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Abstract

A diffuse interface model is derived for the direct simulation of two-phase flows with surface tension, phase-change, and
density and viscosity differences between the phases. The derivation starts from the balance equations for a sharp interface and
uses an ensemble averaging procedure on an atomic scale to obtain a diffuse interface version of the equations. As opposed to
thermodynamically derived models, the two phases are assumed to coexist inside the diffuse interface with different properties,
velocities, and pressures. Separate conservation equations are solved for each phase. The phase interactions are modeled explicitly
through the inclusion of interfacial forces in the momentum equations for each phase. Based on a superposition of microscopic
(atomic-scale) and macroscopic interface morphologies, an expression for the interfacial momentum source due to surface
tension is introduced that is equivalent to the capillary stress term encountered in thermodynamically derived models. Also, a
constitutive relation for the average viscous stresses of each phase inside the diffuse interface is presented. The model is tested
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or simple one-dimensional flows tangential and normal to a diffuse interface, and the results are compared to thos
rom a thermodynamically derived model.
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. Introduction

Diffuse interface methods have been a popular tool in the direct simulation of two-phase flows[1]. In such
ethods, the interface between the two phases has a finite width and is characterized by rapid but smooth
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in the density, viscosity, and other physical quantities. An order parameter or phase indicator functionφ is introduced
to represent the transition between the phases. A unique set of conservation equations (i.e., mass and momentum) is
solved over the entire domain by letting the properties vary across the interface. The evolution ofφ in the domain is
computed from a separate equation. Distributed interfacial sources are introduced into the conservation equations
to account for surface tension[2], interfacial drag[3], or other effects. The volume-of-fluid (VOF)[4], level-set
[5], lattice-Boltzmann-equation (LBE)[6–9], and phase-field methods[10] are sometimes or always associated
with diffuse interface approaches[1]. The major advantage of diffuse interface methods is that explicitly satisfying
sharp interface conditions is avoided and changes in the interface topology are easily handled. However, in many
physical situations the actual interface width is only of the order of nanometers. Hence, problems can arise if
the interface is artificially smeared in order to reduce computational requirements. However, asymptotic analyses
have been devised to allow computations to be performed for larger interface widths without a loss in accuracy
[3,10].

The governing equations for diffuse interface methods can be derived from thermodynamically consistent the-
ories of continuum phase transitions[1,10–14]or from gradient theories[15,16]. For example, Jacqmin[11] used
thermodynamic principles to obtain a diffuse interface model for two-phase flows and clarified the form of the
continuum surface tension force term. Most recently, Anderson et al.[12] performed a thermodynamic analysis
to derive a very general diffuse interface model for two-phase flows in the context of the phase-field method and
identified a number of new non-equilibrium terms inside the diffuse interface. The corresponding sharp interface
equations can be obtained from diffuse interface models by performing an asymptotic analysis for a vanishing
interface width[17].

Beckermann et al.[3], in a study of solidification related phenomena, applied for the first time a formal ensemble
(or volume) averaging procedure[18,19]to derive the equations for a diffuse interface directly from the local, sharp
interface equations. In the past, averaging has only been used to derive models for large-scale systems where the
radius of curvature of the interface is small compared to the size of the system. Examples can be found in the analysis
of bubbly or particulate flows in engineering equipment, porous media, soil mechanics, glaciology, oil recovery,
magma dynamics, metal solidification, earthquake dynamics, mantle flow, and many others (see Refs.[18–24]
and references therein). Ensemble averaging can be viewed as a simple version of more general homogenization
techniques that have been applied to a variety of multi-phase systems[25,26]. In these large-scale models, the actual
shape and motion of the interface is not resolved and the interactions between the phases are only accounted for in
an average sense.
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When using averaging to derive a model for a diffuse interface, as in Beckermann et al.[3], averaging i
pplied on a much smaller, atomic scale in order to resolve the flows inside the diffuse interface and th
f the interface. Such an averaging approach is adopted here to derive the mass and momentum equa
ather general two-phase system that consists of two Newtonian fluids or a fluid and a rigid solid (but t
s not modeled). Surface tension, phase-change, and density and viscosity differences between the pha
onsidered. Since in the averaging approach the equations for a diffuse interface are derived “backward
o the thermodynamic treatments) from well-established local, sharp interface equations, the connection
iffuse and sharp interface models is much clearer than in thermodynamic approaches[17] and several new insigh
an be obtained.

While many of the present concepts are adopted directly from traditional two-phase flow theories[18–22], a
uperposition of macroscopic and atomic-scale interface morphologies is introduced that is only applicable
nterface modeling. This superposition assumes that the radius of curvature of the interface is large compa
iffuse interface width. With that assumption, an expression for the capillary stress tensor for a diffuse int
erived that is equivalent to the one obtained from thermodynamic theories[1,11]. The superposition also results

he derivation of a previously unidentified interfacial force that is associated with curvature variations in the p
f surface tension. Several other modeling elements introduced in this study would also be useful in la

wo-phase models that do not involve a diffuse interface[18,19], including rather general models for the avera
hear stresses and interfacial drag forces of the phases in a two-fluid system.
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To the best of our knowledge, all thermodynamically derived models for two-phase flow assume the existence
of a single velocity and pressure at any point inside the diffuse interface. These variables can vary steeply across
the interface, depending on the two-phase flow situation. Moreover, a single density and viscosity are assumed
to exist and their variation across the diffuse interface needs to be postulated in some ad-hoc manner, because
thermodynamics does not usually provide the variation (unless the properties themselves are used as the order
parameter). For large differences in these properties between the phases, this can lead to results that are very
dependent on the way the property variations are specified. The present averaging approach offers an alternative by
treating each phase separately and assuming the coexistence of the two phases inside the diffuse interface. In such
a two-phase approach, which is rather common for modeling large-scale systems[18–23], each phase possesses
its own velocity, pressure, and physical properties. Separate (averaged) conservation equations are solved for each
phase. The phase interactions are modeled explicitly through the inclusion of distributed interfacial terms in the
averaged equations. In the present study, such a two-phase approach is adopted for modeling the flow inside a diffuse
interface. This avoids the potentially steep variations of the variables across the diffuse interface, and the property
variations follow naturally from the derivations. The two-phase approach implies that a slip flow can exist between
the phases inside the diffuse interface, which is proposed here as a more realistic model for cases with large density
and viscosity differences between the phases. A complication inherent in this approach is that not much is known
about the interactions between the phases inside a diffuse interface containing atomic-scale structures. Thus, an
important objective of the present study is to derive phase interaction terms for a diffuse interface.

By simply adding the averaged mass and momentum conservation equations for each phase, and making use
of averaged interfacial balances, a so-called mixture model can be derived from the present two-phase model.
Assuming furthermore equal velocities of the two phases inside the diffuse interface, a direct connection with
thermodynamically derived models[11,12]can be made. Comparisons between the two modeling approaches are
performed throughout the paper.

Finally, it is important to mention the issue of interface width. In simulating two-phase systems that are large
compared to the actual interface width, the width must usually be chosen artificially large to allow for proper
numerical resolution. There are some instances, however, where the interface width is of the same order as the
length scale of the phenomena being investigated and the width must be chosen realistically. Examples include
near-critical fluids, contact line motion, breakup or merging of interfaces, spinodal decomposition, solute trapping
in rapid solidification, etc.[1,10]. In the present study, special attention is paid to this issue by examining how the
model results behave with changing interface width. For this purpose, the model equations are solved for several
s h, except
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This paper focuses solely on the derivation of the mass and momentum conservation equations for
nterface. The derivation of an equation for the propagation of the interface in non-equilibrium situations (
hase-field equation), using the same two-phase averaging approach, will be presented in a forthcoming p

n order to keep the derivations reasonably simple, the flow inside the diffuse interface is assumed to be slo
hat the momentum dispersion term that arises in the averaging process can be neglected. This appears
n part because such a term does not arise in thermodynamic models. The interfacial Reynolds number
he interface width and the relative velocity between the two phases, is assumed to be small enough tha
orce inside the diffuse interface can be modeled as being linearly proportional to the slip velocity. Furtherm
hermophysical properties of the two phases are assumed uniform inside an averaging volume (but they
lobally). Again, more complex models do not appear to be justified in the present context.

In Section2, the averaging procedures and the two-phase approach are explained in more detail. The sup
f interface morphologies and a model for the average curvature of a diffuse interface are presented in S3.
he derivation of the averaged mass and momentum conservation equations, starting from the local equ
sharp interface, is described in Section4. The modeling of the average stresses, the interfacial momentum

erm, and the interfacial force density is discussed in Sections5–7, respectively. In Section8, the model results a
xamined for simple one-dimensional two-phase flow systems. A brief summary is provided in Section9.
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2. Averaging and two-phase approach

In the present study, averaging is applied on the scale of the fluctuating atomic structures inside the diffuse
interface to obtain a model that allows for the direct simulation of the motion and shape of interfaces in two-phase
flows. Averaging serves to derive the governing equations for the diffuse interface where the two phases are assumed
to coexist and the dependent variables are necessarily a function of the phase functionφ. An averaging volume�V
can be chosen that is small compared to the width of the diffuse interface,l i , but large compared to the characteristic
length of the atomic structures inside the interface,la. In many applications this would imply that the averaging
volume has a “radius” of the order of nanometers. For a diffuse interface model to be valid there is the additional
constraint thatl i must be much smaller than the characteristic radius of curvature of an interface,lc. More rigorously,
the phase functionφ is defined as the ensemble average of an existence function,X1, which is unity in phase 1
and zero otherwise, viaφ =φ1 = 1−φ2 = 〈X1〉. The subscripts 1 and 2 denote any phasek in a two-phase system.
The parentheses〈·〉 denote an ensemble average, such that an averaging volume�V actually does not need to be
specified[18]. For ease of visualization, however, the notion of a volume average will be used in subsequent portions
of the paper. The phase functionφ can then be interpreted as an atomic-scale volume fraction.

The present concept of definingφ as the ensemble average of an existence function on an atomic scale is perhaps
not too different from the phase-field method whereφ is viewed as an order parameter[10]. Such an order parameter
describes the probability of an atom to occupy a particular location, for example in a crystal lattice.

Averaging has been established as a rigorous mathematical procedure[18,19]. Here, only some important aver-
aging rules are reviewed. The ensemble averaging process satisfies the following Reynolds’, Leibniz’, and Gauss’
rules, respectively[18]

〈f + g〉 = 〈f 〉 + 〈g〉, 〈〈f 〉g〉 = 〈f 〉〈g〉, and 〈c〉 = c (1)
〈
∂f

∂t

〉
= ∂

∂t
〈f 〉 (2)

〈
∂f

∂xi

〉
= ∂

∂xi
〈f 〉 (3)
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an be interchanged[18], ca constant,t time, andxi is a spatial coordinate. Gauss’ rule, Eq.(3), is valid because th
resent filter function is homogeneous (i.e., it is unity)[27]. For the existence function,Xk, Eqs.(2) and (3)lead to
φk/∂t= 〈∂Xk/∂t〉 and�φk= 〈�Xk〉, respectively. The latter equation should not be confused with the average
erivative of the existence function in the direction normal to the interface, i.e.,〈|�Xk|〉 = 〈−∂X1/∂n〉. Since|�Xk|
ehaves as a Dirac delta function, picking out the interface, its average is nothing but the interfacial area
olumeS[18], i.e.

S = 〈|∇Xk|〉 (4)

nother important relation associated with the existence function is thatXk is advected by the local interfac
elocity,ui , between the phases according to[18]

∂Xk

∂t
+ ui · ∇Xk = 0 (5)

he above relations are used in the following sections to derive the averaged equations for a diffuse interfac
rom the local, sharp interface equations.

The two-phase approach is illustrated in detail inFig. 1. There are several cases that are distinguished i
resent study:
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Fig. 1. Schematic illustration of the present two-phase approach.

• Case I: The system consists of two Newtonian fluids of arbitrary viscosity and density. The velocities (and
pressures) of the two phases inside the diffuse interface are different, i.e., a slip flow is allowed. This is the most
general case and the main focus of the present study. Following Ref.[12], a solid–fluid system may be modeled
by assigning a large viscosity to the solid.

As illustrated inFig. 1, Cases II and III should be viewed as sub-cases of Case I, because the governing equations
for Cases II and III follow directly from the ones for Case I.

• Case II: If the solid phase (say phase 1) in a solid–fluid system can be assumed to be rigid and stationary, it is
appropriate to simply assign a velocity of zero to the solid and not solve any equations for the solid phase (instead
of assigning a large viscosity to the solid and still solving the equations for the solid phase). Then, the solid phase
does not need to be viewed as a Newtonian fluid. This approach is the same as in Beckermann et al.[3]. The
diffuse interface in Case II can be viewed as a porous medium and classical theory for porous medium type flows
can be used to justify some of the modeling.

• Case III: The velocities of the two phases inside the diffuse interface are assumed equal. This case is referred to
as amixturemodel and is intended to mimic thermodynamically derived models for diffuse interfaces between
two fluids. It is mainly included here in order to allow for a detailed comparison with thermodynamically derived
models. However, the assumption of equal velocities may actually be quite appropriate for cases where the
densities and viscosities of the two phases are not too different.

3. Superposition of interface morphologies

Critical to the present method is the modeling of the interface morphology, and this is where the present approach
significantly differs from traditional averaging of large-scale two-phase systems.Fig. 2 illustrates the three-length
scaleslc, l i , andla in decreasing order from left to right. Thelocal unit vector normal to the atomic-scale structures
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Fig. 2. Schematic illustration of interface morphologies at different scales.

inside the diffuse interface,n, and the correspondinglocal curvature,κ, are given, respectively, by (see Ref.[18] on
how to differentiate the binary existence functionXk using a set of “test functions”)

n = − ∇X1

|∇X1| and κ=∇ · n = − 1

|∇X1|
[
∇2X1 − (∇X1 · ∇)|∇X1|

|∇X1|
]
= − 1

|∇X1|
[
∇2X1 − ∂2X1

∂n2

]
(6)

where|�X1| =−∂X1/∂n andκ is positive when the interface is convex toward phase 2. Anaverageunit normal
vector,n̄, and anaveragecurvature, ¯κ, can be defined, respectively, as (seeFig. 2)

n̄ ≡ 〈n|∇X1|〉
〈|∇X1|〉 and κ̄ ≡ 〈κ|∇X1|〉

〈|∇X1|〉 (7)

where the denominator is nothing butS. Substitution of Eq.(6) into Eq. (7) to obtainn̄ and κ̄ would require the
exact knowledge of the local atomic-scale interface morphology.

To make progress, a simple model for the interfacial area per unit volume,S, is proposed here. It is assumed thatS
can be expressed as an algebraic function ofφ and is not a function of the interface curvature on a macroscopic scale.
This concept is illustrated inFig. 3, where the interface is depicted as a superposition of macroscopic and microscopic
(atomic-scale) morphologies. Recall from Eq.(4) thatS is governed by the entire structure of the diffuse interface,
and includes contributions from both the average curvature of the interface and the atomic-scale structure inside
the diffuse interface (which exist even for a macroscopically flat interface). However, sincelc � l i , S is assumed to
be dominated by the fluctuating, atomic-scale structure inside the diffuse interface. With that assumption,Svaries
only across the diffuse interface (in thēn direction), but not along contours of constantφ. A model of this variation,
assuming an isotropic diffuse interface morphology, is proposed here as

S = S0φ
a(1 − φ)b (8)

whereS0, a, andbare constants that depend on the atomic-scale structure of a (flat) diffuse interface. The pre-factor
S0 is proportional to 1/l i (see discussion following Eq.(9)). According to Eq.(8), the interfacial area per unit volume,
Fig. 3. Superposition of macroscopic and microscopic interface morphologies.
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S, vanishes in the bulk phases and reaches a maximum atφ =φc =a/(a+b). As shown below, it is usually necessary
forSto be phase-invariant, which can be accomplished by choosinga=b. While it is difficult to relate the constantsa
andbexplicitly to the atomic structure of an interface, an interesting connection can be made with the thermodynamic
treatment used in phase-field methods[10]. It can be shown[28] that the interfacial area per unit volume,S, is related
to the free energy density function,f, that is used in phase-field methods by df/dφ =SdS/dφ. Choosing a symmetric
double-well potential forf [10,12,13], which is proportional toφ2(1−φ)2, corresponds toa=b= 1 in Eq.(8). A
bilinear potential[29], φ(1−φ), coincides witha=b= 1/2. Additional discussion on the merits of different choices
for a andb can be found in subsequent sections. Other functional forms forSare certainly possible, and Eq.(8)
should only be viewed as an attempt to provide a specific example that appears to be physically meaningful.

The assumption thatSvaries only across the diffuse interface and is independent of the macroscopic interface
curvature motivates the following relation between the interfacial area per unit volume and the gradient ofφ in the
n̄ direction

S = 〈|∇X1|〉 =
〈
−∂X1

∂n

〉
= −∂φ

∂n̄
= |∇φ|. (9)

It is emphasized here that Eq.(9), i.e., 〈∂X1/∂n〉 = ∂φ/∂n̄, is not a mathematically exact statement, because it is
not compatible with the definition of̄n given by Eq.(7). Instead, Eq.(9) should be viewed as an approximate model
for the gradient ofφ in the direction normal to the interface. This model is consistent with the assumption inherent
in Eq.(8) thatφ varies only across the diffuse interface and is independent of the macroscopic interface curvature.
Eq. (9) represents the primary departure of the present model from traditional averaging of large-scale two-phase
systems; in large-scale systems, where the volume fractionφ can vary in an arbitrary fashion on a macroscopic
scale, the normal gradient ofφ can generally not be related to the local interfacial area per unit volume,S. Note that
Eq.(9) also implies that〈∂2X1/∂n

2〉 = ∂2φ/∂n̄2.
By specifying the values fora andb in Eq. (8), Eq. (9) can be solved to obtain an “equilibrium”φ profile

across the diffuse interface. For example, takinga=b= 1, it follows that∂φ/∂n̄ = −S0φ(1 − φ), which yields the
hyperbolic tangent profileφ = [1 − tanh(n̄/2δ)]/2, whereδ= 1/S0. Sinceφ varies from 0.05 to 0.95 over a distance
of approximately 6δ, it is clear that 1/S0 is indeed a measure of the interface widthl i . Fora=b= 1/2 andS0 = 1/(2δ),
a sinusoidal profile,φ = [1 − sin(n̄/2δ)]/2, is obtained withl i ≈ 5δ. The above hyperbolic tangent and sinusoidal
profiles forφ hold regardless of the average curvature of the interface. They are commonly encountered in the
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hase-field method[10,12,29]. The thermodynamic treatment used in the phase-field method also motivates
xact definition of the interface width,l i . In the phase-field method, the interface width is inversely proportion
he integral of the gradient energy per unit area of the interface, such that 1/li = ∫ ∞

−∞(∂φ/∂n̄)2 dn̄ [10]. Substitution
f Eq. (9) yields the following relationship betweenl i andS in the present model: 1/li = ∫ ∞

−∞S2 dn̄. Then, it is
asy to show thatl i = 6/S0 = 6δ for a=b= 1 (i.e., the hyperbolic tangent profile) andl i = 8/(πS0) = 16/πδ≈ 5δ for
=b= 1/2 (i.e., the sinusoidal profile).
Substituting Eq.(6) into Eq.(7), and using Eq.(9) as well as the identities〈�X1〉 =�φ and〈�2X1〉 =�2φ, it is

asy to show that the average unit normal vector and average curvature are now given, respectively, by

n̄ = − ∇φ

|∇φ| and κ̄ = ∇ · n̄ = − 1

|∇φ|
[
∇2φ − (∇φ · ∇)|∇φ|

|∇φ|
]

= − 1

|∇φ|
[
∇2φ − ∂2φ

∂n̄2

]
. (10)

hile Eq.(10) may seem self-evident from a purely macroscopic point of view, it is again emphasized th
annot be directly derived by averaging the microscopic (atomic-scale) normal vector and curvature, u
pproximation given by Eq.(9) is assumed valid. The above expression for the average curvature can be
ewritten by noting from Eq.(9) that∂2φ/∂n̄2 = −∂S/∂n̄ = −(dS/dφ)(∂φ/∂n̄) = S dS/dφ. Thus

κ̄ = − 1

S

[
∇2φ − dS

dφ
S

]
= −∇2φ

S
+ dS

dφ
. (11)
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The last term in Eq.(11), dS/dφ, has the interesting property of being a microscopic curvature of the fluctuating
atomic structures inside�V. This can be understood by considering the following simple example (after Ref.
[20]). If the averaging volume�V containsN spheres of phase 1 and radiusr, it follows thatφ =N4πr3/3�V and
S=N4πr2/�V. Thus, dS/dφ = (dS/dr)/(dφ/dr) = 2/r, which is nothing but the curvature of a sphere of radiusr. Using
Eq.(8), a general expression for the microscopic curvature variation across the diffuse interface is obtained as

dS

dφ
= S0aφ

a−1(1 − φ)b−1
(

1 − φ

φc

)
(12)

Since dS/dφ varies only across the diffuse interface, it must be interpreted as the local curvature of the microscopic
interface after subtracting out the average curvature ¯κ (such that it is macroscopically flat), i.e., (κ − κ̄), as illustrated
in Fig. 3. Note from Eq.(12) that dS/dφ changes its sign atφ =φc =a/(a+b), which implies that the atomic scale
interface morphology changes from convex to concave. Hence, Eq.(12) may provide additional insight into the
choices fora andb [20].

4. Conservation equations for a diffuse interface

In this section, the derivation of the averaged mass and momentum conservation equations for each phase inside
(and outside) the diffuse interface is described. According to the discussion in Section2, both phaseskare assumed
to be fluids. If one of the phases is a solid, the derivations do not apply to that phase, unless it is modeled as
a fluid of infinite viscosity. Additional detail on some of the derivations can be found in Ref.[18], but none of
the previous theories consider both surface tension and phase-change. The reduction of the two-phase model to a
mixture formulation is also discussed briefly.

4.1. Mass

The local mass conservation equation for each phase and the jump condition in a sharp interface formulation are
given, respectively, by

∂ρ

w
t g
y

F f
p nge as
Γ ng
a

D
ρ

∂t
+ ∇ · (ρu) = 0 and ||ρ(u − ui ) · n|| = 0 (13)

hereρ is the density,u the velocity,||·|| denotes a jump across the interface of a functionf as||f|| = f1 − f2, andui is
he velocity of the interface between the two phases. Multiplying the local continuity equation byXk and averagin
ields the following averaged continuity equation for phasek [18]

∂(φkρk)

∂t
+ ∇ · (φkρkūk) = Γk. (14)

or simplicity, both phasesk are assumed microscopically incompressible. In Eq.(14), the average velocity o
hasek is defined as̄uk = 〈Xku〉/φk and the interfacial mass transfer rate per unit volume due to phase-cha
k= 〈[ρ(u − ui )]k ·�Xk〉. Multiplying the jump condition for mass by|�X1| and averaging, results in the followi
veraged interfacial mass balance

Γ1 + Γ2 = 0. (15)

efining a mixture density as̄ρ = ρ1φ1 + ρ2φ2 and a mass-averaged mixture velocity asū = [ρ1φ1ū1 +
2φ2ū2]/ρ̄, Eqs.(14) and (15)can be combined to yield the following mixture continuity equation

∂ρ̄

∂t
+ ∇ · (ρ̄ū) = 0. (16)
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Eq. (16) is valid even for unequal phase velocities, and shows that the mixture is compressible inside the diffuse
interface if the densities of the two phases are different. However, its main use would be in cases where the phase
velocities can be assumed to be equal, i.e.,ū1 = ū2 = ū. In that case, and with the additional assumption thatρ1
andρ2 are constant (butρ1 �= ρ2), additional insight can be gained by rewriting the averaged continuity equations
as

∇ · ū = Γ1

(
1

ρ1
− 1

ρ2

)
and

∂φ

∂t
+ ū · ∇φ = Γ1

(
1 − φ

ρ1
+ φ

ρ2

)
, for ū1 = ū2 = ū. (17)

Eq.(17)show that in the absence of phase-change (Γ 1 = 0) the velocity field is solenoidal and the phase fractionφ

is simply advected with̄u, even ifρ1 �= ρ2. In the presence of phase-change (Γ 1 �= 0) but for equal phase densities
(ρ1 =ρ2), the velocity field is still solenoidal and the phase fractionφ is not only advected with̄u but also changes
with Γ 1, as expected. It is clear that in the presence of phase-change a separate model forΓ 1 needs to be supplied
(e.g., the phase-field equation[1,3,10,12]).

4.2. Momentum

The local momentum conservation equation for each phase and the momentum jump condition at the interface
can be written, respectively, as

∂(ρu)

∂t
+ ∇ · (ρuu) = ∇ · (−pI + τ) + ρg and ||ρu(u − ui ) · n − (−pI + τ) · n|| = σκn (18)

wherep is the pressure,I denotes the unit tensor,τ the shear stress tensor,g the gravitational acceleration, andσ
is the surface tension between the two phases. The surface tension is assumed constant and variations along the
interface are not considered.

The averaged momentum equation for phasek is obtained by multiplying the first of Eq.(18)byXk and averaging,
to yield

∂ 〈Xkρu〉 + ∇ · 〈Xkρuu〉 = −∇〈Xkp〉 + ∇ · 〈Xkτ〉 + 〈Xkρg〉 + 〈[ρu(u − ui ) + (pI − τ)]k · ∇Xk〉. (19)

T e other
a
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D
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f d collisions
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∂t

he term〈[pI ]k ·�Xk〉 is split into two parts, with one representing the average interfacial pressure and th
ccounting for unbalanced pressures at the interface, as

〈[pI]k · ∇Xk〉 = p̄k,i∇φk + 〈[(p − p̄k,i )I]k · ∇Xk〉 (20)

here the average interfacial pressure is defined as ¯pk,i = 〈p|∇Xk|〉/|∇φ| [19]. It may be argued that the value
k̄,i is arbitrary in Eq.(20) (since it is added and subtracted back out); however, the above definition repre
hysically meaningful choice. Assuming instantaneous microscopic pressure equilibrium[18,23], p̄k,i can be take
qual to the phase-averaged pressure of phasek, defined as ¯pk = 〈Xkp〉/φk, i.e.

p̄k,i = p̄k. (21)

rew and Passman[19] suggest that for a fluid (or continuous) phase the difference between ¯pk,i andp̄k is pro-
ortional to the square of the slip velocity between the phases. Since the slip velocity inside the diffuse

s assumed to be small (see Section1) Eq. (21) can be expected to be a reasonable approximation. Other c
or a difference between the two pressures in large-scale two-phase flows, such as contact pressures an
etween solid particles[19], are not relevant to the present system.
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Neglecting the dispersive flux arising from the average of theuu product (see Section1), the averaged momentum
equation for phasek can now be written in the following final form

∂

∂t
(φkρkūk) + ∇ · (φkρkūkūk) = −φk∇p̄k + ∇ · (φkτ̄k) + φkρkg + Γkūk,Γ + Mk (22)

whereτ̄k = 〈Xkτ〉/φk, Mk is the interfacial force density of phasek, andūk,Γ = 〈[ρu(u − ui )]k · ∇Xk〉/Γk. The
latter expression defines an average normal interfacial velocity of phasek due to phase-change. The modeling of
the average shear stress,τ̄k, is discussed in Section5. In the absence of flow and surface tension Eq.(22) reduces
to ∇p̄k = ρkg, as one would expect for a fluid.

The averaging process yields the following expression for the interfacial force density,Mk, in Eq.(22)

Mk = 〈[(pk − p̄k)I] · ∇Xk〉 − 〈τk · ∇Xk〉. (23)

This term represents unbalanced pressures and shear stresses at the interface. For large-scale two-phase systems, it
accounts for the interfacial forces on phasek due to shear and form drag, as well as unbalanced pressures leading
to lift or virtual mass effects[18]. In the present context of diffuse interface modeling, the physical meaning of
such forces is not immediately clear. However, a simple model for the viscous contribution to the interfacial force
density, assuming a small slip velocity inside the diffuse interface, is presented in Section7. It is also shown in
Section7 that the interfacial force density includes a new contribution due to unbalanced pressures that are caused
by curvature variations in the presence of surface tension.

The averaged interfacial momentum balance, obtained by averaging the second of Eq.(18) after multiplying it
by |�X1|, is given by

Γ1ū1,Γ + p̄1∇φ1 + M1 + Γ2ū2,Γ + p̄2∇φ2 + M2 = M i = σ〈κ∇X1〉 (24)

whereM i is the averaged interfacial momentum source due to surface tension. The term〈κ�X1〉 cannot simply be
modeled as ¯κ∇φ, because that would violate the definition of the average curvature given by Eq.(7). To overcome
this problem, the same splitting strategy as for the term〈[pI ]k ·�Xk〉 (see Eq.(20)) is applied toM i to yield

M i = σκ̄∇φ + σ〈(κ − κ̄)∇X1〉 (25)

where the first term represents a contribution from the average curvature of the interface and the second term is a
c
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ontribution from microscopic curvatures inside the diffuse interface that is present even if ¯κ = 0 (see Section3).
model for the second term is provided in Section6.
Additional insight into the interfacial momentum balance can be gained by splitting it into the comp

angential and normal to the diffuse interface. In the tangential direction (i.e., along contours of constanφ), Eq.
24)becomes

M1,t + M2,t = 0 (26)

hereM1,t andM2,t are the tangential components of the interfacial force density of the two phases. Eq.(26)indicates
hat, in the absence of surface tension variations along the interface (i.e., the Marangoni effect), as assum
resent study, the tangential components of the interfacial force densities balance each other[19]. In the direction
ormal to the diffuse interface Eq.(24)can be written as

p̄1 − p̄2 = M i · ∇φ

|∇φ|2 + Γ2(ū1,Γ − ū2,Γ ) · ∇φ

|∇φ|2 − (M1 + M2) · ∇φ

|∇φ|2 (27)

t can be seen from Eq.(27) that the difference in the average pressures between the phases is due to th
f surface tension, the contraction or expansion flow induced by phase-change and a density difference
ifference in the magnitude of the interfacial force densities of the phases in the�φ direction. Almost all previou
tudies of large-scale two-phase flows[18,19,21]assume that the normal components of the interfacial force den
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of the two phases balance each other. Only Bercovici et al.[20], in a study of compaction and damage of a two-phase
mixture, identify a pressure difference between the phases due to unbalanced interfacial shear stresses in the normal
direction. In the present study on diffuse interface modeling, such an imbalance is not considered and the last term
in Eq.(27) is assumed to vanish. In view of the above discussion, the interfacial force density,Mk, acts equally and
oppositely between the phases in both directions, i.e.

M1 = −M2. (28)

Eq.(28) implies that the interfacial force density is recognized as a force of one phase against the other, and not as
a force of either phase against the interface[20]. Note that in view of Eq.(28) the interfacial force densities in the
averaged interfacial momentum balance, Eq.(24), cancel each other.

The averaged mixture momentum equation is obtained by adding up Eq.(22) for each phase and making use of
Eq.(24), to yield

∂

∂t
(ρ̄ū) + ∇ · (ρ̄ūū) = −∇p̄ + ∇ · τ̄ + ρ̄g + M i − ∇ ·

[
φ(1 − φ)(ū1 − ū2)(ū1 − ū2)ρ1ρ2

ρ̄

]
(29)

where the mixture pressure and the mixture shear stress are defined, respectively, as ¯p = φ1p̄1 + φ2p̄2 and τ̄ =
φ1τ̄1 + φ2τ̄2. Again, the main use of Eq.(29) would be in Case III, where the velocities of the two phases can be
assumed to be equal inside the diffuse interface. Then, the last term in Eq.(29)vanishes and Eq.(29) is identical to
the thermodynamically derived momentum equation in Ref.[12].

The remaining un-modeled terms in the averaged momentum equations are: the average shear stress,τ̄k; the
average interfacial momentum source due to surface tension,M i (in particular, the second term on the right hand
side of Eq.(25)); and the interfacial force density,Mk. Models for these three terms are proposed in the following
sections.

5. Modeling of the average shear stress

A model for the average shear stress of phasek is obtained by starting with the following constitutive relation
for the local shear stress in a Newtonian fluid( )

w

w
a

N
i s all
τ = µ ∇u + ∇uT − 2

3
(∇ · u)I (30)

hereµ is the viscosity and the factor−2/3 is due to Stoke’s assumption[30]. Averaging Eq.(30) results in

φkτ̄k =
〈
Xkµk

(
∇u + ∇uT − 2

3
(∇ · u)I

)〉

= µk

〈
∇(Xku) + ∇(Xku)T − 2

3
∇ · (Xku)I − u∇Xk − ∇Xku + 2

3
(u · ∇Xk)I

〉

= µ∗
k

[
∇(φkūk) + ∇(φkūk)

T − 2

3
∇ · (φkūk)I − ūk,i∇φk − ∇φkūk,i + 2

3
(ūk,i · ∇φk)I

]
(31)

hereµ∗
k is an effective viscosity of phasek. In Eq.(31), the average interfacial velocity of phasek, ūk,i , is defined

s

ūk,i = 〈u|∇Xk|〉
|∇φ| . (32)

ote thatūk,i is defined differently from the interfacial velocitȳuk,Γ = 〈[ρu(u − ui )]k · ∇Xk〉/Γk introduced
n Section4 in connection with phase-change. Eq.(32) defines an average interfacial velocity that include
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components in the averaging process, while the definition forūk,Γ only collects the component normal to the
microscopic interface during averaging and is non-zero only in the presence of phase-change. The last equality in
Eq.(31) is based on a method similar to the one used in Ref.[23] and requires some explanation. The term〈u�Xk〉
is split into〈u∇Xk〉 = ūk,i∇φ + 〈(u − ūk,i )∇Xk〉, following the same strategy as for the terms〈p�Xk〉 and〈κ�Xk〉
in Section4. The term〈(u − ūk,i )∇Xk〉, representing the average of local interfacial velocity fluctuations, is then
“absorbed” into an effective viscosity,µ∗

k , as shown in Eq.(31) [23]. However, in the followingµ∗
k is simply taken

equal to the actual fluid viscosity, i.e.,µ∗
k = µk. This simplification can only be viewed as a first approximation for

the two-phase flow inside a diffuse interface.
The last portion of Eq.(31)can be rewritten in the following, more transparent form

φkτ̄k = µkφk

(
∇ūk + ∇ūT

k − 2

3
(∇ · ūk)I

)
+ µk

[
∇φk(ūk − ūk,i ) + (ūk − ūk,i )∇φk − 2

3
∇φ · (ūk − ūk,i )I

]

(33)

The first part on the right-hand-side of Eq.(33)accounts for the viscous stress of phasek to itself as in a single phase
system. The second part represents the contribution to the average viscous stress of phasek due to relative motion
between the two phases. This part is proportional to the difference between the phase-averaged and interfacial
velocities, (̄uk − ūk,i ), and to�φk, indicating that it is non-zero only inside the diffuse interface.

A simple but practical expression for̄uk,i is obtained by assuming thatūk,i is a viscosity weighted linear function
of the average velocities of both phases, i.e.

ūk,i = µ1φ2ū1 + µ2φ1ū2

µ1φ2 + µ2φ1
. (34)

This concept is schematically illustrated inFig. 4 for a simple shear flow inside a small unit cell. The microscopic
velocity profile is continuous at the interface between the two phases. For equal viscosities of the two phases, the
interfacial velocity can be seen fromFig. 4a to be given bȳuk,i = φ2ū1 + φ1ū2. For unequal viscosities (Fig. 4b),
Eq. (34) results. Note that Eq.(34) provides an average interfacial velocity that is independent of the phase, i.e.,
ū1,i = ū2,i . This symmetry is necessary for modeling a system where the two fluids are in principle interchangeable.
The statement̄u1,i = ū2,i can simply be interpreted as an averaged no-slip condition at the interface between the
two phases. One could argue that the symmetry is broken in the presence of phase-change when the two phases
have a different density and̄u1,Γ �= ū2,Γ (see Eq.(27)). However, as mentioned above, the definitions ofūk,i and
ūk,Γ are quite different, and Eq.(34) can be expected to be a good approximation even whenū1,Γ �= ū2,Γ . For a
two-phase system where phase 1 is a solid that is modeled as a fluid with a large viscosity[12], Eq. (34) yields
ū2,i = ū1 in the limit of µ1 �µ2, which is like a no-slip condition on a rigid body moving with velocityū1.

Fig. 4. Schematic illustration of the microscopic velocity profile (heavy solid line) inside a unit cell for a simple shear flow with (a) identical
and (b) different viscosities.
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Substituting Eq.(34) into Eq.(33), yields the following final expression for the average shear stress of phasek

φkτ̄k = µkφk

(
∇ūk + ∇ūT

k − 2

3
(∇ · ūk)I

)

+ µjµkφk

µkφj + µjφk

[
∇φk(ūk − ūj) + (ūk − ūj)∇φk − 2

3
∇φ · (ūk − ūj)I

]
. (35)

where the subscriptj denotes the other phase in a two-phase system. Eq.(35)provides a constitutive equation for the
average shear stress in terms of the velocities of both phases. Drew and Passman[19] also introduced a model for̄τk
that involves the velocities of both phases. The model in Ref.[19], however, introduces several different effective
viscosities that are highly case dependent and generally unknown. The present model avoids that complication. In
Appendix A, Eq.(35) is examined further by applying it to the limiting cases discussed in Section2 and illustrated
in Fig. 1.

6. Modeling of the interfacial momentum source term

The averaged interfacial momentum source is given by Eq.(25)asM i = σκ̄∇φ + σ〈(κ − κ̄)∇X1〉, where〈(κ −
κ̄)∇X1〉 represents the mean effect of microscopic curvatures inside the diffuse interface that remains even if the
average curvature ¯κ vanishes. This term can be modeled by considering the previous discussion on superposition
of microscopic and macroscopic interface morphologies andFig. 3. In Section3, the term dS/dφ was identified as
a microscopic curvature inside a flat diffuse interface. Hence, the following model for〈(κ − κ̄)∇X1〉 is proposed
here:

〈(κ − κ̄)∇X1〉 = −dS

dφ
∇φ. (36)

The negative sign ensures that〈(κ − κ̄)∇X1〉 is positive forφ <φc. Eq. (36) may not appear as a generally valid
model for〈(κ − κ̄)∇X1〉 because this term is a vector[18]. However, this does not represent a problem because the
microscopic curvature varies only in the normal direction across the diffuse interface. Substituting Eq.(36) into Eq.
(25)yields

w of
m

w

t theories,
a s
b
t

I the
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M i = σ

(
κ̄ − dS

dφ

)
∇φ (37)

hich illustrates thatM i remains even for a macroscopically flat interface (¯κ = 0) because of the presence
icroscopic curvatures inside the diffuse interface. Substituting Eq.(11) for κ̄ into Eq.(37)gives

M i = −σ

S
∇2φ∇φ (38)

hich is the main result of the present section.
Before proceeding, the present expression for the interfacial momentum source term given by Eq.(38)is compared

o the corresponding term obtained from thermodynamic or gradient theories for diffuse interfaces. In these
capillary stress tensor is introduced asm = σli (|∇φ|2I/2 − ∇φ ⊗ ∇φ) [12], wherel i is the interface width a

efore. The interfacial momentum source term is related to the capillary stress tensor throughMcs
i = ∇ · m, where

he superscript cs denotes that it corresponds to the capillary stress tensor. Hence

Mcs
i = −σli∇2φ∇φ. (39)

t can be seen that Eqs.(38) and (39)are virtually identical, sinceS∼ 1/l i . This lends considerable confidence to
resent derivation. The only difference betweenM i andMcs

i is thatSis a function ofφ, according to Eq.(8), wherea
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Fig. 5. Variation of the phase-field profile and the mixture pressure across (a) planar and (b) spherical (withR/δ= 10) interfaces in equilibrium;
results are shown for two different profiles:φ = [1 − tanh(n̄/2δ)]/2 andφ = [1 − sin(n̄/2δ)]/2.

l i is a constant. Substituting, for example, the hyperbolic tangent profile forφ (with a=b= 1 andS0 = 1/δ), Eqs.(38)
and (39)become, respectively:Mi =σφ(1−φ)(1− 2φ)/δ2 andMcs

i = 6σφ2(1 − φ)2(1 − 2φ)/δ2 (sincel i = 6δ for
the hyperbolic tangent profile) in the direction normal to the interface. It can be seen that the two expressions are
very similar and have minima and maxima that differ only in magnitude. Since different potentials can be used in
the thermodynamic approach (resulting in differentφ profiles), and other choices fora andb can be used forSas
discussed in Section3, it can be said that the difference betweenM i andMcs

i is generally insignificant.
Further insight into the interfacial momentum source term can be gained by considering an interface in equilibrium

without flow and gravity. The mixture momentum equation, Eq.(29), then becomes∇p̄ = −σ/S∇2φ∇φ which can
be solved for the mixture pressure ¯p. For example, for a macroscopically planar interface (¯κ = 0) the solution is
given by p̄ = p̄2,∞ − σS0φ

a(1 − φ)b, and for a macroscopically spherical interface of radiusR (κ̄ = 2/R) it is
p̄ = p̄2,∞ + σκ̄φ − σS0φ

a(1 − φ)b, wherep̄2,∞ is a reference pressure far from the interface in phase 2. Results
in terms of the dimensionless mixture pressurep∗ = (p̄ − p̄2,∞)/(σ/δ) are shown inFig. 5a and b for planar and
spherical diffuse interfaces, respectively. Pressure profiles across the diffuse interface are plotted inFig. 5 for the
following choices of the constants in Eq.(8): (i) a=b= 1 andS0 = 1/δ, which corresponds to the hyperbolic tangent
φ profile, and (ii)a=b= 1/2 andS0 = 1/(2δ), which gives the sinusoidalφ profile. It can be seen that the differences
in the results for the twoφ profiles are small. For a planar interface, the far-field pressures are identical, i.e.,
p̄1,∞ = p̄2,∞, as expected. Inside the diffuse interface a pressure “hump” of depth�p* = 0.25 atφ = 0.5 can be
observed that is a manifestation of the capillary stress. If the two phases are fluids, this pressure hump would act to
keep the fluids from mixing. For the spherical interface, the minimum in the hump is shifted toφ = 0.5− δ/Rand the
difference between the far field pressures is equal to ¯p1,∞ − p̄2,∞ = 2σ/R, as expected from the Young–Laplace
equation for a sharp interface. These simple examples illustrate that, as opposed to the commonly used continuum
surface force (CSF) expressionMCSF

i = σκ̄∇φ [2], the present interfacial momentum source term accounts for
immiscibility between the phases due to surface tension.

7. Modeling of the interfacial force density

Another important aspect of the present study is the modeling of the interfacial force density of phasek, Mk, in
the context of a diffuse interface approach. This term is essential for a two-phase model because the interactions
between the phases must be explicitly accounted for. As discussed in Section4, Mk represents the interfacial force
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density due to unbalanced pressures and stresses at the interface and acts equally but oppositely between the phases.
As shown in the following, the interfacial force density includes two contributions: (1) unbalanced pressures due
to curvature variations in the presence of surface tension; this part is non-zero even in the absence of flow; and (2)
dissipative (viscous) drag due to relative motion between the phases.

First, consider a case without flow and gravity. The momentum equations for the two phases, based on Eq.(22),
becomeφ1∇p̄1 = Mσ

1 andφ2∇p̄2 = Mσ
2. Using Eq.(37), Eq.(27)becomes ¯p1 − p̄2 = σ(κ̄ − dS/dφ) (this is not

a difference between far-field pressures, but between the pressures of the two phases inside the diffuse interface).
SinceM1 =−M2, the previous equations can be solved for the interfacial force densities of each phase to yield
Mσ

1 = σφ(1 − φ)∇(κ̄ − dS/dφ) andMσ
2 = −σφ(1 − φ)∇(κ̄ − dS/dφ). Since the curvature changes its sign to a

switch of the phases,Mσ
k can be rewritten in a phase-invariant form as

Mσ
k = σφkφj∇

(
κ̄k − dS

dφk

)
(40)

whereκ̄k is the average curvature of phasek, which for phases 1 and 2 is ¯κ1 = κ̄ and κ̄2 = −κ̄, respectively. Eq.
(40) defines an interfacial force density in the absence of flow that has the effect of balancing the average and
microscopic curvature variations of the diffuse interface in the presence of surface tension. The resulting variation
of the pressures of the two phases across the diffuse interface, in the absence of flow and gravity, is presented in
Appendix B.

Second, consider a case with flow but without surface tension. In the limit of Case II (ū1 = 0), and for the
hyperbolic tangentφ profile (a=b= 1 andS0 = 1/δ in Eq.(8)), Beckermann et al.[3] proposed the following model
for the dissipative interfacial force density of phase 2

Md
2 = −µ2φhS

δ
ū2, for Case II. (41)

This expression is based on an analogy with slow flow through a rigid stationary porous medium and assumes that
the drag on the fluid phase is linearly proportional to the average velocity,ū2, and the interfacial area per unit volume,
S= |�φ|, and inversely proportional to the diffuse interface thickness. The dimensionless “friction” constanthwas
determined from an asymptotic analysis for plane shear flow past a diffuse interface. For the hyperbolic tangent
φ profile across the diffuse interface, it was found that a value ofh= 2.757 results in the shear velocity profile for
a diffuse interface approaching that for a sharp interface with a no-slip condition atφ = 0.5, asφ→ 0 (i.e., in the
fl the
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uid phase)[3]. This value forh holds regardless of the interface width, i.e.,δ. Hence, in actual computations
nterface width can be chosen artificially large, as long as it is much smaller than the macroscopic lengthlc.

For the present case of two-phase flow inside the diffuse interface, Eq.(41) needs to be modified to (i) accou
or the motion of both phases, (ii) be phase-invariant, and (iii) be valid for anyφ profile across the diffuse interfa
i.e., anya=b in Eq.(8) for S). First, Eq.(41) is rewritten as

Md
k = −µkφkhS

δ
(ūk − ūk,i ). (42)

q. (42) recognizes the fact that in two-phase flow the drag is proportional to the difference between the
nd interfacial velocities of a phase (note thatū2,i = 0 in Case II becausēu1,i = ū2,i and the solid is assum
igid and stationary). Substituting the model forūk,i , given by Eq.(34), into Eq.(42) yields the following final
hase-invariant form of the dissipative interfacial force density of phasek

Md
k = − µkµj

µkφj + φkµj

φkφjhS

δ
(ūk − ūj) = −α(ūk − ūj). (43)

ow it can be seen that the drag is proportional to the relative velocity between the phases, as expecte[19,20].
he pre-factorα is a function of the viscosities and volume fractions of both phases. It is shown in Sectio8.1.1

hat the same “friction” constanth as in Case II can be used for the general case of two-phase flow (Case I)
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the general form of Eq.(43) is believed to be valid for any choice ofa=b, slightly different values forh result for
differentφ profiles. For example, for the sinusoidal profile (a=b= 1/2 andS0 = 1/(2δ)), it was found (not shown here
for brevity) thath= 2.5, instead of the 2.757 value that must be used with the hyperbolic tangentφ profile (a=b= 1
andS0 = 1/δ). Again, the value ofh is independent of the interface width, i.e.,δ. The interfacial drag model given
by Eq.(43) is illustrated further inAppendix Cfor a simple one-dimensional flow across a diffuse interface.

Based on the previous discussion, the total interfacial force density of phasek, Mk, is simply taken as the sum of
the interfacial forces due to curvature variations and due to viscous drag, i.e.

Mk = µkµj

µkφj + φkµj

φkφjhS

δ
(ūj − ūk) + σφjφk∇

(
κ̄k − dS

dφk

)
. (44)

All other effects are neglected. Note that Eq.(44)is completely symmetric with respect to the phases, i.e.,M1 =−M2.

8. Examples

The model is tested for two simple one-dimensional two-phase flows involving a macroscopically flat interface:
(i) a shear flow parallel to a diffuse interface and (ii) a flow normal to a diffuse interface that is driven by phase-
change in the presence of a density difference between the phases. In all cases, the constantsa andb in Eq.(8) are
taken equal to unity andS0 = 1/δ, such that the interfacial area per unit volume,S, is given by

S = φ(1 − φ)

δ
(45)

Using Eq.(9), the phase-field profile across the diffuse interface (in thex-direction) is then given by

φ = 1

2

[
1 − tanh

( x

2δ

)]
. (46)

This profile is used even in the second example that involves phase-change, and no evolution equation forφ is
solved.

Fig. 6. Schematic illustration of the two-phase shear flow system.
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8.1. Two-phase shear flow

The two-phase shear flow system considered in this example is illustrated inFig. 6. A stationary interface, aligned
with they coordinate, is centered between two walls and separates two phases of different, but constant, viscosity
and equal density. The wall atx=−L is fixed and the wall atx=L is moving with a constant speedV into the
y-direction. The flow is assumed to be fully developed with no slip conditions atx=±L. For a sharp interface, the
velocity profile is linear in each phase with the slopes determined directly by the viscosity ratiorµ =µ1/µ2 and
the velocity of the interface in they-direction given byvi =V/(rµ + 1). The lengthL is taken as a constant equal to
100δ0, whereδ0 is a reference value forδ (not to scale inFig. 6for illustration purposes).

8.1.1. Case I
For Case I, they-momentum equations for phases 1 and 2 are given, respectively, by

0 = µ1
d

dx

[
φ

dv̄1

dx
+ dφ

dx

µ2φ

µ1(1 − φ) + φµ2
(v̄1 − v̄2)

]
− µ1µ2

µ1(1 − φ) + φµ2

φ(1 − φ)hS

δ
(v̄1 − v̄2). (47)

0 = µ2
d

dx

[
(1 − φ)

dv̄2

dx
+ dφ

dx

µ1(1 − φ)

µ1(1 − φ) + φµ2
(v̄1 − v̄2)

]
+ µ1µ2

µ1(1 − φ) + φµ2

φ(1 − φ)hS

δ
(v̄1 − v̄2).

(48)

wherev̄k is the velocity of phasek in they-direction. The above highly coupled equations are solved numerically
for the phase velocities̄v1 and v̄2. To ease the computations, Eqs.(47) and (48)can be combined and rewritten
in terms of the mixture velocitȳv = φ1v̄1 + φ2v̄2 and the slip velocity�v̄ = v̄1 − v̄2 (the resulting equations are
omitted here for brevity). The advantage of solving the momentum equations in terms of these two velocities is that
they are well defined even forφk→ 0.

Calculated velocity profiles are shown inFig. 7a–c for viscosity ratios,rµ =µ1/µ2, of 1, 10, and 103, respectively
(in the actual computations,µ1 was changed whileµ2 was held constant). In each figure, results are presented for
δ= δ0, 5δ0, and 10δ0. The upper panels show the profiles for the phase-field and the mixture velocityv̄, while the
lower panels provide the individual phase velocity profiles,v̄1 and v̄2. It can be seen that outside of the diffuse
interface the calculated velocities match perfectly with the analytical velocity profiles for a sharp interface. This is
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rue regardless of the interface width (as long asδ�L) and the viscosity ratio. Such a behavior is of great advan
n simulations of complex two-phase flows, because the velocity outside of the diffuse interface is not infl
y the velocity inside of it and the interface width can be chosen artificially large. Inside the diffuse interf
ixture and individual phase velocities vary smoothly to accommodate the changes in slope. The lowe

learly show the presence of a slip velocity between the two phases inside the diffuse interface. The ve
hase 1 reaches a constant value in phase 2 (i.e., asφ1 → 0), and vice versa, that is equal to the velocity of
harp interface,vi =V/(rµ + 1). In this example, a viscosity ratio of 103 already results in the velocity of phase 1
e essentially zero (i.e.,̄v1/V ≤ 1/1001), which illustrates that in Case I a solid can be modeled as a fluid wit

arge viscosity.
The above results are based on assuming that the value of the dimensionless constanth for a system where th

elocity is non-zero in both phases is the same as the one determined in Ref.[3] for a solid–liquid system wit
ow in only the liquid (i.e., 2.757).Fig. 8 shows calculated mixture velocity profiles for three different cho
f h: 0.02757, 2.757, and 275.7. It can be seen that the profiles outside of the diffuse interface forh= 0.02757
nd 275.7 do not match the solution for a sharp interface, and the results would be highly interface w
endent. On the other hand,h= 2.757 provides the good match already noted inFig. 7, regardless of the inte

ace width and viscosity ratio. Hence,h= 2.757 is the correct value in a general situation involving flow in
hases (Case I). Recall that the exact value of 2.757 was determined in Ref.[3] using a matched asympto
nalysis.
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Fig. 7. Calculated velocity profiles for Case I for the two-phase shear flow system illustrated inFig. 6as a function of the diffuse interface width
(δ= δ0, 5δ0, and 10δ0): (a)rµ = 1, (b)rµ = 10, and (c)rµ = 103. The upper panels show the phase-field and mixture velocity profiles and the lower
panels show the individual phase velocity profiles.

8.1.2. Case II
For Case II (̄v1 = 0), the momentum equation for phase 2 reduces to

0 = d2

dx2
[(1 − φ)v̄2] − φhS

δ
v̄2. (49)

Fig. 9shows the calculated velocity profile in terms of the superficial velocity, (1− φ)v̄2, as well as the corresponding
sharp interface solution, for three different interface widths. The results are very similar to the ones for Case I with
rµ = 103 in Fig. 7c, and show again that the velocity profile outside the diffuse interface is not influenced by the
interface width. Since Eq.(49) is much easier to solve than the coupled Eqs.(47) and (48), it is clear that if one
of the phases is rigid and stationary, the approach taken in Case II is of great advantage. Furthermore, no artificial
viscosity needs to be assigned to the rigid phase.
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Fig. 8. Calculated velocity profiles for Case I for the two-phase shear flow system illustrated inFig. 6for h= 2.757, 275.7, and 0.02757 (δ= 10δ0

andrµ = 10).

8.1.3. Case III
The momentum equation for Case III (v̄1 = v̄2 = v̄) reduces for this example to

0 = d

dx

(
µ̄

dv̄

dx

)
(50)

whereµ̄ = φµ1 + (1 − φ)µ2 is the mixture viscosity, as before.Fig. 10a–c shows the calculated velocity profiles
for viscosity ratios,rµ, of 1, 10, and 103, respectively, and three different interface widths. The results are compared
with the corresponding sharp interface solution. It can be seen that other than forrµ = 1, the velocities are highly
dependent on the diffuse interface width and the slopes of the velocity profiles outside of the diffuse interface are
generally not in agreement with the sharp interface solution.

Fig. 9. Calculated velocity profiles for Case II for the two-phase shear flow system illustrated inFig. 6 as a function of the diffuse interface
width (δ= δ0, 5δ0, and 10δ0).
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Fig. 10. Calculated velocity profiles for Case III for the two-phase shear flow system illustrated inFig. 6as a function of the diffuse interface
width (δ= δ0, 5δ0, and 10δ0): (a) rµ = 1, (b)rµ = 10, and (c)rµ = 103.

Hence, in actual computations of two-phase flows that involve a large viscosity ratio, the interface width has to
be chosen extremely small in order to approach the sharp interface solution. In fact, since Case III is equivalent to
thermodynamically derived models[12], δ should be chosen equal to the physical width of a diffuse interface, which
is of atomic scale. This example clearly illustrates the advantage of a full two-phase approach where a velocity
slip is allowed inside the diffuse interface (Cases I and II), as opposed to assuming that both phases have a single
velocity (Case III). While a different function for the mixture viscosity might produce better agreement[31], it is
unclear how such a function could be chosen in a physically meaningful way.

8.2. Normal flow due to phase-change in the presence of a density difference

The second example is illustrated inFig. 11and considers a one-dimensional flow normal to a planar diffuse
interface that is induced by phase-change in the presence of a density difference between the phases. The densities and
viscosities,ρk andµk, are assumed constant but differ between the phases. The interface moves at a constant speed
Vi into the positivex-direction. The problem becomes steady if one introduces the moving coordinatex=x′ − Vi t,
wherex′ is the fixed coordinate normal to the interface. The far-field velocity of phase 1 (x→ −∞) is taken to be
zero, and the far-field pressure in phase 2, ¯p2,∞, is used as a known reference pressure.

In this example, the velocities are solely determined by mass conservation and are the same in Cases I, II, and
III. In the moving coordinate system, the mixture continuity equation, Eq.(16), which is valid even for unequal

Fig. 11. Schematic illustration of the system used in the analysis of normal flow due to phase-change in the presence of a density difference
b
etween the phases.
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Fig. 12. Velocity profiles for one-dimensional flow normal to a diffuse interface due to phase-change with a density ratio ofrρ = 10.

phase velocities, becomes

d

dx
[ρ̄(ū − Vi )] = 0 (51)

which can be integrated to yield

ū = −Vi

(
ρ1

ρ̄
− 1

)
. (52)

The continuity equations for each phase, Eq.(14), become

d

dx
[ρ1φ1(ū1 − Vi )] = Γ1 (53)

d

dx
[ρ2φ2(ū2 − Vi )] = Γ2. (54)

For constantρ1 andρ2, and using the definition forΓ 1 and Eq.(15), Eqs.(53) and (54)can be integrated to yield

ū1 = 0 and ū2 = −Vi

(
ρ1

ρ2
− 1

)
. (55)

Hence, the individual phase velocities are constant. It can be easily verified that Eq.(55) and the definition of the
mixture velocity,ū = (ρ1φ1ū1 + ρ2φ2ū2)/(ρ1φ1 + ρ2φ2), lead to Eq.(52). It can also be shown that the interfacial
velocities due to phase change are given by ¯u1,Γ = ū1 andū2,Γ = ū2. Fig. 12shows the variation of the velocities
across the diffuse interface for a density ratiorρ =ρ1/ρ2 of 10. Note that the mixture velocity profile is not symmetric
with respect toφ = 0.5.

8.2.1. Case I
For Case I, thex-momentum equations for each phase reduce to

φ
dp̄1

dx
= −4

3

d

dx

[
dφ

dx

µ1µ2φ

µ1(1 − φ) + φµ2
ū2

]
+ µ1µ2

µ1(1 − φ) + φµ2

φ(1 − φ)hS

δ
ū2 − σφ(1 − φ)

d

dx

(
dS

dφ

)

(56)
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(1 − φ)
dp̄2

dx
= −4

3

d

dx

[
dφ

dx

µ1µ2(1 − φ)

µ1(1 − φ) + φµ2
ū2

]
− µ1µ2

µ1(1 − φ) + φµ2

φ(1 − φ)hS

δ
ū2 + σφ(1 − φ)

d

dx

(
dS

dφ

)

(57)

Since the velocity ¯u2 is known, Eqs.(56) and (57)are easily integrated to obtain the variation of the phase pressures
across the diffuse interface. Calculations are performed for an interfacial Reynolds number,Re=ρ2Viδ/µ2, of 10−3

and an interfacial Weber number,We = ρ2V
2
i δ/σ, of 10−5. These two parameters arise from non-dimensionalizing

Eqs.(56) and (57). Fig. 15shows the computed profiles of the dimensionless mixture pressure, defined asp∗ =
(p̄ − p̄2,∞)/(σ/δ), together with the phase-field in the upper panels, and of the dimensionless pressures of each
phase, defined asp∗

1 = (p̄1 − p̄2,∞)/(σ/δ) andp∗
2 = (p̄2 − p̄2,∞)/(σ/δ), in the lower panels. Pressure profiles are

provided for density ratios,rρ, of 1, 30, and 100 with a viscosity ratio ofrµ = 1 in Fig. 13a, and forrµ = 1, 30, and
100 withrρ = 100 inFig. 13b.

Applying the interfacial momentum jump condition, i.e., the second of Eq.(18), to the present example, the
difference between the far-field pressures on either side of the interface is given by

p̄1,∞ − p̄2,∞ = V 2
i ρ1

(
ρ1

ρ2
− 1

)
. (58)

This pressure difference is often referred to as the “vapor recoil” effect in a liquid–vapor system. It can be verified
from Fig. 13that the calculated pressures in Case I follow Eq.(58). Increasingrρ results in a larger far-field pressure
difference, whereas increasingrµ has no effect on this difference. The pressure profiles forrρ = 1 (i.e., no flow) in
Fig. 13a are the same as those inFigs. 5a and B1a, and the mixture pressurep* shows the hump inside the diffuse
interface that is a manifestation of the capillary stress. Increasingrρ (Fig. 13a) orrµ (Fig. 13b) both increases the
magnitude of the hump, indicating that in the presence of a normal flow a hump would be present even in the absence
of surface tension. Note that the pressures of each phase,p∗

k (lower panels inFig. 13), reach well-defined values as
the phase fractionφk vanishes. The difference between the phase pressures at a given location changes with both
rρ andrµ.

8.2.2. Case II
In Case II, the momentum equation for phase 2 reduces to ( )

N s
f e.
R t
d a.
I ar
d s
d le,
t
p
i

8

(1 − φ)
dp̄2

dx
= µ2

4

3

d2

dx2
[(1 − φ)ū2] − µ2φhS

δ
ū2 + σφ(1 − φ)

d

dx

dS

dφ
. (59)

ote that Eq.(59) can be obtained from Eq.(57) of Case I in the limit ofµ1 → ∞, sinceū1 = 0 in both case
or this example. With ¯u2 known, Eq.(59) is easily integrated to obtain the ¯p2 profile across the diffuse interfac
esults in terms of the dimensionless pressurep∗

2 (defined as in Case I) are shown inFig. 14 for three differen
ensity ratios. Forrρ = 1, i.e., in the absence of flow, the variation ofp∗

2 is identical to the one shown in Fig. B1
n the presence of flow (rρ = 30 and 100),p∗

2 decreases almost linearly asφ2 = 1−φ approaches zero. This line
ecrease indicates that the interfacial drag term, i.e., the second term on the right-hand side of Eq.(59), become
ominant asφ2 → 0. Since the drag is linearly proportional to the velocity, and ¯u2 is constant in the present examp

he pressure gradient is constant andp∗
2 decreases linearly. Physically,p∗

2 has little meaning asφ2 → 0 (i.e., inside
hase 1) and Eq.(59) becomes trivial. To avoid numerical difficulties when solving Eq.(59) with p∗

2 approaching
nfinitely small values asφ2 → 0, a small “cutoff” value (say 10−6) should be used forφ2.

.2.3. Case III
The mixture momentum equation for Case III can be expressed in the moving coordinate system as:

d

dx
[ρ̄(ū − Vi )ū] = −dp̄

dx
+ 4

3

d

dx

(
µ̄

dū

dx

)
− σ

dS

dφ

dφ

dx
. (60)
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Fig. 13. Calculated pressure profiles for Case I for flow normal to a diffuse interface as illustrated inFig. 11: (a) rρ = 1, 30, and 100 andrµ = 1,
and (b)rµ = 1, 30, and 100 andrρ = 100 (Re= 10−3 andWe= 10−5).

Substituting Eq.(52)for the mixture velocity and integrating yields the following analytical solution for the mixture
pressure variation

p̄ − p̄2,∞ = V 2
i ρ1

(
ρ1

ρ2
− ρ1

ρ̄

)
+ 4

3
µ̄Vi

ρ1

ρ̄2
(ρ1 − ρ2)

dφ

dx
− σ

δ
φ(1 − φ). (61)

It can be seen that Eq.(61), when evaluated atφ = 1, reduces to Eq.(58) for the “vapor recoil” pressure difference,
since the last two terms in Eq.(61) vanish in the bulk phases. Rewriting Eq.(61) in terms of the dimensionless
mixture pressurep∗ = (p̄ − p̄2,∞)/(σ/δ) reveals thatp* is a function ofrρ, rµ, Re, andWe, as in Case I.

Fig. 15shows the calculated mixture pressure profiles for the same parameter ranges as inFig. 13for Case I.
Hence,Fig. 15can be compared directly to the upper panels ofFig. 13. Although the two models corresponding to
Cases I and III give the same results for the far-field pressure difference, the mixture pressures inside the diffuse
interface vary in a somewhat different fashion. With increasingrρ the mixture pressure profile in Case III (Fig. 15a)
develops a “double hump”, and the depths of the humps do not vary appreciably withrρ. The “double hump”
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Fig. 14. Calculated pressure profiles for Case II for flow normal to a diffuse interface as illustrated in Fig. 11:rρ = 1, 30, and 100 (Re= 10−3

andWe= 10−5).

disappears again with increasingrµ (Fig. 15b). The appearance of the “double hump” in Case III can be attributed
to the asymmetric nature of the mixture velocity profile across the diffuse interface, as shown inFig. 12. Recall
that Case III is equivalent to the thermodynamically derived model in Ref.[12], and other choices for the mixture
density and viscosity variations,̄ρ and µ̄, inside the diffuse interface would result in different mixture pressure
profiles. Hence, the physical significance of the “double humps” inFig. 15is not entirely clear. Also note that for
increasingrρ, the mixture pressure profile in Case III extends increasingly into phase 2 (Fig. 15a), which again
can be attributed to the asymmetric nature of the mixture velocity profile. In fact forrρ = 100, the minimum in the
second hump occurs at approximatelyφ = 0.01, which can be regarded as being outside of the diffuse interface. In
contrast, for Case I the width of the mixture pressure hump does not change withrρ and the hump is well confined
within the diffuse interface (Fig. 13a). As with the velocity profile in the first example (Section8.1.3), the strong

Fig. 15. Calculated pressure profiles for Case III for flow normal to a diffuse interface as illustrated in Fig. 11: (a)rρ = 1, 30, and 100 andrµ = 1,
and (b)rµ = 1, 30, and 100 andrρ = 100 (Re= 10−3 andWe= 10−5).
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dependence of the pressure profile on the interface width and on the mixture property variations,ρ̄ andµ̄, creates a
large ambiguity in Case III.

9. Conclusions

A diffuse interface model for two-phase flows with phase-change and surface tension is derived using an ensemble
averaging approach. The derivations start from well-established local sharp interface balances and the diffuse
interface is viewed as a superposition of microscopic (atomic-scale) and macroscopic (averaged) morphologies.
The present model assumes that the two phases coexist inside the diffuse interface and have different velocities
and pressures. Interactions between the phases and interfacial sources, including the capillary stress, are modeled
explicitly.

The present model is tested for two simple one-dimensional two-phase flows. In each case, the results are
compared to those from a simplified mixture version, where the velocities of the phases inside the diffuse interface
are assumed equal, that is equivalent to a thermodynamically derived model[12]. Furthermore, the special case of
one phase being rigid and stationary is examined by either letting its viscosity approach infinity[12] or setting its
velocity to zero and not solving any equations for that phase[3]. It is shown that the present two-phase approach
gives results that are generally independent of the diffuse interface width, such that the variation of the velocity and
pressure outside of the diffuse interface does not depend on the variation of the variables inside of it. This property is
of great advantage in large-scale simulations of two-phase flows[3], because it allows computations to be performed
for arbitrarily large diffuse interface widths (as long as the width is smaller than the average radius of curvature to
be resolved). The mixture approach, although somewhat simpler and also equivalent to thermodynamically derived
models, does not possess this property. In both approaches, however, the depth of the pressure hump that is induced
by the capillary stress is inversely proportional to the diffuse interface width. Hence, in order to resolve flows at
the scale of the diffuse interface, e.g., breakup or merging of interfaces, its width must be chosen in a physically
realistic way, as expected.

To complete the theory for two-phase flows, an evolution equation for the phase-field variableφ is needed for
non-equilibrium situations. Such a phase-field equation is derived in Ref.[3], using the same two-phase averaging
approach, for the case of solidification. A generalization to the kind of two-phase flows considered here will be
presented in a forthcoming publication[28].
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ppendix A. Limiting cases for the average shear stress

The general expression for the average shear stress given by Eq.(35) is examined further by applying it to t
imiting cases discussed in Section2 and illustrated inFig. 1. In the limit of Case II, applying Eq.(35) to the fluid,
hase 2, only and settinḡu1 = 0 yields

φ2τ̄2 = µ2

[
∇(φ2ū2) + ∇(φ2ū2)T − 2

3
∇ · (φ2ū2)I

]
, for Case II. (A.1)

q. (A.1) is identical to the expression usually employed in flow through porous media[24], where the averag
iscous stress is taken to be proportional to the gradient of the superficial velocity,φ2ū2. Substituting the continuit
quation, assuming constant density and viscosity, and taking the divergence of Eq.(A.1) results in∇ · (φ2τ̄2) =
2(∇2(φ2ū2) + 1/3∇[Γ2(1/ρ2 − 1/ρ1)]) for Case II. This illustrates that the average viscous stress cont
ontribution due to flows that arise in the presence of phase-change and a density difference between the
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Applying Eq.(35) to Case III (̄u1 = ū2 = ū), the average viscous stress of the mixture is given by:

τ̄ = φ1τ̄1 + φ2τ̄2 = µ̄

(
∇ū + ∇ūT − 2

3
(∇ · ū)I

)
, for Case III (A.2)

whereµ̄ = φ1µ1 + φ2µ2. The term−2/3(∇ · ū)I accounts for the compressibility of the mixture inside the diffuse
interface forρ1 �= ρ2 (see Eq.(16)). Eq.(A.2) is identical to the constitutive relation for the viscous stress used in
the thermodynamically derived model of Anderson et al.[12]. Although the expression ¯µ = φ1µ1 + φ2µ2 for the
mixture viscosity arises naturally in the present derivations, it should be kept in mind thatµ1 andµ2 are actually
effective viscosities (see Eq.(31)) that could depend on the phase fractionsφk. If one chooses a more complex
model for the effective viscosities, a different relation for ¯µ would result.

Returning to Case I (̄u1 �= ū2), but considering the limit where phase 1 is a solid that is modeled as a fluid with
a large viscosity, i.e.µ1 �µ2, Eq.(35) for phase 1 reduces to

φ1τ̄1 = µ1φ1

(
∇ū1 + ∇ūT

1 − 2

3
(∇ · ū1)I

)
, for Case I withµ1 � µ2. (A.3)

Then, withµ1 very large and̄τ1 finite, Eq.(A.3) indicates that in this limit the gradients ofū1 will vanish and phase
1 will be like a rigid body. This would not be the case ifτ̄1 were proportional to the gradient of the superficial
velocity,φ1ū1, in this limit, becauseφ1 varies inside the diffuse interface. Forµ1 �µ2 Eq.(35)for phase 2 reduces
to Eq.(A.1), which was originally obtained by assuminḡu1 = 0.

Appendix B. Variation of the pressures across the diffuse interface due to surface tension

The expression for the interfacial force density due to curvature variations in the presence of surface tension
given by Eq.(40) is examined in this appendix for macroscopically planar and spherical interfaces in the absence
of flow and gravity. Under these assumptions, the variation of the pressures of the two phases, ¯p1 andp̄2, across the
diffuse interface can be obtained fromφ1∇p̄1 = Mσ

1 andφ2∇p̄2 = Mσ
2, respectively. Results are shown inFig. B1

for the choicea=b= 1 andS0 = 1/δ in Eq. (8). The dimensionless phase pressures plotted inFig. B1 are defined
asp∗

1 = (p̄1 − p̄2,∞)/(σ/δ) andp∗
2 = (p̄2 − p̄2,∞)/(σ/δ), wherep̄2,∞ is again a reference pressure far from the

interface in phase 2. The non-dimensional mixture pressure variations shown inFig. B1a and b are identical to those

Fig. B1. Phase and mixture pressure variations inside (a) planar and (b) spherical (withR/δ= 10) interfaces in equilibrium.
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in Fig. 5a and b, respectively. The difference between the pressures of each phase, ¯p1 − p̄2, at the same location is
due to the combined effects of the average curvature, ¯κ, and the microscopic curvature of the atomic structures inside
the diffuse interface, dS/dφ, according to ¯p1 − p̄2 = σ(κ̄ − dS/dφ). For a planar diffuse interface (¯κ = 0; Fig. B1a),
the difference between the pressures of each phase is solely due to microscopic curvatures and varies according to
p̄1 − p̄2 = −σ dS/dφ = −σ/δ(1 − 2φ). In order to maintain this difference, the pressure of one phase must increase
and the pressure of the other phase must decrease across the interface, while the mixture pressure, ¯p = φ1p̄1 + φ2p̄2,
varies as already explained in connection withFig. 5. At φ = 0.5 the difference between the phase pressures vanishes
because the microscopic curvature changes its sign (i.e., it is locally planar) as explained in Section3. At φ = 0
andφ = 1 the pressure difference between the phases for a planar interface is equal to ¯p1 − p̄2 = ∓σ/δ, which is a
physically meaningful and well-defined value. For a spherical diffuse interface,Fig. B1b, the phase pressures vary
in a similar manner except that the pressure difference is given by ¯p1 − p̄2 = σ[2/R − (1 − 2φ)/δ].

Appendix C. Variation of the pressures across the diffuse interface due to interfacial drag

The interfacial drag model given by Eq.(43)can be better understood by considering a simple one-dimensional
flow across a diffuse interface (in thēn direction) where the relative velocity, ¯uk − ūj = (ūk − ūj) · n̄, is assumed
constant and the inertia, viscous shear stress, and gravitational terms are all neglected. Then, the momentum equation
for phasek reduces to

φk
dp̄k

dn̄
= − µkµj

µkφj + φkµj

φkφjhS

δ
(ūk − ūj). (C.1)

Using Eq.(8) forSwith a=b= 1 andS0 = 1/δ, the above equation can be integrated to obtain the following expression
for the variation of the dimensionless pressure of phase 1,p∗

1 (redefined fromFig. B1), across the diffuse interface

p∗
1 = p̄1 − p̄1,∞

(µ1/δ)(ū1 − ū2)
= −

∫
φ1φ

2
2h

φ1 + φ2rµ
d

(
n̄

δ

)
(C.2)

where the viscosity ratio is defined asrµ =µ1/µ2. This pressure is plotted inFig. C1for viscosity ratios of 1, 10, and
1000. Because of the drag between the two phases, the pressure of phase 1 decreases in the direction of the flow from

Fig. C1. Variation of the dimensionless pressure of phase 1 given by Eq.(C.2)across the diffuse interface for viscosity ratios of 1, 10, and 1000.
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phase 1 towards phase 2 (i.e., (¯u1 − ū2) > 0). The majority of the pressure drop occurs forφ =φ1 < 0.5. This can be
explained by the fact that the drag experienced by phase 1 increases with increasing volume fraction of phase 2. If
one views the diffuse interface as a porous medium in the limit of ¯u2 = 0, the increasing drag can be visualized as
being caused by the permeability decreasing with increasing volume fraction of the porous matrix (phase 2). More
generally, Eq.(C.1)can be thought of as a modified Darcy’s law (in 1D) for the relative flow of two viscous fluids.
Such a law could find use in numerous applications other than diffuse interface modeling.Fig. C1also indicates
that the total pressure drop across the diffuse interface decreases with increasing viscosity ratio. Since the pressure
is non-dimensionalized withµ1, increasing the viscosity ratio should be viewed as decreasingµ2 while keepingµ1
constant. The pressure drop in phase 1 decreases with decreasingµ2 because the “matrix” (i.e., phase 2) deforms more
easily. In the limit ofrµ → ∞, phase 2 can offer no resistance to the flow and the pressure drop in phase 1 vanishes.

References

[1] D.M. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech. 30 (1998) 139–165.
[2] J.U. Brackbill, D.B. Kothe, C.A. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335–354.
[3] C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma, X. Tong, Modeling melt convection in phase-field simulations of solidification, J.

Comput. Phys. 154 (1999) 468–496.
[4] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. 31 (1999) 567–603.
[5] S. Osher, R.P. Fedkiw, Level set methods: an overview and some recent results, J. Comput. Phys. 169 (2001) 463–502.
[6] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30 (1998) 329–364.
[7] G. De Fabritiis, A. Mancini, D. Mansutti, S. Succi, Mesoscopic models of liquid/solid phase transitions, Int. J. Mod. Phys. C 9 (1998)

1405–1415.
[8] W. Miller, S. Succi, D. Mansutti, Lattice Boltzmann model for anisotropic liquid–solid phase transition, Phys. Rev. Lett. 86 (2001)

3578–3581.
[9] T. Lee, C.-L. Lin, Pressure evolution lattice-Boltzmann-equation method for two-phase flow with phase change, Phys. Rev. E 67 (2003)

056703.
[10] W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification, Annu. Rev. Mater. Res. 32 (2002) 163–194.
[11] D. Jacqmin, Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys. 155 (1999) 96–127.
[12] D.M. Anderson, G.B. McFadden, A.A. Wheeler, A phase-field model of solidification with convection, Physica D 135 (2000) 175–194.
[13] M. Conti, Density change effects on crystal growth from the melt, Phys. Rev. E 64 (2001) 051601.
[14] L.K. Antanovskii, Microscale theory of surface tension, Phys. Rev. E 54 (1996) 6285–6290.
[15] H.T. Davis, L.E. Scriven, Stress and structure in fluid interfaces, Adv. Chem. Phys. 49 (1982) 357–454.
[ por flows

[ 51 (2001)

[
[ 1999.
[ 106 (2001)

[
[
[ 2B (1991)

[
[ dia, Trans.

[
[
[
[ ) 385–393.
[
[ a D 141
16] D. Jamet, O. Lebaigue, N. Coutris, J.M. Delhaye, The second gradient method for the direct numerical simulation of liquid–va
with phase change, J. Comput. Phys. 169 (2001) 624–651.

17] D.M. Anderson, G.B. McFadden, A.A. Wheeler, A phase-field model with convection: sharp-interface asymptotics, Physica D 1
305–331.

18] D.A. Drew, Mathematical modeling of two-phase flow, Annu. Rev. Fluid Mech. 15 (1983) 261–291.
19] D.A. Drew, S.L. Passman, Theory of Multicomponent Fluids, Applied Mathematical Sciences 135, Springer-Verlag, New York,
20] D. Bercovici, Y. Ricard, G. Schubert, A two-phase model for compaction and damage: 1. General theory, J. Geophys. Res.

8887–8906.
21] M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975.
22] C. Kleinstreuer, Two-Phase Flow: Theory and Applications, Taylor & Francis, New York, 2003.
23] J. Ni, C. Beckermann, A volume-averaged two-phase model for transport phenomena during solidification, Metall. Trans. B 2

349–361.
24] M. Kaviany, Principles of Convective Heat Transfer, second ed., Springer-Verlag, New York, 2001.
25] B. Amaziane, A. Bourgeat, J. Koebbe, Numerical simulation and homogenization of 2-phase flow in heterogeneous porous-me

Porous Med. 6 (1991) 519–547.
26] W. Zijl, A. Trykozko, Numerical homogenization of two-phase flow in porous media, Comput. Geosci. 6 (2002) 49–71.
27] S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
28] Y. Sun, C. Beckermann, A phase-field model of solidification with density change and convection, in preparation.
29] I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields, Physica D 134 (1999
30] R.L. Panton, Incompressible Flow, second ed., John Wiley & Sons, New York, 1996.
31] B. Nestler, A.A. Wheeler, L. Ratke, C. Stocker, Phase-field model for solidification of a monotectic alloy with convection, Physic

(2000) 133–154.


	Diffuse interface modeling of two-phase flows based on averaging: mass and momentum equations
	Introduction
	Averaging and two-phase approach
	Superposition of interface morphologies
	Conservation equations for a diffuse interface
	Mass
	Momentum

	Modeling of the average shear stress
	Modeling of the interfacial momentum source term
	Modeling of the interfacial force density
	Examples
	Two-phase shear flow
	Case I
	Case II
	Case III

	Normal flow due to phase-change in the presence of a density difference
	Case I
	Case II
	Case III


	Conclusions
	Acknowledgement
	Limiting cases for the average shear stress
	Variation of the pressures across the diffuse interface due to surface tension
	Variation of the pressures across the diffuse interface due to interfacial drag
	References


