresses along the data sampling line indicated in the upper right panel of Fig. 9. (b) Predicted specimen shapes.

The results of an initial simulation where the crystalline
anisotropy strength is set to ¢ =0.015 and viscous effects
are neglected (i.e. 7, — o0) are shown in Fig. 12. The
rows of plots represent results at four different times corre-

sponding to when the vertical dendrite arms have just
touched the top and bottom walls, 5% compression, 10%
compression and 15% compression. The phase-field con-
tours (left column) and the equivalent plastic strain fields
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Fig. 11. Schematic of the computational set-up for the simulation of the compression of a single dendrite.

(center right column) indicate that the deformation of the
dendrite for small compressive strains is limited to the ver-
tical growing dendrite arms near the top and bottom mov-
ing walls. In these portions of the dendrite, the yield stress
(center left column) is reached. As expected, the shape of
the horizontally growing dendrite arms is unaffected by
the compression. With increasing compression, the regions
in the vertically growing dendrite arms that exhibit plastic
deformation extend further towards the center of the den-
drite. Furthermore, the (elastic) stresses in the center por-
tion of the dendrite continually increase. However, due to
the large cross-section of the dendrite in the center, the
yield stress is not reached at 15% compression. There is
also a thin layer of solid directly adjacent to the moving
walls where the stresses are predicted to be below the yield
stress. This can again be attributed to the larger cross-sec-

Von Mises stress [Pa]:
I =
SE+06

Phase-field:
[

|

-1 1 0

Equivalent plastic strain:

tion of the dendrite at these locations. It is also interesting
to observe the predicted evolution of the crystallographic
orientation angle field in the rightmost column of Fig. 12.
Bending of the dendrite occurs primarily in a thin layer
at the edges of the regions with large plastic deformations,
while the center portions of the vertically growing dendrite
arms do not experience any crystallographic angle changes
due to symmetry.

The deformation of a somewhat more complex dendrite
structure is simulated next. For this purpose, a thermal
noise term was introduced into the heat equation, Eq.
(2), following exactly the procedure developed by Karma
and Rappel [30] (see also Ref. [24]). The strength of the
noise was chosen such that some side-branches develop
during the growth of the dendrite. In addition, the anisot-
ropy strength was increased to ¢ = 0.06 in order to obtain a

Orientation:

0 1.2 -0.4 0.4

Fig. 12. Predicted phase-field (left column), von Mises stress (center left column), equivalent plastic strain (center right column) and crystallographic
orientation angle (right column) contours for elastic — perfectly plastic compression of a single dendrite growing into an undercooled melt with an
anisotropy strength of ¢ =0.015 and no thermal noise (other conditions are provided in the text). Results are shown for when the vertically growing
dendrite tips just touched the walls and compression is initiated (first row), at 5% compression (second row), at 10% compression (third row) and at 15%

compression (fourth row).
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Phase-field:
I T =

Von Mises stress [Pa]:
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Fig. 13. Predicted phase-field (left column), von Mises stress (center left column), equivalent plastic strain (center right column) and crystallographic
orientation angle (right column) contours for elastic—perfectly plastic compression of a single dendrite growing into an undercooled melt with an
anisotropy strength of ¢ = 0.06 and thermal noise (other conditions are provided in the text). Results are shown for when the vertically growing dendrite
tips just touched the walls and compression is initiated (first row), at 10% compression (second row), at 20% compression (third row) and at 30%

compression (fourth row).

more slender dendrite. All other conditions are the same as
those in the previous simulation (Fig. 12). Fig. 13 shows
the computed results at compressions of 0%, 10%, 20%,
and 30%. The phase-field contours in the upper left corner
of Fig. 13 indicate that a more slender dendritic structure
with small side-branches is indeed achieved. In particular,
the necks between the center core and the four main den-
drite arms are now much thinner. The stress, equivalent
plastic strain and crystallographic orientation angle fields
follow generally the same trends as in Fig. 12. Since the
dendrite cross-section is much reduced, the plastic strains

and orientation angle changes are much larger than in
the previous simulation. Plastic strains in excess of 100%
occur in portions of the dendrite near the moving walls.
At 10% compression (second row in Fig. 13), small stress
concentrations become apparent in the valleys between
the side-branches and at the necks between the vertically
growing arms and the dendrite core. Fig. 14 shows a close
up of the predicted stress field in the center portion of the
dendrite at 10% compression. It can be seen that in the nar-
row necks between the vertically growing arms and the
dendrite core, small regions of solid very near the solid—

Von Mises stress [Pa]:

I W=
0 5E+06

Fig. 14. Close-up image of the predicted phase-field (left panel) and von Mises stress (right panel) contours for the simulation of Fig. 13 at 10%

compression.
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Fig. 15. Comparison of predicted zero phase-field contours with (red lines) and without (black lines) compression for the conditions of Fig. 13. Results are
shown at times corresponding to 10% (left panel), 20% (center panel) and 30% (right panel) compression. Due to symmetry, only the right half of the
computational domain is shown in each panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

liquid interface have already reached the yield stress (red),
while the inner portions of the dendrite are still deforming
elastically. At 20% compression (third row in Fig. 13), the
center portion of the dendrite is starting to yield. At 30%
compression (last row in Fig. 13), elastic stresses propagate
even into the uncompressed horizontally growing dendrite
arms. The large compression causes the vertically growing
dendrite arms to appear much thicker than without com-
pression. This can be better seen in Fig. 15, where the
phase-field contours from two simulations with and with-
out compression are directly compared at three different
times. Due to the movement of the top and bottom walls,
a large amount of solid mass is advected inwards.
Simulations were also performed where the viscous
effect was included in the stress analysis [25]. The results
are very similar to the ones in the previous example and
are not included here for conciseness. Additional study of
the rate dependency of the solid deformation is needed.

4. Conclusions

A method is developed to numerically simulate dendritic
solidification with elasto-viscoplastic deformation of the
solid. The phase-field method is used to model solidifica-
tion, while the material point method is used to solve for
the stresses and strains in the solid assuming a sharp and
stress-free solid—liquid interface. Instead of modeling the
flow in the liquid phase, the liquid velocity field is approx-
imated through a zero-gradient extension of the solid
velocities. Terms are added to the phase-field and heat
equations to account for advection by the solid and liquid
motion. Changes in the crystallographic orientation angle
due to solid deformation are obtained from a separate evo-
lution equation. The various parts of the model are care-
fully validated in several test cases. It is demonstrated
that the chosen high-order numerical methods provide
accurate results. The full model is then used to simulate
the compression of a single dendrite. The results show that
complex stress and strain distributions develop in the grow-

ing dendrite. The deformations result in variations in the
crystallographic orientation angle within the dendrite that,
in turn, affect the subsequent solidification behavior. The
simulations demonstrate that the present numerical meth-
odology is well suited for simulating large deformations
of complex solidifying microstructures.

The simulations in this paper are limited to two dimen-
sions and dendritic growth conditions that would be diffi-
cult to achieve in an experiment. These choices were
made in order to achieve reasonable computational times
(of the order of one day) on a standard single-processor
computer workstation. More realistic, three-dimensional
simulations would be needed to allow for an investigation
into the constitutive behavior of semi-solid mushy zones
in casting processes. Furthermore, the simulations in this
paper are limited to deformation of a single dendrite with-
out impingement of deformed dendrite arms on each other.
In a companion paper [11], the present method is extended
to consider multiple dendrites and the formation of grain
boundaries. Future work should also include modeling of
the flow of the liquid surrounding the deforming solid. In
this respect, it would be desirable to solve a unified,
phase-field dependent equation of motion for both the
solid and the liquid. The main difficulty with such an equa-
tion would be to realistically model the transition from
solid to liquid mechanical behavior inside of the diffuse
interface. In the phase-field model of melt convection dur-
ing solidification by Beckermann et al. [31], the solid was
assumed to be rigid and stationary so that only a liquid
momentum equation needed to be considered. Sun and
Beckermann [32,33] extended this model to two immiscible
Newtonian fluids having large property contrasts. A phase-
field model for simultaneous solid deformation and liquid
flow is still not available.
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