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Abstract

Three-dimensional free dendritic growth of a pure material into an undercooled melt in the presence of fluid flow is

investigated numerically using the phase-field method. Such computations are made possible by solving the

Navier–Stokes equations for the flow and the energy equation for the heat transport on a grid that is twice as coarse as

the grid for the phase-field equation. The effect of the flow on the upstream growing dendrite tip velocity and radius of

curvature is investigated as a function of the imposed flow velocity, undercooling, crystalline anisotropy, and Prandtl

number. The results are compared to available theories of dendritic growth with and without convection. The predicted

growth Péclet numbers as a function of the flow Péclet number are in reasonable agreement with the theoretical

predictions. The dendrite tip selection parameter is essentially independent of the flow velocity within the range studied,

which is also in accordance with theory. The three-dimensional dendrite tip shape is found to be well fitted by the same

universal scaling relation as without flow.

r 2005 Published by Elsevier B.V.
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1. Introduction

Dendritic solidification of crystalline materials is
a complex pattern formation process that is
e front matter r 2005 Published by Elsevier B.V.

ysgro.2005.03.063

ng author. Tel.: +1319 335 5681;

5669.

ss: becker@engineering.uiowa.edu

).
governed by the combined action of heat transport
(for pure materials) and surface tension. Under-
standing dendritic growth is important, for exam-
ple, for predicting microstructures in solidified
metals. In the absence of melt flow, a theory is
available to predict the steady-state velocity, V,
and radius of curvature, Rp, of the tip of a
dendritic needle crystal of a pure substance
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growing into an infinite volume of undercooled
melt. The theory assumes that the dendrite is
isothermal and that the interface shape is a
paraboloid of revolution; the subscript p is used
to indicate this parabolic shape assumption. The
solution of the heat diffusion problem in the melt
is given by

D ¼ IvðPepÞ, (1)

where Iv is the Ivantsov function [1], D ¼ ðTm �

T1Þ=ðL=cpÞ is the dimensionless melt undercool-
ing, and Pep ¼ RpV=ð2DÞ is the tip growth Péclet
number. Here, Tm and TN are the equilibrium
melting and far-field temperatures, L is the latent
heat of fusion, cp is the specific heat, and D is the
thermal diffusivity. According to microscopic
solvability theory [2,3], a unique tip velocity is
then selected by the action of anisotropic surface
tension via the scaling relation

s�p ¼ 2Dd0=ðR
2
pV Þ, (2)

where d0 is the capillary length. At low under-
coolings, the selection parameter s�p is a constant
that only depends on the anisotropy strength �4
(for a crystal with cubic symmetry) as s�p��7=44 in
the limit of small anisotropy. The anisotropy also
alters the parabolic tip shape according to [4]

x ¼
r2

2
� A4r

4 cosð4jÞ, (3)

where (r;j) are the polar coordinates in the plane
normal to the growth direction (�x direction) and
all lengths are scaled by the tip radius Rp. The
constant A4 (¼

1
96
¼ 0:0104 [5]) is independent of

the anisotropy strength, implying that Eq. (3)
represents a universal dendrite tip shape. The
above theoretical predictions have recently been
verified by numerical calculations using the phase-
field method [6,7] and through comparisons with
benchmark experiments [8–10]. Karma et al. [7]
found A4 to be in the range 0.004–0.005.
Convection in the melt has long been realized to

have a profound effect on dendritic growth [11,12].
It is presently unclear how the above theory for
dendritic growth under purely diffusive conditions
should be modified to account for the convection
effect. In particular, the selection of the operating
state of the dendrite tip in the presence of melt flow
has been the subject of some controversy, as
reviewed below. Initial theoretical efforts have
concentrated on deriving extensions to the Ivant-
sov solution for the case of undercooled melt
flowing uniformly over a parabolic needle crystal
from infinity in a direction opposite to the growth
direction. Dash and Gill [13] derived an analytical
expression that relates the undercooling D to the
growth Péclet number, Pep, flow Péclet number,
Pef ¼ RpU=ð2DÞ, and Prandtl number, Pr ¼ n=D,
where U is the imposed far-field velocity and n is
the kinematic viscosity of the melt. They found
that the heat flux from a dendrite tip modeled as a
paraboloid of revolution is much larger than from
a two-dimensional dendrite modeled as a parabolic
cylinder, especially at small values of the flow
Péclet number. Ananth and Gill [14–16], Saville
and Beaghton [17], Ben Amar et al. [18], and Xu
[19] obtained various analytical solutions for the
effect of convection on the heat transport from
parabolic dendrites (both parabolic cylinders and
axisymmetric paraboloids) under Oseen viscous
flow, potential flow, or other approximations. In
the absence of flow, these solutions all reduce to
Eq. (1). Through numerical studies, Lee et al. [20]
determined that the Stokes flow approximation
becomes inaccurate at large flow Péclet numbers
and that flow influences the heat transport (in
succinonitrile) significantly when the flow velocity
is greater than the tip growth velocity. The only
study found in the literature that extends solva-
bility theory to include convection is by Bouissou
and Pelce [21]. They assumed a parabolic cylinder
tip shape and a uniform axial flow in two
dimensions to derive an analytical expression for
the variation of the tip selection parameter, s�p,
with flow velocity, U. In the large flow velocity
limit, when ðd0UÞ=ðRpV Þ ¼ Pefs�p is of the order
of unity or greater, the theory predicts that the
selection parameter decreases with U. At lower
flow velocities s�p is predicted to be independent of
U. A more rigorous theory of dendritic growth
with flow has remained lacking.
Experimental investigations of the operating

state of a dendrite tip in the presence of a forced
flow have failed to yield consistent results.
Bouissou et al. [22] found that the selection
parameter decreases for pivalic acid (PVA) den-
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drites almost linearly with the longitudinal com-
ponent of the external flow velocity, but is
independent of the transverse component of the
flow velocity. Emsellem and Tabeling [23] per-
formed growth experiments using ammonium
bromide and found s�p to be almost independent
of U in their experimental range. On the other
hand, the experiments on succinonitrile (SCN) by
Lee et al. [24] and Ananth and Gill [25] indicated
that s�p increases, rather than decreases, with
increasing flow velocity.
In recent years, phase-field models have been

extended to include melt convection [26–29],
providing a unique means of studying the interac-
tions between flow and solidification through
numerical simulations. Using such phase-field
models, several investigators have simulated the
effect of convection on dendritic growth in two
dimensions [30–35]. The same problem has also
been simulated using other numerical techniques
[36–39]. In particular, the phase-field simulation
results of Tong et al. [30,33] showed good
agreement with the two-dimensional (parabolic
cylinder) Oseen–Ivantsov solution of Saville and
Beaghton [17] for heat transport from a dendrite
tip in the presence of an axial flow. Tong et al.
found that the selection parameter s�p does not
depend on the flow velocity within the ranges of
the parameters they varied, which is in agreement
with the two-dimensional solvability theory of
Bouissou and Pelce [21]. They were not able to
verify the analytical expression of Ref. [21] for the
large flow velocities where s�p is predicted to
decrease with U.
Three-dimensional phase-field simulations of

the effects of convection on dendritic growth of a
single crystal in an undercooled melt were per-
formed by Jeong et al. [40,41] and Lu et al. [42].
Jeong et al. [40] found that the effect of flow on the
upstream growing dendrite tip in two dimensions
is much larger than in three dimensions. For the
one three-dimensional simulation with flow they
reported, the selection parameter s�p for the
upstream tip was lower than without flow. Jeong
et al. [41] reported results of several three-
dimensional simulations and compared them to
the experiments of Bouissou et al. [22] and Lee et
al. [24]. The results at high undercooling and high
anisotropy agreed well with the transport solution
for an axisymmetric paraboloid of Saville and
Beaghton [17]. Some disagreement was observed at
low undercooling where the flow field is modified
by the presence of other dendrite branches. The
selection parameter s�p was found to decrease
slightly with flow velocity, but the variations were
small enough to be within the uncertainty of the
calculations. All cases simulated were in a regime
where the solvability theory of Bouissou and Pelce
[21] predicts that s�p is independent of U. Jeong et
al. [41] conclude that significant open questions
remain about the evolution of the dendritic
microstructure when flow is present. Very recently,
Al-Rawahi and Tryggvason [43] presented three-
dimensional simulations of dendritic solidification
with convection using a numerical technique that
is based on explicit tracking of connected marker
points to describe the solid–liquid interface,
instead of the phase-field method. Although no
quantitative comparisons were performed, the
results showed the same trends as in Jeong et al.
[40,41].
The present study uses three-dimensional phase-

field simulations to investigate free dendritic
growth of a pure substance in a forced flow. While
parts of the study were already presented at
conferences [42], this paper provides a more
complete account of the method and includes
several new results. The effects of flow on both the
dendrite tip operating state and the tip shape are
investigated and comparisons are made with
available theories.
2. Phase-field model

The present model uses as a starting point the
phase-field equation presented by Karma and
Rappel [6] for three-dimensional dendritic growth
of a pure substance in the presence of purely
diffusive heat transport. In addition, the results of
the thin-interface asymptotic analysis of Karma
and Rappel [44] are exploited to render the
computations more efficient and to investigate
the limit of vanishing interface kinetics (i.e. local
equilibrium at the solid–liquid interface). Convec-
tion is incorporated into the phase-field model
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using the methodology developed by Beckermann
et al. [27] and used by several other groups
[30,33–35,40,41]. In this method, the phase-field
equation is unchanged from the purely diffusive
case, thus assuming that the phase-field is not
advected by the flow and that the phase-transition
temperature does not depend on pressure. These
assumptions are appropriate for the purpose of the
present study. The mass, momentum, and energy
conservation equations are derived using an
averaging technique that renders the equations
valid everywhere in the domain, including the
diffuse interface region. The usual no-slip condi-
tion at a sharp solid–liquid interface is enforced
through a varying interfacial force term in the
liquid momentum equation in the diffuse interface
region. The force term is chosen such that the no-
slip condition is accurately reproduced regardless
of the diffuse interface width.
Let c denote the phase field, where c ¼ �1

refers to the bulk solid and liquid phases,
respectively. The phase field varies smoothly from
1 in the solid to �1 in the liquid in a small but
numerically resolvable diffuse interface region,
and the solid–liquid interface is defined by the
contour c ¼ 0. The anisotropic form of the phase-
field equation is given by [6]

tðnÞ
qc
qt

¼ ½c� luð1� c2
Þ
ð1� c2

Þ þ r 
 ½W ðnÞ2rc


þ
X

x¼x;y;z

qx jrcj2W ðnÞ
qW ðnÞ

qðqxcÞ

� �
, ð4Þ

where l is a dimensionless parameter that controls
the coupling between the phase field and the
temperature field, n is the interface normal vector,
t is time, x; y; z are Cartesian coordinates, and u ¼

ðT � TmÞ=ðL=cpÞ is the dimensionless temperature.
The interface width parameter W and the relaxa-
tion time t depend on the orientation of the
interface and are given by W ðnÞ ¼ W 0asðnÞ and
tðnÞ ¼ t0asðnÞ

2, respectively, with

asðnÞ ¼ ð1� 3�4Þ

� 1þ
4�4

1� 3�4

ðqxcÞ
4
þ ðqycÞ

4
þ ðqzcÞ

4

jrcj4

" #
.

ð5Þ
An effective anisotropy strength �e that provides
a small correction to �4 due to the discreetness of
the computational lattice can be calculated from
[6]

�e ¼ �4 �
1

240
Dx2 þ Oð�4Dx2Þ þ OðDx4Þ, (6)

where Dx is the lattice spacing. Finally, from the
thin-interface asymptotic analysis [44], and
in the limit of vanishing interface kinetics,
the phase-field parameters W 0, t0, and l are
related by

W 0

d0
¼

l
0:8839

, (7)

t0 ¼ 0:6267
lW 2

0

D
. (8)

With these relations, the phase-field model
converges to the sharp-interface model in the limit
of a ‘‘thin’’ interface whose width is small
compared to the scale of the microstructural
pattern but larger than the capillary length.
Convergence studies are carried out by decreasing
the dimensionless interface width W 0=d0 until
results are independent of W 0=d0. For this
purpose, the governing equations are non-dimen-
sionalized using W 0 and W 2

0=D as length and time
scales, respectively. This way, the thermal diffu-
sivity is eliminated from the equations and only l
is left as a free parameter. Simulation results for
different values of the interface width W 0=d0, are
obtained by changing l according to Eq. (7).
This procedure is slightly different from previous
convergence studies [33] where the governing
equations are non-dimensionalized using W 0 and
t0 as length and time scales, respectively. This
choice of scales introduces a dimensionless
thermal diffusivity Dt0=W 2

0 which, according to
Eq. (8), is linearly proportional to l. To obtain
results for different values of W 0=d0, both l and
Dt0=W 2

0 have to be varied according to Eqs. (7)
and (8).
Let f denote a solid fraction that is related to

the phase field by f ¼ ðcþ 1Þ=2, and hence varies
from 0 in the liquid to 1 in the solid. The governing
mass, momentum, and energy conservation equa-
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tions of the present phase-field model, assuming
constant properties and equal densities and
thermal diffusivities of the solid and liquid phases,
are given, respectively, by [27]

r 
 ½ð1� fÞV 
 ¼ 0, (9)

q½ð1� fÞV 
=qt þ ð1� fÞV 
 rV

¼ �ð1� fÞrp=rþ nr2½ð1� fÞV 


� 2nhf2
ð1� fÞV=W 2

0, ð10Þ

qu=qt þ ð1� fÞV 
 ru ¼ Dr2u þ qf=qt, (11)

where V is the liquid velocity vector, p is the
pressure, and r is the density. The last term on the
right-hand side of Eq. (10) is a distributed
interfacial term that forces the velocity to vanish
as f ! 1; the constant h is equal to 2.757 as
determined from an asymptotic analysis for a
simple shear flow past a diffuse interface [27]. As
mentioned earlier, the important property of this
term is that the velocity profile smoothly ap-
proaches the profile for a sharp interface with a
no-slip condition at f ¼ 0:5 (or c ¼ 0), regardless
of the diffuse interface width. The last term on the
right-hand side of Eq. (11) is a volumetric latent
heat release term.
3. Computational procedures and problem

description

The phase-field equation, Eq. (4), is solved using
the same explicit finite difference code and uniform
grid as Karma and Rappel [6] and the reader is
referred to that reference for all details of the
numerical implementation. The energy equation,
Eq. (11), is also discretized using an explicit finite
difference method, but with a grid spacing Dx that
is exactly twice as large as the one for the phase-
field equation, as already described in Ref. [42].
The temperatures are linearly interpolated to the
phase field nodes for the solution of the phase-field
equation. The intent of this double-grid method is
to reduce computational time and memory re-
quirements without sacrificing accuracy. It is made
possible by the fact that the temperature gradients
inside the diffuse interface are much smaller than
the ones associated with the hyperbolic tangent
profile of the phase field. The double-grid method
gives essentially identical results as using a single
grid spacing [42].
The mass and momentum conservation equa-

tions, Eqs. (9) and (10), are solved using a
modified version of the implicit finite element code
FEATFLOW [45,46]. This code uses a multi-grid
solver and error control methods that make it
both robust and efficient. The modifications
relate primarily to the presence of the terms in
Eqs. (9) and (10) that contain the solid fraction f.
The same (coarse) node spacing is employed for
the flow equations as for the energy equation [42].
The present double-grid scheme reduces the
computational time by up to 80%, because
most of the time is spent solving for the flow
field. Equally important, the memory requirements
are vastly reduced. Using a coarser grid for the
flow field is made possible in large part by the
excellent convergence properties, with respect to
the diffuse interface width, of the interfacial
force term in Eq. (10). The flow algorithm
has been validated against numerous benchmark
problems [47]. Further reductions in the computa-
tional time can be obtained by using the dual
time-step algorithm introduced in Refs. [30,33]
and also used in Refs. [40,41]. In that scheme,
the flow equations are solved using a time step that
is up to ten times larger than the one for the
phase-field and energy equations. However,
this procedure was not utilized in the present
study because it does not result in a reduction in
the computer memory requirement. All computa-
tions were performed on PCs that have a memory
of 2 GB and took typically several days to
complete.
Only one example of a validation study per-

formed to test the flow algorithm and code is
presented here. The example is concerned with
steady flow around an infinite cylinder at low
Reynolds numbers [47]. The rectangular domain
and numerical mesh employed are shown in Fig. 1.
The dimensions of the domain are 10, 10, and 0.8
(in dimensionless length units) in the x, y, and z

directions, respectively. Fluid enters the domain at
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Fig. 2. Comparison of measured and predicted drag coeffi-

cients as a function of Reynolds number for flow across an

infinitely long circular cylinder.
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the x ¼ 0 plane with a uniform inlet velocity and
leaves at x ¼ 10 with zero longitudinal velocity
gradients. Slip (zero stress) boundary conditions
are applied at the other four boundary planes. The
cylinder axis at the center of the x–y plane extends
over the entire z direction of the domain. Together
with the slip boundary conditions at z ¼ 0 and 0.8,
the flow in the z direction is uniform and the length
of the cylinder in the simulation does not matter.
In order for the flow field not to be affected by the
domain boundaries, the cylinder diameter is taken
as 0.2, which is 50 times smaller than the height or
length of the domain. The number of nodal points
is kept relatively small by using a non-uniform
mesh in the x–y plane, as shown in Fig. 1. The
cylinder is defined by a stationary distribution of
the phase field variable, such that c ¼ 1 inside the
cylinder, c ¼ �1 in the bulk fluid, and c ¼

� tanhðn=ð
ffiffiffi
2

p
W 0ÞÞ across the diffuse interface,

which corresponds to the stationary solution of
the phase-field equation. The c ¼ 0 contour is
shown in Fig. 1b. The interface width parameter is
chosen equal to W 0 ¼ Dx=1:6, where Dx is the
(uniform) mesh spacing at the center of the
domain where the cylinder is located (see Fig.
1b). This choice is the same as in the following
dendrite simulations and implies that 96% of the
variation in c is contained within 4Dx. Note from
Fig. 1b that the entire cylinder diameter is only
about 12Dx. Such a coarse mesh is chosen on
purpose in order to assess the accuracy of the
double-grid scheme for the smallest dendrite
feature encountered in the following. Using the
computed flow results, the drag coefficient, CD, of
the cylinder was determined as a function of the
Reynolds number. Fig. 2 shows a comparison of
the predicted drag coefficients with previous
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experimental measurements [48,49]. Excellent
agreement can be observed over the entire
Reynolds number range.
The physical system used in the dendritic growth

simulations is shown in Fig. 3. The entire domain
is a cube with a side length of 204:8W 0 and a
crystal seed located at its center. However,
computations are only performed in the quarter
of the domain that is outlined by the thick solid
lines in Fig. 3. This symmetry assumption is
appropriate for the small flow Reynolds numbers
considered here. The melt enters the domain at the
x ¼ 0 plane with a uniform velocity U and
undercooling D, and leaves the domain at x ¼

204:8W 0 with zero gradients in the x-direction. On
the four planes normal to the inlet and outlet, slip
boundary conditions are imposed for the velocity
and symmetry conditions for the phase field and
temperature. The crystalline directions of the seed
are aligned with the coordinate axes. To save
computational time, the seed is allowed to grow
for some time before the flow is imposed. All
dendrite growth calculations with flow reported in
the following are performed using a uniform mesh
spacing of Dx ¼ 0:8W 0 (256� 128� 128 finite-
difference nodes) for the phase-field equation and
Dx ¼ 1:6W 0 for the other equations, according to
the double-grid scheme. For the finite element
mesh, this corresponds to 545,025 vertices,
1,593,344 nodes, and 524,288 elements. With this
mesh, the domain is large enough that, for the
ranges of the governing parameters investigated in
the present study, the upstream growing dendrite
tip can reach a steady state without the thermal
and velocity boundary layers in front of it
interfering with the domain boundary. However,
other parts of the dendrite (see Fig. 4), in
particular the tips growing normal to and down-
stream of the flow, do not reach a steady growth
regime, as shown below.
Two different methods are used to characterize

the shape of the dendrite tip growing upstream in
the �x direction. The actual tip radius is denoted
by R and represents the local radius of curvature
of the solid–liquid interface at the very dendrite
tip. It is calculated from the phase-field contours in
the x–y (j ¼ 01) plane using the method detailed
in Appendix B in Karma and Rappel [6].
The ‘‘parabolic’’ tip radius, Rp, on the other

hand, represents the tip radius of a paraboloid of
revolution that is fitted to the actual nonaxisym-
metric phase-field shape away from the tip using
the ‘‘equal cross-sectional area’’ (ECSA) method
described in Section III.A in Karma et al. [7]. In
this method, the cross-sectional area of solid
normal to the growth direction is calculated from
SðxÞ ¼

R
fðx; y; zÞdydz. A plot of S(x) away from

the tip can be fitted to a straight line and the
parabolic tip radius is then given by the slope of
this line according to Rp ¼ SðxÞ=½2pðx0 � xÞ
 for
xox0, where x0 is the position of the tip. Karma et
al. [7] showed that in the absence of flow, Rp

coincides (to within numerical accuracy) with the
tip radius that is obtained from the Ivantsov
relation, Eq. (1), using the tip velocity from the
phase-field dendrite. They also confirmed that this
agreement is independent of undercooling and
anisotropy strength. In the absence of flow Rp is
therefore a good scaling parameter for the entire
dendrite shape. The question of whether this is still
true in the presence of flow will be addressed
below.



ARTICLE IN PRESS

Fig. 4. Example of a computed dendrite morphology with flow (D ¼ 0:55, Ut0=W 0 ¼ 1, �4 ¼ 0:05, Pr ¼ 2:5, Dt0=W 2
0 ¼ 4, and

l ¼ 6:383): (a) side view (flow is from left to right); (b) downstream view; (c) upstream view.
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4. Simulation results and comparisons with theory

4.1. Growth morphology in the presence of

convection

Fig. 4 shows different views of a typical dendrite
simulated in the presence of flow. The simulation
parameters are: D ¼ 0:55, Ut0=W 0 ¼ 1, �4 ¼ 0:05,
Pr ¼ 2:5, Dt0=W 2

0 ¼ 4, and l ¼ 6:383. It can be
seen that convection has a strong effect on the
growth morphology when comparing it to a
completely symmetric dendrite that would be
obtained under purely diffusive conditions. The
upstream facing tips and branches grow at a much
faster rate than the downstream oriented parts of
the dendrite, because the temperature gradients on
the upstream side are larger due to the impinging
flow. The four ‘‘fins’’ of the upstream growing
dendrite arm that reflect the underlying cubic
anisotropy can be seen in Fig. 4b. The melt is
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heated by the dendrite as it flows around it, which
causes the downstream parts to grow more slowly
than even in the purely diffusive case. Fig. 4c
shows that the development of the downstream
arm is almost completely suppressed. The tips of
the four dendrite arms oriented normal to the flow
direction grow at approximately the same rate as
in the purely diffusive case. Even though the
normal dendrite arms are much thicker on the
upstream side (Fig. 4a), their growth axis (ap-
proximated by a straight line extending from the
center of the seed to the tip of the arm) is not
deflected by more than 1�21 in the upstream
direction.
Figs. 5a and b show the calculated variation of

the dendrite tip velocities, Vd0=D, and radii, R=d0,
respectively, as a function of time, tD=d2

0, for the
following set of parameters: D ¼ 0:45, �4 ¼ 0:04,
Pr ¼ 3:85, and l ¼ 3. Results are shown for a
simulation without flow and for a simulation with
UW 0=D ¼ 1, where the flow was started at
Time (tD/d2
0)
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Fig. 5. Temporal evolution of: (a) tip velocity; (b) tip radius

(D ¼ 0:45, UW 0=D ¼ 1, �4 ¼ 0:04, Pr ¼ 3:85, and l ¼ 3).
tD=d2
0 ¼ 16. It can be seen that the no-flow

dendrite reaches a steady growth regime at about
tD=d2

0 ¼ 50, after which the tip velocity and radius
attain constant values. In the case with flow, the
upstream tip reaches a steady growth regime
already at about tD=d2

0 ¼ 40. For this simulation,
the upstream steady tip velocity is about 53%
higher than in the no-flow case, while the radius is
about 9% lower. The tip velocity of the cross-
stream dendrite arm reaches a steady-state value
that is very close to the no-flow result, but due to
its slight deflection it was not possible to evaluate
its tip radius using the method of Ref. [6]. The
downstream dendrite tip does not reach a steady
growth regime and continues to slow down (with
the tip radius increasing). This can be explained by
the continually increasing size of the dendrite
upstream of it. In the following subsections, only
the steady state results for the upstream growing
dendrite tip are considered further.

4.2. Comparison with Jeong et al. [40,50]

Table 1 shows a comparison of various up-
stream dendrite tip growth parameters with results
of Jeong et al. [40,50] for a simulation typical of
the cases considered in the present study. The
actual tip radius, R, is used in the calculation of
the growth Péclet number, Pe, and the selection
parameter, s�. Overall, good agreement is ob-
tained with the results of Jeong et al. [40,50] for
both the no-flow and the flow cases. The small
differences can be attributed to uncertainties in the
Table 1

Comparison of calculated upstream dendrite tip growth

parameters with Jeong et al. [40,50]

�4 ¼ 0:05, D ¼ 0:55, Pr ¼ 23:1, Dt0=W 2
0 ¼ 4, l ¼ 6:383,

d0=W 0 ¼ 0:139

No flow Ut0=W 0 ¼ 1

Jeong et al. Present Jeong et al. Present

Vd0=D 0.0317 0.0307 0.0359 0.0337

R=d0 20.9 21.6 25.3 26.9

Pe 0.332 0.332 0.454 0.452

s� 0.144 0.139 0.0872 0.0820
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evaluation of the tip velocity and radius [40] and in
deciding when the tip has reached a complete
steady growth state. Note that the comparison in
Table 1 is for a dimensionless interface width
parameter of W 0=d0 ¼ 7:2 (or l ¼ 6:383), which is
the value used in Jeong et al. [40]. The following
dendrite simulations are all performed for an
interface width that is smaller by more than a
factor of two (i.e. W 0=d0 ¼ 3:4 or l ¼ 3), which
results in better convergence with respect to the
interface width [see discussion below Eq. (8)]. The
convergence studies presented in Refs. [6,7,33,47]
show that with l ¼ 3 (and Dx=W 0 ¼ 0:625),
accurate results, that are reasonably independent
of the interface width, are obtained for the
dendrite tip velocity and radius for the same range
of undercoolings and anisotropy strengths as
investigated here.
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R, is used to evaluate both the growth and the flow Péclet

numbers, while the parabolic tip radius, Rp, is used for the filled

symbols.
4.3. Péclet number comparison

Ananth and Gill [14] and Saville and Beaghton
[17] provide analytical solutions for the heat
transport from a steadily growing, isothermal,
and axisymmetric parabolic dendrite tip for the
case of undercooled melt flowing uniformly over
the tip from infinity in a direction opposite to the
growth direction. The solutions are complex
relations of the form

D ¼ f ðPep ¼ RpV=ð2DÞ,

Pef ¼ RpU=ð2DÞ;Pr ¼ n=DÞ ð12Þ

which reduce to the Ivantsov solution, Eq. (1), in
the limit of now flow, i.e. Pef ¼ 0. While both
solutions [14,17] are based on the Oseen viscous
flow (small Reynolds number) approximation,
they are of a somewhat different form, presumably
because they are derived using different analytical
techniques. In order to compare the present three-
dimensional numerical results for the upstream
growing dendrite tip with the above analytical
solutions for a paraboloid of revolution, the
‘‘equal cross-sectional area’’ (ECSA) method [7],
described in Section 3, is used to determine the
parabolic tip radius, Rp, from the computed phase-
field contours.
Fig. 6 shows a comparison of steady-state
growth Péclet numbers extracted from the simula-
tions for the upstream growing dendrite tip with
the Oseen–Ivantsov relations, Eq. (12) [14,17], as a
function of the flow Péclet number. The flow
Péclet number is varied by performing several
simulations with different imposed melt velocities,
U. The imposed melt undercooling and the Prandtl
number are fixed at D ¼ 0:45 and Pr ¼ 3:85,
respectively. Two sets of phase-field simulations
are performed for anisotropy strengths of �4 ¼
0:04 (circles) and 0.05 (squares). For the open
symbols in Fig. 6, the actual dendrite tip radius, R,
is used to evaluate both the growth and the flow
Péclet numbers, while the parabolic tip radius, Rp,
is used for the filled symbols. As expected, the
phase-field results and the theories show that the
growth Péclet number increases with increasing
flow velocity. As observed previously for the two-
dimensional case [6,33], the Péclet numbers based
on the actual tip radius are in poor agreement with
the theories, which can be attributed to the
computed dendrite shape deviating significantly
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from a paraboloid. In fact, the growth Péclet
numbers based on the actual tip radius from the
simulations for the two anisotropy strengths (0.04
and 0.05) differ by almost a factor of two,
illustrating the strong effect of the anisotropy
strength on the dendrite shape close to the tip. On
the other hand, the growth Péclet numbers based
on the parabolic tip radius, Pep, are in much better
agreement with the Oseen–Ivantsov theories. Due
to the fitting of the computed dendrite shape to a
paraboloid of revolution, the computed Pep for
the two anisotropy strengths fall along almost the
same line. Note that the two theoretical results
[14,17], do not differ significantly from each other.
In Fig. 6, the Pep from the phase-field simula-

tions fall consistently below the curves from the
Oseen–Ivantsov theories by up to about 10%. This
is somewhat surprising, since Karma et al. [7]
showed for the three-dimensional case that in the
absence of flow, the computed Pep coincides to
within a numerical accuracy of about 1% with the
Péclet number that is obtained from the Ivantsov
relation, Eq. (1), for a given undercooling. This
excellent agreement is remarkable, since the
computed dendrite is neither axisymmetric nor
isothermal. The present disparity can be explained
by an insufficient fitting range used for determin-
ing the parabolic tip radius from the computed
dendrite shape (Section 3). Fig. 7 shows the ratio
Rp/RIv as a function of the fitting range for two
different undercoolings and anisotropy strengths
for simulations without melt flow. Here, RIv is the
Ivantsov tip radius obtained from Eq. (1) using the
tip velocity from the phase-field simulations [7].
The fitting range, measured as the distance behind
the upstream tip, is specified as a multiple, n, of
RIv. It can be seen from Fig. 7 that the ratio Rp/RIv

indeed approaches unity with increasing fitting
range. However, as shown by Karma et al. [7], a
fitting range of about 10RIv is needed to obtain
good agreement with the Ivantsov solution. Due to
computer limitations, the results in Fig. 6 are only
for a fitting range of up to n ¼ 3. Fig. 7 shows that,
for such a limited fitting range, the ratio Rp/RIv is
equal to about 0.9. Hence, this explains the
difference of up to 10% between the computed
and theoretical growth Péclet numbers in Fig. 6. If
a larger fitting range had been used for the
simulations in Fig. 6, much better agreement in
the growth Péclet numbers could be expected, even
in the cases with flow. This was not possible
because computer limitations prevented the use of
a larger simulation domain and longer simulation
times for the cases with flow. Also included in Fig.
7 is the ratio Rpmax/RIv as a function of the fitting
range, where Rpmax is a tip radius obtained by
fitting a parabola to the maximum ridge of the
dendrite (see Fig. 4 and Section 4.5). For the
relatively high anisotropy strengths used in the
present simulations (0.04 and 0.05), the ratio
Rpmax/RIv can be seen to continually increase with
the fitting range, and it does not approach unity.
This illustrates the importance of using the ECSA
method [7] for evaluating the parabolic tip radius
when comparing three-dimensional simulation
results to the Ivantsov-type theories.
In summary, the relatively large (up to 10%) but

systematic disagreement between the computed
and theoretical growth Péclet numbers in Fig. 6
can be explained directly by an insufficient fitting
range for evaluating the parabolic tip radius. The
fact that the computed Pep for the two anisotropy
strengths coincide well at a given flow Péclet
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number indicates that other numerical inaccura-
cies do not play a major role in this comparison.
Since the two theories do not differ by more than a
few percent, it can be concluded that, if it had been
possible to use a larger fitting range, the same kind
of excellent agreement between computed and
theoretical Pep as observed by Karma et al. [7]
without flow can be expected with flow.

4.4. Operating state

The linear solvability analysis by Bouissou and
Pelce [21], which assumes a two-dimensional
parabolic cylinder dendrite tip shape, reveals that
the ratio of the selection parameters without flow
and with flow is a function of a dimensionless flow
parameter w

w ¼
aðReÞd0U

ð15�eÞ
3=4RpV

, (13)

where Re ¼ URp=n ¼ 2Pef=Pr is a flow Reynolds
number, and a(Re) is given in the two-dimensional
case by

a2DðReÞ ¼
Re

2p

� 	1=2
expð�Re=2Þ

erfcð
ffiffiffiffiffiffiffiffiffiffiffi
Re=2

p
Þ
. (14)

For w4wc, where wc is a critical threshold value
much larger than unity, the following asymptotic
form holds:

ðs�pÞ0=s
�
p ¼ 1þ bw11=14, (15)

where ðs�pÞ0 is the selection parameter without flow
and b is a constant. For w smaller than unity,
which is the case in the present simulations, the
ratio of selection parameters is independent of the
flow parameter, i.e.

ðs�pÞ0=s
�
p ffi 1. (16)

Physically, the analysis of Bouissou and Pelce [21]
implies that flow has an effect on the tip selection
parameter only if ðd0UÞ=ðRpV Þ ¼ Pefs�p is of the
order of unity or greater.
For comparison with the present three-dimen-

sional phase-field simulations, the above theory
needs to be modified to be valid for a paraboloid
of revolution, rather than for a two-dimensional
parabolic cylinder as in Ref. [21]. An analysis
performed within the course of the present study
revealed that the only modification necessary is to
replace the function in Eq. (14) by

a3DðReÞ ¼
expð�Re=2Þ

E1ðRe=2Þ
, (17)

where E1 is the exponential integral function.
Fig. 8 shows that, for the five simulations

performed, the ratio ðs�pÞ0=s
�
p of selection para-

meters without and with flow is nearly indepen-
dent of the flow parameter, w. Since wo0:4 for all
simulations, the phase-field results in Fig. 8 are in
agreement with the linear solvability theory pre-
diction, i.e. Eq. (16). The differences of up to 10%
from the prediction can be attributed to inaccura-
cies in determining the parabolic tip radius from
the phase-field results, as discussed in Section 4.3.
In order to test the theory of Bouissou and Pelce
[21] for wb1 when Eq. (15) holds, simulations with
much larger flow velocities and lower undercool-
ings need to be performed. Such simulations are
presently outside the reach of available computer
resources.
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4.5. Three-dimensional tip morphology

It is of fundamental interest to investigate
whether the universal non-axisymmetric dendrite
tip shape relation by Ben Amar and Brener [4], Eq.
(3), which was originally derived for purely
diffusive heat transport, is still valid in the
presence of melt convection. For this purpose,
the computed upstream dendrite tip shapes are
analyzed in this section for the following three
simulation cases: the flow velocity, UW 0=D, is
varied from 0, 0.1, to 0.25, while D ¼ 0:45,
�4 ¼ 0:04, Pr ¼ 3:85, and l ¼ 3 are kept constant.
Fig. 9 shows longitudinal sections of the

computed dendrite shape in the f ¼ 01 plane
(maximum ridge or fin) superimposed for
UW 0=D ¼ 0, 0.1, and 0.25. In this figure, the
length coordinates, x and y, are measured from the
upstream tip and are scaled by the parabolic tip
radius, Rp, for each simulation case, as in Eq. (3).
It can be seen that the three computed maximum
ridge shapes coincide well. This indicates that the
parabolic tip radius is still an appropriate scaling
parameter for the dendrite tip shape in the
presence of convection. The small differences in
the contours for x43 between the no-flow and
y

x

-4 -2 0 2 4
0

2

4
UW0/D

0
0.1
0.25

Fig. 9. Superposition of computed longitudinal upstream

dendrite tip sections in the f ¼ 01 plane (maximum ridge) for

different flow velocities; all lengths are scaled by the parabolic

tip radius, Rp (D ¼ 0:45, �4 ¼ 0:04, Pr ¼ 3:85, and l ¼ 3).
flow cases can be attributed to inaccuracies in
determining Rp (see above).
Following the procedure of Karma et al. [7], the

value of A4 in Eq. (3) is obtained by minimizing
the spatially averaged root-mean-square deviation
between the computed maximum ridge shape and
the fourth-order polynomial x ¼ y2=2� A4y

4 over
the interval 1pxpn, where n is a multiple of Rp.
Note that for f ¼ 01, r ¼ y and Eq. (3) becomes
x ¼ y2=2� A4y

4. Fig. 10 shows the variation of A4

with n, obtained in this manner, for each of the
three simulation cases. For purely diffusive heat
transport, Karma et al. [7] found A4 to be in the
0.004–0.005 range for 4pnp10 (and much lower
undercoolings and anisotropy strengths). The
results for UW 0=D ¼ 0 in Fig. 10 for nX4 support
this finding. The A4 values for np3 can be
disregarded due to an insufficient fitting range.
The A4 values obtained in the two flow cases
appear to approach the same range as in the no-
flow case. For n ¼ 4, the A4 values for all three
simulations with and without flow are within a few
percent of each other. Due to computer limita-
tions, it was not possible in the two flow cases to
obtain A4 for a larger fitting range. Nonetheless,
the present results indicate that, within the range
n

A
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Fig. 10. Variation of A4 with the fitting range, n, for different

flow velocities; A4 is obtained from a fit of the computed

maximum ridge shape to the fourth-order polynomial repre-

senting the universal dendrite tip shape relation [4], Eq. (3), over

the interval 1pxpn (D ¼ 0:45, �4 ¼ 0:04, Pr ¼ 3:85, and

l ¼ 3).
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of flow velocities investigated, the universal value
of A4 remains unchanged in the presence of
convection.
Fig. 11 examines the effect of convection on the

entire non-axisymmetric tip shape. Transverse
sections of the computed dendrite shape at x ¼ 2
and 3 are superimposed in Figs. 11a and b,
respectively, for all three simulation cases with
and without flow. As in Fig. 9, all length
coordinates are measured from the dendrite tip
and are scaled by the parabolic tip radius, Rp, for
each simulation case. It can be seen that the
transverse sections in Fig. 11 are in nearly perfect
agreement. This indicates that the scaled dendrite
(a) y
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Fig. 11. Superposition of computed transverse upstream

dendrite tip sections at (a) n ¼ 2 and (b) n ¼ 3 for different

flow velocities; all lengths are scaled by the parabolic tip radius,

Rp (D ¼ 0:45, �4 ¼ 0:04, Pr ¼ 3:85, and l ¼ 3).
tip shape is the same with and without convection.
In the purely diffusive regime, Karma et al. [7]
already showed that the phase-field tip shape
scales with the parabolic tip radius and is well
described by the universal dendrite tip shape
relation, Eq. (3), aside from a localized shape
distortion near the tip, for a large range of
anisotropy strengths and undercoolings. Even
though phase-field results for only one anisotropy
strength and undercooling are presented in this
section, it appears from Figs. 9–11 that the same is
true in the presence of convection. Clearly, a larger
range of flow velocities and Prandtl numbers
should be investigated in the future.
5. Conclusions

Free dendritic growth of a pure material into an
undercooled melt in the presence of fluid flow is
investigated in three dimensions using the phase-
field method. The Navier–Stokes equations for the
flow and the energy equation for the heat
transport are solved numerically on a grid that is
twice as coarse as the grid for the phase-field
equation. The effect of the flow on the dendritic
growth is investigated as a function of the imposed
flow velocity, undercooling, anisotropy strength,
and Prandtl number. The results for the upstream
tip are compared to available theories of dendritic
growth. The predicted growth Péclet numbers as a
function of the flow Péclet number are in good
agreement with the theoretical predictions when
taking into account that the fitting range for
evaluating the parabolic dendrite tip radius was
somewhat insufficient. The dendrite tip selection
parameter is essentially independent of the flow
velocity within the range studied, which is also in
accordance with theory. The three-dimensional
dendrite tip shape in the presence of convection is
found to be well fitted by the same universal
scaling relation as without flow. Future work
should concentrate on performing simulations for
larger domain sizes, in order to allow for increased
fitting ranges. In addition, larger ranges of the
governing dimensionless parameters should be
investigated. Simulations with higher flow velo-
cities would be of particular interest in order to
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test the linear solvability theory relation for the tip
selection parameter in the regime where it is
predicted to significantly change from the no-flow
value. Much lower Prandtl numbers simulations
could help in clarifying the effect of convection on
dendritic growth in metallic systems.
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