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Abstract

A diffuse interface model is derived for the direct simulation of two-phase flows with surface tension, phase-change, and
density and viscosity differences between the phases. The derivation starts from the balance equations for a sharp interface anc
uses an ensemble averaging procedure on an atomic scale to obtain a diffuse interface version of the equations. As opposed tc
thermodynamically derived models, the two phases are assumed to coexist inside the diffuse interface with different properties,
velocities, and pressures. Separate conservation equations are solved for each phase. The phase interactions are modeled explicit
through the inclusion of interfacial forces in the momentum equations for each phase. Based on a superposition of microscopic
(atomic-scale) and macroscopic interface morphologies, an expression for the interfacial momentum source due to surface
tension is introduced that is equivalent to the capillary stress term encountered in thermodynamically derived models. Also, a
constitutive relation for the average viscous stresses of each phase inside the diffuse interface is presented. The model is testec
for simple one-dimensional flows tangential and normal to a diffuse interface, and the results are compared to those obtained
from a thermodynamically derived model.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Diffuse interface methods have been a popular tool in the direct simulation of two-phasdflows such
methods, the interface between the two phases has a finite width and is characterized by rapid but smooth transitions
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in the density, viscosity, and other physical quantities. An order parameter or phase indicator fiitndroduced

to represent the transition between the phases. A unique set of conservation equations (i.e., mass and momentum)
solved over the entire domain by letting the properties vary across the interface. The evolytiarited domain is
computed from a separate equation. Distributed interfacial sources are introduced into the conservation equation:
to account for surface tensiq8], interfacial drag3], or other effects. The volume-of-fluid (VOI4], level-set

[5], lattice-Boltzmann-equation (LBHP—9], and phase-field method$0] are sometimes or always associated

with diffuse interface approachgl. The major advantage of diffuse interface methods is that explicitly satisfying
sharp interface conditions is avoided and changes in the interface topology are easily handled. However, in many
physical situations the actual interface width is only of the order of nanometers. Hence, problems can arise if
the interface is artificially smeared in order to reduce computational requirements. However, asymptotic analyses
have been devised to allow computations to be performed for larger interface widths without a loss in accuracy
[3,10].

The governing equations for diffuse interface methods can be derived from thermodynamically consistent the-
ories of continuum phase transitiofis10-14]or from gradient theoriefl 5,16] For example, Jacgmii1] used
thermodynamic principles to obtain a diffuse interface model for two-phase flows and clarified the form of the
continuum surface tension force term. Most recently, Anderson ¢t 2l performed a thermodynamic analysis
to derive a very general diffuse interface model for two-phase flows in the context of the phase-field method and
identified a number of new non-equilibrium terms inside the diffuse interface. The corresponding sharp interface
equations can be obtained from diffuse interface models by performing an asymptotic analysis for a vanishing
interface width17].

Beckermann et aJ3], in a study of solidification related phenomena, applied for the first time a formal ensemble
(or volume) averaging proceduE8,19]to derive the equations for a diffuse interface directly from the local, sharp
interface equations. In the past, averaging has only been used to derive models for large-scale systems where tt
radius of curvature of the interface is small compared to the size of the system. Examples can be found in the analysi:
of bubbly or particulate flows in engineering equipment, porous media, soil mechanics, glaciology, oil recovery,
magma dynamics, metal solidification, earthquake dynamics, mantle flow, and many others (s¢&8R24.
and references therein). Ensemble averaging can be viewed as a simple version of more general homogenizatio
techniques that have been applied to a variety of multi-phase syg286186] In these large-scale models, the actual
shape and motion of the interface is not resolved and the interactions between the phases are only accounted for i
an average sense.

When using averaging to derive a model for a diffuse interface, as in Beckermann[&}, @veraging is
applied on a much smaller, atomic scale in order to resolve the flows inside the diffuse interface and the motion
of the interface. Such an averaging approach is adopted here to derive the mass and momentum equations for
rather general two-phase system that consists of two Newtonian fluids or a fluid and a rigid solid (but the solid
is not modeled). Surface tension, phase-change, and density and viscosity differences between the phases are
considered. Since in the averaging approach the equations for a diffuse interface are derived “backward” (relative
to the thermodynamic treatments) from well-established local, sharp interface equations, the connection betweer
diffuse and sharp interface models is much clearer than in thermodynamic appridaglzesl several new insights
can be obtained.

While many of the present concepts are adopted directly from traditional two-phase flow tH28+i2g] a
superposition of macroscopic and atomic-scale interface morphologies is introduced that is only applicable to diffuse
interface modeling. This superposition assumes that the radius of curvature of the interface is large compared to the
diffuse interface width. With that assumption, an expression for the capillary stress tensor for a diffuse interface is
derived that is equivalent to the one obtained from thermodynamic th¢byldd. The superposition also results in
the derivation of a previously unidentified interfacial force that is associated with curvature variations in the presence
of surface tension. Several other modeling elements introduced in this study would also be useful in large-scale
two-phase models that do not involve a diffuse interfd@19], including rather general models for the averaged
shear stresses and interfacial drag forces of the phases in a two-fluid system.
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To the best of our knowledge, all thermodynamically derived models for two-phase flow assume the existence
of a single velocity and pressure at any point inside the diffuse interface. These variables can vary steeply across
the interface, depending on the two-phase flow situation. Moreover, a single density and viscosity are assumed
to exist and their variation across the diffuse interface needs to be postulated in some ad-hoc manner, because
thermodynamics does not usually provide the variation (unless the properties themselves are used as the order
parameter). For large differences in these properties between the phases, this can lead to results that are very
dependent on the way the property variations are specified. The present averaging approach offers an alternative by
treating each phase separately and assuming the coexistence of the two phases inside the diffuse interface. In sucl
a two-phase approach, which is rather common for modeling large-scale sy$&+8] each phase possesses
its own velocity, pressure, and physical properties. Separate (averaged) conservation equations are solved for eact
phase. The phase interactions are modeled explicitly through the inclusion of distributed interfacial terms in the
averaged equations. In the present study, such a two-phase approach is adopted for modeling the flow inside a diffuse
interface. This avoids the potentially steep variations of the variables across the diffuse interface, and the property
variations follow naturally from the derivations. The two-phase approach implies that a slip flow can exist between
the phases inside the diffuse interface, which is proposed here as a more realistic model for cases with large density
and viscosity differences between the phases. A complication inherent in this approach is that not much is known
about the interactions between the phases inside a diffuse interface containing atomic-scale structures. Thus, an
important objective of the present study is to derive phase interaction terms for a diffuse interface.

By simply adding the averaged mass and momentum conservation equations for each phase, and making use
of averaged interfacial balances, a so-called mixture model can be derived from the present two-phase model.
Assuming furthermore equal velocities of the two phases inside the diffuse interface, a direct connection with
thermodynamically derived moddl$1,12] can be made. Comparisons between the two modeling approaches are
performed throughout the paper.

Finally, it is important to mention the issue of interface width. In simulating two-phase systems that are large
compared to the actual interface width, the width must usually be chosen artificially large to allow for proper
numerical resolution. There are some instances, however, where the interface width is of the same order as the
length scale of the phenomena being investigated and the width must be chosen realistically. Examples include
near-critical fluids, contact line motion, breakup or merging of interfaces, spinodal decomposition, solute trapping
in rapid solidification, etc[1,10]. In the present study, special attention is paid to this issue by examining how the
model results behave with changing interface width. For this purpose, the model equations are solved for several
simple flows. It is shown that the two-phase model results are generally independent of the interface width, except
in those cases that involve surface tension. This is a critical property in simulations of larger scale two-phase flows.

This paper focuses solely on the derivation of the mass and momentum conservation equations for a diffuse
interface. The derivation of an equation for the propagation of the interface in non-equilibrium situations (i.e., the
phase-field equation), using the same two-phase averaging approach, will be presented in a forthcoming publication.
In order to keep the derivations reasonably simple, the flow inside the diffuse interface is assumed to be slow enough
that the momentum dispersion term that arises in the averaging process can be neglected. This appears reasonabl
in part because such a term does not arise in thermodynamic models. The interfacial Reynolds number, based on
the interface width and the relative velocity between the two phases, is assumed to be small enough that the drag
force inside the diffuse interface can be modeled as being linearly proportional to the slip velocity. Furthermore, all
thermophysical properties of the two phases are assumed uniform inside an averaging volume (but they may vary
globally). Again, more complex models do not appear to be justified in the present context.

In Sectior, the averaging procedures and the two-phase approach are explained in more detail. The superposition
of interface morphologies and a model for the average curvature of a diffuse interface are presented ir8.Section
The derivation of the averaged mass and momentum conservation equations, starting from the local equations for
a sharp interface, is described in Sectfoifhe modeling of the average stresses, the interfacial momentum source
term, and the interfacial force density is discussed in SecBefisrespectively. In Sectio8, the model results are
examined for simple one-dimensional two-phase flow systems. A brief summary is provided in Section
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2. Averaging and two-phase approach

In the present study, averaging is applied on the scale of the fluctuating atomic structures inside the diffuse
interface to obtain a model that allows for the direct simulation of the motion and shape of interfaces in two-phase
flows. Averaging serves to derive the governing equations for the diffuse interface where the two phases are assume
to coexist and the dependent variables are necessarily a function of the phase fin&tiaveraging volume\V
can be chosen that is small compared to the width of the diffuse intelfdmat, large compared to the characteristic
length of the atomic structures inside the interfdgeln many applications this would imply that the averaging
volume has a “radius” of the order of nanometers. For a diffuse interface model to be valid there is the additional
constraint thal must be much smaller than the characteristic radius of curvature of an intégfadere rigorously,
the phase functiog is defined as the ensemble average of an existence funtiomhich is unity in phase 1
and zero otherwise, via=¢1=1— ¢2=(X1). The subscripts 1 and 2 denote any phagea two-phase system.

The parenthesels) denote an ensemble average, such that an averaging valvhaetually does not need to be
specified18]. For ease of visualization, however, the notion of a volume average will be used in subsequent portions
of the paper. The phase functigrcan then be interpreted as an atomic-scale volume fraction.

The present concept of definiggas the ensemble average of an existence function on an atomic scale is perhaps
not too different from the phase-field method wheiie viewed as an order paramef&®]. Such an order parameter
describes the probability of an atom to occupy a particular location, for example in a crystal lattice.

Averaging has been established as a rigorous mathematical pro¢&8i@¢]. Here, only some important aver-
aging rules are reviewed. The ensemble averaging process satisfies the following Reynolds’, Leibniz’, and Gauss’
rules, respectivel{18]

(e =N+l (N9 =Nlg), and (0 =c ®
of\ 0
(Z)= 30 @
AU,
()= aoin ©)

wheref andg are sufficiently well behaved functions so that the limiting processes of integration and differentiation
can be interchangdd8], c a constantt time, andx; is a spatial coordinate. Gauss’ rule, Eg), is valid because the
present filter function is homogeneous (i.e., it is unjgjj]. For the existence functioiXy, Egs.(2) and (3)lead to

gl ot = (X /at) and vk = (VXk), respectively. The latter equation should not be confused with the average of the
derivative of the existence function in the direction normal to the interface{[s&%x|) = (—aXz1/an). Since|v X

behaves as a Dirac delta function, picking out the interface, its average is nothing but the interfacial area per unit
volumeS[18], i.e.

S = (|VXgl) 4

Another important relation associated with the existence function isxhét advected by the local interfacial
velocity, uj, between the phases according18]

%—i-upVXk:O (5)
ot
The above relations are used in the following sections to derive the averaged equations for a diffuse interface directly
from the local, sharp interface equations.
The two-phase approach is illustrated in detaiFig. 1 There are several cases that are distinguished in the
present study:
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Fig. 1. Schematic illustration of the present two-phase approach.

Case | The system consists of two Newtonian fluids of arbitrary viscosity and density. The velocities (and
pressures) of the two phases inside the diffuse interface are different, i.e., a slip flow is allowed. This is the most
general case and the main focus of the present study. FollowingIRgfa solid—fluid system may be modeled

by assigning a large viscosity to the solid.

As illustrated inFig. 1, Cases Il and Il should be viewed as sub-cases of Case |, because the governing equations
for Cases Il and 1l follow directly from the ones for Case I.

Case Il If the solid phase (say phase 1) in a solid—fluid system can be assumed to be rigid and stationary, it is
appropriate to simply assign a velocity of zero to the solid and not solve any equations for the solid phase (instead
of assigning a large viscosity to the solid and still solving the equations for the solid phase). Then, the solid phase
does not need to be viewed as a Newtonian fluid. This approach is the same as in Beckermd@i athal.

diffuse interface in Case Il can be viewed as a porous medium and classical theory for porous medium type flows
can be used to justify some of the modeling.

Case lIt The velocities of the two phases inside the diffuse interface are assumed equal. This case is referred to
as amixturemodel and is intended to mimic thermodynamically derived models for diffuse interfaces between
two fluids. It is mainly included here in order to allow for a detailed comparison with thermodynamically derived
models. However, the assumption of equal velocities may actually be quite appropriate for cases where the
densities and viscosities of the two phases are not too different.

3. Superposition of interface morphologies

Critical to the present method is the modeling of the interface morphology, and this is where the present approach

significantly differs from traditional averaging of large-scale two-phase systemsillustrates the three-length
scaled, lj, andl in decreasing order from left to right. Thacal unit vector normal to the atomic-scale structures
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Fig. 2. Schematic illustration of interface morphologies at different scales.

inside the diffuse interfac@, and the correspondirigcal curvatureg, are given, respectively, by (see Rd8] on
how to differentiate the binary existence functi§nusing a set of “test functions”)

VX1-V)|VX 1 ¢
w2y, VX1 - V)IVXy] v2x _8_21 )
|V X1 on

VX1 [

n=— and k=V-n=——— 1
VX1 VX1 VX1
where|vX;| =—0dX1/dn andk is positive when the interface is convex toward phase 2agerageunit normal
vector,n, and amaveragecurvature«, can be defined, respectively, as (§ég 2)
(n|VX4|) and = (k|VXql) @
(IVXal) (IVXal)
where the denominator is nothing bBitSubstitution of Eq(6) into Eqg.(7) to obtainr and« would require the
exact knowledge of the local atomic-scale interface morphology.

To make progress, a simple model for the interfacial area per unit volgisgyroposed here. Itis assumed tBat
can be expressed as an algebraic functigharid is not a function of the interface curvature on a macroscopic scale.
This conceptisillustrated iRig. 3 where the interface is depicted as a superposition of macroscopic and microscopic
(atomic-scale) morphologies. Recall from E4) thatSis governed by the entire structure of the diffuse interface,
and includes contributions from both the average curvature of the interface and the atomic-scale structure inside
the diffuse interface (which exist even for a macroscopically flat interface). However,|sindg Sis assumed to
be dominated by the fluctuating, atomic-scale structure inside the diffuse interface. With that assudvatiias,
only across the diffuse interface (in thairection), but not along contours of constan®A model of this variation,
assuming an isotropic diffuse interface morphology, is proposed here as

S = Sop"(1 — ¢)’ ®)

whereS, a, andb are constants that depend on the atomic-scale structure of a (flat) diffuse interface. The pre-factor
S is proportional to 1f (see discussion following E¢)). According to Eq(8), the interfacial area per unit volume,

n=

Macroscopic
morphology

:‘ ' ::'
d%%has% 3

O ‘:': *:- '.'. .' 1
__I_ Cp ) i AT Diffuse interfac
K

e ly S 305 O

[ Interface curvature, x ‘

Fig. 3. Superposition of macroscopic and microscopic interface morphologies.



Y. Sun, C. Beckermann / Physica D 198 (2004) 281-308 287

S vanishes in the bulk phases and reaches a maximgm @t =a/(a+b). As shown below, it is usually necessary

for Sto be phase-invariant, which can be accomplished by choasitigWhile it is difficult to relate the constants

andb explicitly to the atomic structure of an interface, an interesting connection can be made with the thermodynamic

treatment used in phase-field methfitl3]. It can be show28] that the interfacial area per unit volun&js related

to the free energy density functiointhat is used in phase-field methods Iifdg = SdS/d¢. Choosing a symmetric

double-well potential fof [10,12,13] which is proportional ta?(1 — ¢)?, corresponds ta=b=1 in Eq.(8). A

bilinear potentia[29], (1 — ¢), coincides witha=b=1/2. Additional discussion on the merits of different choices

for a andb can be found in subsequent sections. Other functional formS &we certainly possible, and E()

should only be viewed as an attempt to provide a specific example that appears to be physically meaningful.
The assumption th& varies only across the diffuse interface and is independent of the macroscopic interface

curvature motivates the following relation between the interfacial area per unit volume and the gradianthed

n direction

S = (VXa) =<—%>= %

on |~ "o~ VO ®

It is emphasized here that E@), i.e., (0X1/dn) = d¢/dn, is not a mathematically exact statement, because it is
not compatible with the definition af given by Eq(7). Instead, Eq(9) should be viewed as an approximate model
for the gradient of in the direction normal to the interface. This model is consistent with the assumption inherent
in Eq. (8) thate varies only across the diffuse interface and is independent of the macroscopic interface curvature.
Eq. (9) represents the primary departure of the present model from traditional averaging of large-scale two-phase
systems; in large-scale systems, where the volume fragtioan vary in an arbitrary fashion on a macroscopic
scale, the normal gradient g¢fcan generally not be related to the local interfacial area per unit volmimte that
Eq.(9) also implies thatd?X1/dn?) = 9%¢/dn?.

By specifying the values foa andb in Eq. (8), Eq. (9) can be solved to obtain an “equilibriung’ profile
across the diffuse interface. For example, taldamrgo =1, it follows thatdg/on = —Sgp(1 — ¢), which yields the
hyperbolic tangent profil¢ = [1 — tanh/25)] /2, wheres = 1/S. Sinceg varies from 0.05 to 0.95 over a distance
of approximately 8, it is clear that 1% is indeed a measure of the interface witjthfrora=b=1/2 andSy = 1/(2),
a sinusoidal profilep = [1 — sin(z/28)]/2, is obtained witH; ~ 55. The above hyperbolic tangent and sinusoidal
profiles for¢ hold regardless of the average curvature of the interface. They are commonly encountered in the
phase-field methofl0,12,29] The thermodynamic treatment used in the phase-field method also motivates a more
exact definition of the interface width, In the phase-field method, the interface width is inversely proportional to
the integral of the gradient energy per unit area of the interface, suctythat yi"w(aqs/am? dn [10]. Substitution
of Eq. (9) yields the following relationship betweénandSin the present model:/I; = f‘f’oosz dn. Then, it is
easy to show thdt =6/S =68 for a=b=1 (i.e., the hyperbolic tangent profile) ahd 8/(rSy) = 16/78 ~ 55 for
a=b=1/2 (i.e., the sinusoidal profile).

Substituting Eq(6) into Eq.(7), and using Eq(9) as well as the identities7X;) = V¢ and (v2X1) = v2¢, it is
easy to show that the average unit normal vector and average curvature are now given, respectively, by

_ V¢ - 1 (o2 (V¢-V)|V¢|} 1 [ 2 azﬂ
% and K=V-n=-——— | V2% — —_ v2p— 22| 10
" Twe " |V¢|[ ¢ Vol ol | P o (10)

While Eg. (10) may seem self-evident from a purely macroscopic point of view, it is again emphasized that they
cannot be directly derived by averaging the microscopic (atomic-scale) normal vector and curvature, unless the
approximation given by Eq9) is assumed valid. The above expression for the average curvature can be further
rewritten by noting from Eq(9) thatd?¢/dn? = —3S/on = —(dS/d¢)(dp/dn) = S dS/dé. Thus

2
K= 1 |:v2¢_ d_Ss] = _V% oS

3 & 3 +I/>' (11)
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The last term in Eq(11), dSd¢, has the interesting property of being a microscopic curvature of the fluctuating
atomic structures insidaV. This can be understood by considering the following simple example (after Ref.
[20]). If the averaging volume\V containsN spheres of phase 1 and radiyst follows that¢ = N4zr3/3AV and
S=N4nr?/AV. Thus, &d¢ = (ddr)/(dp/dr) = 2/r, which is nothing but the curvature of a sphere of radiuissing
Eq. (8), a general expression for the microscopic curvature variation across the diffuse interface is obtained as

ds a—1 b—1 ¢

G = S - gp (1= 2) 12)

Since &dd¢ varies only across the diffuse interface, it must be interpreted as the local curvature of the microscopic
interface after subtracting out the average curvatseich that it is macroscopically flat), i.ex, € «), as illustrated

in Fig. 3. Note from Eq.(12) that d§d¢ changes its sign at=¢. =a/(a+b), which implies that the atomic scale
interface morphology changes from convex to concave. Henceg(12jimay provide additional insight into the
choices fora andb [20].

4. Conservation equations for a diffuse interface

In this section, the derivation of the averaged mass and momentum conservation equations for each phase insid
(and outside) the diffuse interface is described. According to the discussion in S&dimh phasek are assumed
to be fluids. If one of the phases is a solid, the derivations do not apply to that phase, unless it is modeled as
a fluid of infinite viscosity. Additional detail on some of the derivations can be found in[R&]f. but none of
the previous theories consider both surface tension and phase-change. The reduction of the two-phase model to
mixture formulation is also discussed briefly.

4.1. Mass

The local mass conservation equation for each phase and the jump condition in a sharp interface formulation are
given, respectively, by
dp
5 TV (pu)=0 and [lp(u—ui)-n||=0 (13)
wherep is the densityy the velocity,||-|| denotes a jump across the interface of a fundtiasi|f|| =f, — f2, andu; is
the velocity of the interface between the two phases. Multiplying the local continuity equatikydoyg averaging
yields the following averaged continuity equation for phlag&s]

3(rpr)
ot

For simplicity, both phasek are assumed microscopically incompressible. In @#4), the average velocity of
phasekis defined asi; = (Xiu)/dr and the interfacial mass transfer rate per unit volume due to phase-change as
I'e=([p(u— u;)]*-vXx). Multiplying the jump condition for mass by X;| and averaging, results in the following
averaged interfacial mass balance

+ V- (rprux) = Ik. (14)

In+rI>=0. (15)

Defining a mixture density a® = p1¢1 + p2¢2 and a mass-averaged mixture velocity ms= [p1¢1u1 +
p2¢ou2]/p, Egs.(14) and (15kan be combined to yield the following mixture continuity equation
p

E+V~(ﬁ)=0. (16)
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Eq. (16) is valid even for unequal phase velocities, and shows that the mixture is compressible inside the diffuse
interface if the densities of the two phases are different. However, its main use would be in cases where the phase
velocities can be assumed to be equal, itg = u»> = u. In that case, and with the additional assumption that

andpy are constant (byt; # p2), additional insight can be gained by rewriting the averaged continuity equations

as

V-l?zl—‘l(i—i) and %+E-V¢=F1<1_¢+£>, forus =ur =u. a7
pL P2 ot Pl 02

Eq. (17) show that in the absence of phase-charge=0) the velocity field is solenoidal and the phase fracthon
is simply advected witla, even if p1 # p2. In the presence of phase-chanda & 0) but for equal phase densities
(p1=p2), the velocity field is still solenoidal and the phase fractois not only advected with but also changes
with I"1, as expected. It is clear that in the presence of phase-change a separate mbgdekfeds to be supplied
(e.g., the phase-field equatifin3,10,12).

4.2. Momentum

The local momentum conservation equation for each phase and the momentum jump condition at the interface
can be written, respectively, as

d(ou)
ot

+ V- (ouu) =V -(—pl+1)+pg and ||pu(u —ui)-n—(—pl+1)-n|| =oxn (18)

wherep is the pressurd, denotes the unit tensor,the shear stress tensgrthe gravitational acceleration, and
is the surface tension between the two phases. The surface tension is assumed constant and variations along th
interface are not considered.
The averaged momentum equation for pHaisebtained by multiplying the first of E¢L8) by Xk and averaging,
to yield

a
§<kau> + V- (Xppuu) = =V(Xip) + V - (X47) + (X 08) + ([ou(m — ui) + (pI — 1)]* - VX;). (19)

The term([pl]*-vX) is split into two parts, with one representing the average interfacial pressure and the other
accounting for unbalanced pressures at the interface, as

([p1* - VXi) = priVer + ([(p — pe)I1* - VXi) (20)

where the average interfacial pressure is definggkas= (p|VXk|)/|V¢| [19]. It may be argued that the value of

pr.i is arbitrary in Eq.(20) (since it is added and subtracted back out); however, the above definition represents a
physically meaningful choice. Assuming instantaneous microscopic pressure equilib8i@8], px ; can be taken

equal to the phase-averaged pressure of pkadefined ap; = (Xip)/¢dx, i.€.

Pki = Dk- (21)

Drew and Passmai9] suggest that for a fluid (or continuous) phase the difference betwgeand py is pro-

portional to the square of the slip velocity between the phases. Since the slip velocity inside the diffuse interface
is assumed to be small (see SectidriEq. (21) can be expected to be a reasonable approximation. Other causes

for a difference between the two pressures in large-scale two-phase flows, such as contact pressures and collisions
between solid particled 9], are not relevant to the present system.
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Neglecting the dispersive flux arising from the average ofithproduct (see Sectidl), the averaged momentum
equation for phask can now be written in the following final form

0 _ _ _ _ _
§(¢k0kuk) + V- (dkprukur) = —dVpr +V - (dxTi) + Sk g + ik, r + My (22)

wheret; = (Xx1)/¢r, M is the interfacial force density of phakeandu; r = ([pu(u — u;)]* - VXi)/Ik. The
latter expression defines an average normal interfacial velocity of phése to phase-change. The modeling of
the average shear stressg, is discussed in Sectidn In the absence of flow and surface tension @8) reduces
to Vpr = prg, as one would expect for a fluid.

The averaging process yields the following expression for the interfacial force ddwgityy Eq. (22)

My = ([(px — p)I] - VXi) — (ti - VXy). (23)

This term represents unbalanced pressures and shear stresses at the interface. For large-scale two-phase system
accounts for the interfacial forces on ph&sgue to shear and form drag, as well as unbalanced pressures leading
to lift or virtual mass effect§18]. In the present context of diffuse interface modeling, the physical meaning of
such forces is not immediately clear. However, a simple model for the viscous contribution to the interfacial force
density, assuming a small slip velocity inside the diffuse interface, is presented in Sedtias also shown in
Section7 that the interfacial force density includes a new contribution due to unbalanced pressures that are causec
by curvature variations in the presence of surface tension.

The averaged interfacial momentum balance, obtained by averaging the seconql®)&fter multiplying it
by |vX1], is given by

Nuyr + piVor + My + Doup r + poVgo + Mo = Mi = o(kV X1) (24)

whereM; is the averaged interfacial momentum source due to surface tension. Thgtexa) cannot simply be
modeled ag V¢, because that would violate the definition of the average curvature given ify)Efo overcome
this problem, the same splitting strategy as for the tdpti*-vXy) (see Eq(20)) is applied toM; to yield

M; =okVp+o{(k —k)VX1) (25)

where the first term represents a contribution from the average curvature of the interface and the second term is ¢
contribution from microscopic curvatures inside the diffuse interface that is present avendf(see SectioB).
A model for the second term is provided in Secttn

Additional insight into the interfacial momentum balance can be gained by splitting it into the components
tangential and normal to the diffuse interface. In the tangential direction (i.e., along contours of cohskmnt
(24) becomes

Mit+ Mz =0 (26)

whereM 1 tandM ; are the tangential components of the interfacial force density of the two phasgx6 fudicates

that, in the absence of surface tension variations along the interface (i.e., the Marangoni effect), as assumed in th
present study, the tangential components of the interfacial force densities balance eaftbthethe direction

normal to the diffuse interface E¢R4) can be written as

)= M -Vv¢ D(uyr—uzr)-Vo (Mi+Mp) V¢
V|2 V|2 Vo2

It can be seen from Eq27) that the difference in the average pressures between the phases is due to the effect

of surface tension, the contraction or expansion flow induced by phase-change and a density difference, and an

difference in the magnitude of the interfacial force densities of the phases frytdéection. Almost all previous
studies of large-scale two-phase flgd/8,19,21jassume that the normal components of the interfacial force densities

(27)
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of the two phases balance each other. Only Bercovici @], in a study of compaction and damage of a two-phase
mixture, identify a pressure difference between the phases due to unbalanced interfacial shear stresses in the norma
direction. In the present study on diffuse interface modeling, such an imbalance is not considered and the last term
in Eqg.(27)is assumed to vanish. In view of the above discussion, the interfacial force déhgipgcts equally and
oppositely between the phases in both directions, i.e.

M1 =—-M>. (28)

Eq. (28) implies that the interfacial force density is recognized as a force of one phase against the other, and not as
a force of either phase against the interff2@. Note that in view of Eq(28) the interfacial force densities in the
averaged interfacial momentum balance, £4), cancel each other.

The averaged mixture momentum equation is obtained by adding U2 Bdor each phase and making use of
Eq. (24), to yield

0

where the mixture pressure and the mixture shear stress are defined, respectivelygpag: + ¢2p> andt =

$171 + P272. Again, the main use of E¢29) would be in Case Ill, where the velocities of the two phases can be
assumed to be equal inside the diffuse interface. Then, the last term({@%yganishes and E¢29)is identical to

the thermodynamically derived momentum equation in ReX].

The remaining un-modeled terms in the averaged momentum equations are: the average shesy; shess,
average interfacial momentum source due to surface tendip(in particular, the second term on the right hand
side of Eq.(25)); and the interfacial force densitly]x. Models for these three terms are proposed in the following
sections.

(29)

5. Modeling of the average shear stress

A model for the average shear stress of pHaeobtained by starting with the following constitutive relation
for the local shear stress in a Newtonian fluid

2
T=U (Vu + Vu' — :—%(V . u)I) (30)
wherep is the viscosity and the facter2/3 is due to Stoke’s assumptif@0]. Averaging Eq(30) results in

OkTi = <Xk,uk (Vu + Vu' — g(v . u)I)>

2 2
= [k <V(Xku) + V(Xku)T - év -(Xgu)l —uVXy —VXiu+ :-—))(u . VXk)I>

_ _ 2 _ _ _ 2 _
= uy [V(¢kuk) + V(prur)" — §V (rwi)I — ug iV — Vupi + é(uk,i : Vd’k)l} (31)

wherey} is an effective viscosity of phaseIn Eq.(31), the average interfacial velocity of phasex, i, is defined
as
— (u|VXg|)

P bl 114 32
T vl 2

Note thatu; ; is defined differently from the interfacial velocity; - = ([pu(u — ui)]* - VX;)/T} introduced
in Section4 in connection with phase-change. E§2) defines an average interfacial velocity that includes all
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components in the averaging process, while the definitionufgr only collects the component normal to the
microscopic interface during averaging and is non-zero only in the presence of phase-change. The last equality ir
Eq.(31)is based on a method similar to the one used in R&f.and requires some explanation. The téumXy)
is splitinto(uVXy) = ux Ve + ((u — uxi)VXy), following the same strategy as for the ter(peXy) and (kv Xy)
in Section4. The term{(u — u; )V X}), representing the average of local interfacial velocity fluctuations, is then
“absorbed” into an effective viscosity,’, as shown in E(31) [23] However, in the followinge; is simply taken
equal to the actual fluid viscosity, i.g.; = . This simplification can only be viewed as a first approximation for
the two-phase flow inside a diffuse interface.

The last portion of Eq(31) can be rewritten in the following, more transparent form

_ _ _- 2 _ - _ _ _ 2 _ _
Pk Tk = Uk Pk (Vuk + Vi, — §,(V : uk)1>+ Mk [V¢k(uk —uki) + (up — upi)Vor — §V¢ (uy — uk,i)li|
(33)

The first part on the right-hand-side of E§3)accounts for the viscous stress of phlateitself as in a single phase
system. The second part represents the contribution to the average viscous stresslofipbdseelative motion
between the two phases. This part is proportional to the difference between the phase-averaged and interfacie
velocities, @i — uy.i), and tov¢y, indicating that it is non-zero only inside the diffuse interface.

A simple but practical expression fay j is obtained by assuming that ; is a viscosity weighted linear function
of the average velocities of both phases, i.e.

_ uy + u:
Ti= Higouy + g1 2 (34)
H1d2 + u2g1

This concept is schematically illustratedRig. 4for a simple shear flow inside a small unit cell. The microscopic
velocity profile is continuous at the interface between the two phases. For equal viscosities of the two phases, the
interfacial velocity can be seen froRig. 4a to be given by, i = ¢ou1 + ¢1u,. For unequal viscosities-{g. 4b),

Eq. (34) results. Note that Eq34) provides an average interfacial velocity that is independent of the phase, i.e.,
u1; = uy;. This symmetry is necessary for modeling a system where the two fluids are in principle interchangeable.
The statemeni j = uy; can simply be interpreted as an averaged no-slip condition at the interface between the
two phases. One could argue that the symmetry is broken in the presence of phase-change when the two phas
have a different density anth - # u> - (see Eq(27)). However, as mentioned above, the definitionagf and

uy, r are quite different, and E§34) can be expected to be a good approximation even when+ u; . For a
two-phase system where phase 1 is a solid that is modeled as a fluid with a large vid&@siBg. (34) yields

uz; = uy in the limit of w1 > uo, which is like a no-slip condition on a rigid body moving with velocity.

u, i u, i
phase | / | 9, phase 1, 4, | | #

phase 2

@ phase 2, u,
=t

(a) (b)

Fig. 4. Schematic illustration of the microscopic velocity profile (heavy solid line) inside a unit cell for a simple shear flow with (a) identical
and (b) different viscosities.
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Substituting Eq(34) into Eq.(33), yields the following final expression for the average shear stress of ghase
_ _ T 2 —
itk = ki | Vux + Vuy — §(V cup)l

j - - _ 2 - _
#% [V¢>k(uk —uj) + (g — u)Vey — 3V¢ (i — uj)l] : (35)
where the subscripdenotes the other phase in a two-phase systen{3&pprovides a constitutive equation for the
average shear stress in terms of the velocities of both phases. Drew and Pd€jmlso introduced a model faf;
that involves the velocities of both phases. The model in R&f, however, introduces several different effective
viscosities that are highly case dependent and generally unknown. The present model avoids that complication. In
Appendix A Eq.(35)is examined further by applying it to the limiting cases discussed in Sezamal illustrated
in Fig. 1

6. Modeling of the interfacial momentum source term

The averaged interfacial momentum source is given bf{Ef).asM; = oxV¢ + o{(k — k)VX1), where((kx —
)V X1) represents the mean effect of microscopic curvatures inside the diffuse interface that remains even if the
average curvature vanishes. This term can be modeled by considering the previous discussion on superposition
of microscopic and macroscopic interface morphologieskigd3. In Section3, the term &d¢ was identified as
a microscopic curvature inside a flat diffuse interface. Hence, the following modékfer )V X 1) is proposed
here:

(e~ VK1) =~ Vo, (36)
b

The negative sign ensures thét — ¥)V X1) is positive forg <¢¢. Eqg. (36) may not appear as a generally valid
model for{(x — ¥)V X1) because this term is a vecfd8]. However, this does not represent a problem because the
microscopic curvature varies only in the normal direction across the diffuse interface. Substitut{86)igo Eq.
(25)yields

_ ds
Mi=0‘<l(—d—¢> V¢ (37)
which illustrates thatM; remains even for a macroscopically flat interfage=(0) because of the presence of
microscopic curvatures inside the diffuse interface. Substituting®qfor « into Eq.(37) gives

M= —%v2¢V¢ (38)

which is the main result of the present section.
Before proceeding, the present expression for the interfacial momentum source term givef8Byi&qompared
to the corresponding term obtained from thermodynamic or gradient theories for diffuse interfaces. In these theories,
a capillary stress tensor is introducedmas= of;(|V¢|21/2 — V¢ ® V) [12], wherel; is the interface width as
before. The interfacial momentum source term is related to the capillary stress tensor h#dughv - m, where
the superscript cs denotes that it corresponds to the capillary stress tensor. Hence

M = —oliVZpV¢. (39)

It can be seen that Eq&8) and (39pre virtually identical, sinc&~ 1/;. This lends considerable confidence to the
present derivation. The only difference betwégrandM{*is thatSis a function ofp, according to Eq(8), whereas
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Fig. 5. Variation of the phase-field profile and the mixture pressure across (a) planar and (b) spheri€d gni) interfaces in equilibrium;
results are shown for two different profiles= [1 — tanh/25)]/2 and¢ = [1 — sin(z/25)]/2.

i is a constant. Substituting, for example, the hyperbolic tangent profifefeith a=b=1 andS = 1/5), Eqs.(38)

and (39)become, respectivell; = op(1 — ¢)(1 — 2¢)/62 and M = 60¢?(1 — $)(1 — 2¢)/82 (sincel; =65 for

the hyperbolic tangent profile) in the direction normal to the mterface. It can be seen that the two expressions are

very similar and have minima and maxima that differ only in magnitude. Since different potentials can be used in

the thermodynamic approach (resulting in differgrgrofiles), and other choices farandb can be used fog as

discussed in Sectio, it can be said that the difference betwéénandM* is generally insignificant.
Furtherinsightinto the interfacial momentum source term can be gained by considering an interface in equilibrium

without flow and gravity. The mixture momentum equation, &§), then become¥ p = —a/SV2¢$V¢ which can

be solved for the mixture pressupe For example, for a macroscopically planar interface=(0) the solution is

glven by p = p2.0o — 0S0¢%(1 — ¢)?, and for a macroscopically spherical interface of raduc = 2/R) it is

P = D2.00 + ik — aSop™(1 — ¢), Wherep;  is a reference pressure far from the interface in phase 2. Results

in terms of the dimensionless mixture presspte= (p — p2.~)/(0/8) are shown irFig. 5a and b for planar and

spherical diffuse interfaces, respectively. Pressure profiles across the diffuse interface are plage8 fior the

following choices of the constants in E®): (i) a=b=1 andSy = 1/, which corresponds to the hyperbolic tangent

¢ profile, and (i)a=b=1/2 andSy = 1/(25), which gives the sinusoidal profile. It can be seen that the differences

in the results for the tw@ profiles are small. For a planar interface, the far-field pressures are identical, i.e.,

Ploo = P2.00s @S €xpected. Inside the diffuse interface a pressure “hump” of deptls 0.25 at¢=0.5 can be

observed that is a manifestation of the capillary stress. If the two phases are fluids, this pressure hump would act tc

keep the fluids from mixing. For the spherical interface, the minimum in the hump is shifped@db — §/Rand the

difference between the far field pressures is equahtQ — p2 - = 20/R, as expected from the Young-Laplace

equation for a sharp interface. These simple examples illustrate that, as opposed to the commonly used continuur

surface force (CSF) expressiMiCSFz okV¢ [2], the present interfacial momentum source term accounts for

immiscibility between the phases due to surface tension.

7. Modeling of the interfacial force density

Another important aspect of the present study is the modeling of the interfacial force density okdWasim
the context of a diffuse interface approach. This term is essential for a two-phase model because the interaction:
between the phases must be explicitly accounted for. As discussed in Sedflgmepresents the interfacial force
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density due to unbalanced pressures and stresses at the interface and acts equally but oppositely between the phase
As shown in the following, the interfacial force density includes two contributions: (1) unbalanced pressures due
to curvature variations in the presence of surface tension; this part is non-zero even in the absence of flow; and (2)
dissipative (viscous) drag due to relative motion between the phases.

First, consider a case without flow and gravity. The momentum equations for the two phases, basd@?hn Eq.
becomep1Vp1 = M andg,V p, = M$. Using Eq.(37), Eq.(27) becomegp1 — p2 = o(k — dS/dg) (this is not
a difference between far-field pressures, but between the pressures of the two phases inside the diffuse interface).
SinceM1=—Mpy, the previous equations can be solved for the interfacial force densities of each phase to yield
M3 = o¢p(1— ¢)V(k — dS/dp) and M§ = —op(1 — ¢)V(k — dS/de). Since the curvature changes its sign to a
switch of the phased{; can be rewritten in a phase-invariant form as

- _ das
r = ooV <Kk g ¢k> (40)
whereky, is the average curvature of phdsevhich for phases 1 and 2 ig = « and«, = —«, respectively. Eq.
(40) defines an interfacial force density in the absence of flow that has the effect of balancing the average and
microscopic curvature variations of the diffuse interface in the presence of surface tension. The resulting variation
of the pressures of the two phases across the diffuse interface, in the absence of flow and gravity, is presented in
Appendix B

Second, consider a case with flow but without surface tension. In the limit of Case # ), and for the
hyperbolic tangenp profile @=b=1 andS =1/ in Eq.(8)), Beckermann et a]3] proposed the following model
for the dissipative interfacial force density of phase 2

_ M2¢hS _

MS = u,, forCasell (41)
2

This expression is based on an analogy with slow flow through a rigid stationary porous medium and assumes that
the drag on the fluid phase is linearly proportional to the average velagjtgnd the interfacial area per unit volume,
S=|v¢|, and inversely proportional to the diffuse interface thickness. The dimensionless “friction” camstast
determined from an asymptotic analysis for plane shear flow past a diffuse interface. For the hyperbolic tangent
¢ profile across the diffuse interface, it was found that a value=o02.757 results in the shear velocity profile for
a diffuse interface approaching that for a sharp interface with a no-slip conditipn @5, asp — 0 (i.e., in the
fluid phase)3]. This value forh holds regardless of the interface width, i&.Hence, in actual computations the
interface width can be chosen artificially large, as long as it is much smaller than the macroscopitzlength

For the present case of two-phase flow inside the diffuse interfac€4Emeeds to be modified to (i) account
for the motion of both phases, (ii) be phase-invariant, and (iii) be valid foggmyfile across the diffuse interface
(i.e., anya=bin Eq.(8) for S). First, Eq.(41)is rewritten as

hS —  _
PO G — ). @2)

MY =—

Eq. (42) recognizes the fact that in two-phase flow the drag is proportional to the difference between the average
and interfacial velocities of a phase (note that = 0 in Case |l because;; = uz; and the solid is assumed

rigid and stationary). Substituting the model for;, given by Eq.(34), into Eq.(42) yields the following final,
phase-invariant form of the dissipative interfacial force density of phase

d_ __ MkHj  ¢kphS
T Y T
Now it can be seen that the drag is proportional to the relative velocity between the phases, as §kpgtipd

The pre-factow is a function of the viscosities and volume fractions of both phases. It is shown in S8ctidn
that the same “friction” constatitas in Case Il can be used for the general case of two-phase flow (Case I). While

(ur —uj) = —auy —uj). (43)
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the general form of Eq43)is believed to be valid for any choice af b, slightly different values foh result for
differentg profiles. For example, for the sinusoidal profies(b = 1/2 andsy = 1/(25)), it was found (not shown here
for brevity) thath=2.5, instead of the 2.757 value that must be used with the hyperbolic tapgeofile @=b=1
and$ =1/5). Again, the value oh is independent of the interface width, i.&.,The interfacial drag model given
by Eq.(43)is illustrated further iMppendix Cfor a simple one-dimensional flow across a diffuse interface.

Based on the previous discussion, the total interfacial force density of phdgeis simply taken as the sum of
the interfacial forces due to curvature variations and due to viscous drag, i.e.

Ui QkpjhS ds ) ' (44)

. UkPj + i 8 () —ui) +o0¢;p Vv (Kk ~

All other effects are neglected. Note that E1)is completely symmetric with respect to the phasesNMes —Mo.

8. Examples

The model is tested for two simple one-dimensional two-phase flows involving a macroscopically flat interface:
(i) a shear flow parallel to a diffuse interface and (ii) a flow normal to a diffuse interface that is driven by phase-
change in the presence of a density difference between the phases. In all cases, the ecarstérits Eq. (8) are
taken equal to unity anfy = 1/5, such that the interfacial area per unit volurBgis given by

1-—
) )
3
Using Eq.(9), the phase-field profile across the diffuse interface (intdeection) is then given by
2 25

This profile is used even in the second example that involves phase-change, and no evolution equatisn for
solved.

% o
S moving lid
L (1006,)
phase 2
diffuse
interface
"~ phase 1

S

Fig. 6. Schematic illustration of the two-phase shear flow system.
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8.1. Two-phase shear flow

The two-phase shear flow system considered in this example is illustratied 61 A stationary interface, aligned
with they coordinate, is centered between two walls and separates two phases of different, but constant, viscosity
and equal density. The wall at=—L is fixed and the wall ak=L is moving with a constant speaddinto the
y-direction. The flow is assumed to be fully developed with no slip conditioms-atL. For a sharp interface, the
velocity profile is linear in each phase with the slopes determined directly by the viscosity yatjo:/1.2 and
the velocity of the interface in thgdirection given by =V/(r,, + 1). The lengthL is taken as a constant equal to
10080, wheredg is a reference value fdér(not to scale irFFig. 6for illustration purposes).

8.1.1. Casell
For Case |, thg-momentum equations for phases 1 and 2 are given, respectively, by
d[ dvy  do p2¢p - = } e p(L—g)hs —  _
O=p1— |lp—= 2 "2% (3 — — V1 — v2). 47
T L e e CE ] B ceer e TR S

(v1 — v2).
(48)

d dvz  dp pa(l-¢) } 12 ¢(L — $)hS
0= —|(l-p)—L 4 == 77 _
H2g, [( L P R s sy LR I7aYc g S w:

whereuy is the velocity of phask in they-direction. The above highly coupled equations are solved numerically
for the phase velocities; andv,. To ease the computations, E¢47) and (48)can be combined and rewritten
in terms of the mixture velocity = ¢1v1 + ¢v2 and the slip velocityAv = v; — vy (the resulting equations are
omitted here for brevity). The advantage of solving the momentum equations in terms of these two velocities is that
they are well defined even fgi, — O.

Calculated velocity profiles are shownfig. 7a—c for viscosity ratios,, = u1/u2, of 1, 10, and 18 respectively
(in the actual computationg,; was changed whilg> was held constant). In each figure, results are presented for
8=248p, 580, and 10g. The upper panels show the profiles for the phase-field and the mixture valpuihile the
lower panels provide the individual phase velocity profilesandv,. It can be seen that outside of the diffuse
interface the calculated velocities match perfectly with the analytical velocity profiles for a sharp interface. This is
true regardless of the interface width (as long &sL) and the viscosity ratio. Such a behavior is of great advantage
in simulations of complex two-phase flows, because the velocity outside of the diffuse interface is not influenced
by the velocity inside of it and the interface width can be chosen artificially large. Inside the diffuse interface the
mixture and individual phase velocities vary smoothly to accommodate the changes in slope. The lower panels
clearly show the presence of a slip velocity between the two phases inside the diffuse interface. The velocity of
phase 1 reaches a constant value in phase 2 (i.e4 as0), and vice versa, that is equal to the velocity of the
sharp interfacey; = VI(r, + 1). In this example, a viscosity ratio of 4@lready results in the velocity of phase 1 to
be essentially zero (i.evy/V < 1/1001), which illustrates that in Cad a solid can be modeled as a fluid with a
large viscosity.

The above results are based on assuming that the value of the dimensionless bdostasystem where the
velocity is non-zero in both phases is the same as the one determined ii3]Ref. a solid—liquid system with
flow in only the liquid (i.e., 2.757)Fig. 8 shows calculated mixture velocity profiles for three different choices
of h: 0.02757, 2.757, and 275.7. It can be seen that the profiles outside of the diffuse interfaeedf6R757
and 275.7 do not match the solution for a sharp interface, and the results would be highly interface width de-
pendent. On the other hankl=2.757 provides the good match already notedFign 7, regardless of the inter-
face width and viscosity ratio. Hence=2.757 is the correct value in a general situation involving flow in both
phases (Case I). Recall that the exact value of 2.757 was determined ifBRe$ing a matched asymptotic
analysis.
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Fig. 7. Calculated velocity profiles for Case | for the two-phase shear flow system illustrétigd @as a function of the diffuse interface width
(8=460, 580, and 1G@o): (a)r, =1, (b)r, =10, and (cy, = 10%. The upper panels show the phase-field and mixture velocity profiles and the lower
panels show the individual phase velocity profiles.

8.1.2. Casell
For Case Il {1 = 0), the momentum equation for phase 2 reduces to

d? _ _
0= -0l - 0% (49)

Fig. 9shows the calculated velocity profile in terms of the superficial velocity, v, as well as the corresponding

sharp interface solution, for three different interface widths. The results are very similar to the ones for Case | with
re= 10% in Fig. 7c, and show again that the velocity profile outside the diffuse interface is not influenced by the
interface width. Since Eq49) is much easier to solve than the coupled E43) and (48)it is clear that if one

of the phases is rigid and stationary, the approach taken in Case Il is of great advantage. Furthermore, no artificia
viscosity needs to be assigned to the rigid phase.
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Fig. 8. Calculated velocity profiles for Case | for the two-phase shear flow system illustr&igdéfor h=2.757, 275.7, and 0.02755 105
andr, =10).

8.1.3. Casel lll
The momentum equation for Case th(= v2 = v) reduces for this example to

d /_dv
0= — | u— 50
+ (%) (50)
whereu = ¢u1 + (1 — ¢)u2 is the mixture viscosity, as beforBig. 10a—c shows the calculated velocity profiles
for viscosity ratiosr,, of 1, 10, and 18, respectively, and three different interface widths. The results are compared
with the corresponding sharp interface solution. It can be seen that other tharfiy the velocities are highly

dependent on the diffuse interface width and the slopes of the velocity profiles outside of the diffuse interface are
generally not in agreement with the sharp interface solution.

0.8

0.6

0.4

0

L
-100 50 0 50 100
phase 1 x/ o, phase2

Fig. 9. Calculated velocity profiles for Case Il for the two-phase shear flow system illustrafégl Bias a function of the diffuse interface
width (8:50, 580, and 100).
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Fig. 10. Calculated velocity profiles for Case Il for the two-phase shear flow system illustrafegl Bas a function of the diffuse interface
width (8 =380, 580, and 1@o): (a)r, =1, (b)r, =10, and (cy, = 108,

Hence, in actual computations of two-phase flows that involve a large viscosity ratio, the interface width has to
be chosen extremely small in order to approach the sharp interface solution. In fact, since Case lll is equivalent to
thermodynamically derived moddlE2], § should be chosen equal to the physical width of a diffuse interface, which
is of atomic scale. This example clearly illustrates the advantage of a full two-phase approach where a velocity
slip is allowed inside the diffuse interface (Cases | and Il), as opposed to assuming that both phases have a singl
velocity (Case IIl). While a different function for the mixture viscosity might produce better agre¢&ignit is
unclear how such a function could be chosen in a physically meaningful way.

8.2. Normal flow due to phase-change in the presence of a density difference

The second example is illustratedfig. 11and considers a one-dimensional flow normal to a planar diffuse
interface thatisinduced by phase-change in the presence of a density difference between the phases. The densities a
viscosities px anduk, are assumed constant but differ between the phases. The interface moves at a constant spee
Vi into the positivex-direction. The problem becomes steady if one introduces the moving coorgingte- Vit,
whereX is the fixed coordinate normal to the interface. The far-field velocity of phagesl-{oo) is taken to be
zero, and the far-field pressure in phas@2.., is used as a known reference pressure.

In this example, the velocities are solely determined by mass conservation and are the same in Cases |, II, anc
lll. In the moving coordinate system, the mixture continuity equation,(E), which is valid even for unequal

b b e

i, = 0 phase 1

Fig. 11. Schematic illustration of the system used in the analysis of normal flow due to phase-change in the presence of a density difference
between the phases.
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Fig. 12. Velocity profiles for one-dimensional flow normal to a diffuse interface due to phase-change with a density patib0of

phase velocities, becomes

3 (o - v =0 51)

ol — V)] =

dx P i
which can be integrated to yield

L=V, (p—_l—l). (52)

0

The continuity equations for each phase, @d), become

orir - vl = 1y 9)
d _
a[ﬂz(ﬁz(uz — Vi)l = I (54)
For constanp; andp2, and using the definition faF1 and Eq.(15), Egs.(53) and (54can be integrated to yield
i1=0 and uz=—V (ﬂ_1>. (55)
02

Hence, the individual phase velocities are constant. It can be easily verified th&blEgnd the definition of the
mixture velocityu = (o1¢1u1 + p2¢2u2)/(p191 + p2¢2), lead to Eq(52). It can also be shown that the interfacial
velocities due to phase change are givemby = u1 andus = u». Fig. 12shows the variation of the velocities
across the diffuse interface for a density rajje p1/p2 of 10. Note that the mixture velocity profile is not symmetric
with respect tap = 0.5.

8.2.1. Casell
For Case |, th&-momentum equations for each phase reduce to
¢d_171=_f£ [d_¢ nip2p 172} 12 ¢(1—¢)h5172_0¢(1_¢)£ (d_5>
dx 3dx [ dx na(1—¢) + du2 p1(l— @) + du2 $ dx \ d¢

(56)
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dpz 4d[dp pipa(l—9) — H1je2 $(1— ¢)h5 ds
1-¢)22 - 22|22 - 1-¢)— (=
( ¢) 3dx [dx pni(l—¢)+ ¢>M2u2] p1(l— @) + du2 8 2+ o¢(1=¢) <<(15¢7))

Since the velocity:, is known, Eqs(56) and (57are easily integrated to obtain the variation of the phase pressures
across the diffuse interface. Calculations are performed for an interfacial Reynolds nRewbgsV;d/ 2, of 1073
and an interfacial Weber numbéve = pzviza/a, of 10°. These two parameters arise from non-dimensionalizing
Egs.(56) and (57)Fig. 15shows the computed profiles of the dimensionless mixture pressure, defipéd=as
(p — p2.00)/(0/8), together with the phase-field in the upper panels, and of the dimensionless pressures of each
phase, defined gs; = (p1 — p2,00)/(0/8) and p3 = (p2 — p2,0)/(0/8), in the lower panels. Pressure profiles are
provided for density ratios,,, of 1, 30, and 100 with a viscosity ratio of =1 in Fig. 131, and forr,, =1, 30, and
100 withr, =100 inFig. 13b.

Applying the interfacial momentum jump condition, i.e., the second of(Eg), to the present example, the
difference between the far-field pressures on either side of the interface is given by

Ploo — P2.0o = Vi2p1 (% - 1) . (58)

This pressure difference is often referred to as the “vapor recoil” effect in a liquid—vapor system. It can be verified
from Fig. 13that the calculated pressures in Case | follow(58). Increasing , results in a larger far-field pressure
difference, whereas increasing has no effect on this difference. The pressure profiles ferl (i.e., no flow) in

Fig. 13 are the same as thosefiiys. 5a and Blaand the mixture pressupé shows the hump inside the diffuse
interface that is a manifestation of the capillary stress. Increagifgig. 13a) orr,, (Fig. 1) both increases the
magnitude of the hump, indicating that in the presence of a normal flow a hump would be present even in the absence
of surface tension. Note that the pressures of each ppagewer panels irFig. 13, reach well-defined values as

the phase fractiopy vanishes. The difference between the phase pressures at a given location changes with both
r, andr,,.

8.2.2. Casell
In Case Il, the momentum equation for phase 2 reduces to
dpz 4 p2phS ds
(1= 2 = nag g7l - 0l - 255 o - a1 (5 ). 59

Note that Eq(59) can be obtained from E@57) of Case | in the limit ofu; — oo, sinceu; = 0 in both cases
for this example. With«; known, Eq.(59) is easily integrated to obtain the profile across the diffuse interface.
Results in terms of the dimensionless pressuy¢defined as in Case I) are shownkhig. 14for three different
density ratios. For, =1, i.e., in the absence of flow, the variation;gfis identical to the one shown in Fig. Bla.
In the presence of flow (=30 and 100)p5; decreases almost linearly @s=1— ¢ approaches zero. This linear
decrease indicates that the interfacial drag term, i.e., the second term on the right-hand sid&®f Bgcomes
dominant ag, — 0. Since the drag is linearly proportional to the velocity, apés constant in the present example,
the pressure gradient is constant arjdiecreases linearly. Physically; has little meaning ag> — O (i.e., inside
phase 1) and Eq59) becomes trivial. To avoid numerical difficulties when solving Exf) with p3 approaching
infinitely small values ag», — 0, a small “cutoff” value (say 1) should be used fap,.

8.2.3. Casellll
The mixture momentum equation for Case Il can be expressed in the moving coordinate system as:

dp 4d <_du ds do

—[P(M—V)bﬂ— T3 Mo —U%a- (60)
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Fig. 13. Calculated pressure profiles for Case | for flow normal to a diffuse interface as illustri&igdin (a)r, =1, 30, and 100 and, =1,
and (b)r, =1, 30, and 100 ang, = 100 Re=10"3 andWe=10"5).

Substituting Eq(52) for the mixture velocity and integrating yields the following analytical solution for the mixture
pressure variation

- _ 4_ d o
P — P2.co = Vip1 (% - %) + gV %(Pl - pz)ad) — 59— 9). (61)

It can be seen that E¢61), when evaluated at =1, reduces to Eq58) for the “vapor recoil” pressure difference,
since the last two terms in E¢61) vanish in the bulk phases. Rewriting 1) in terms of the dimensionless
mixture pressurg* = (p — p2.o0)/(0/8) reveals thap” is a function ofr,, r,, Rg andWe as in Case .

Fig. 15shows the calculated mixture pressure profiles for the same parameter rangé&sgad 8for Case |.
Hence Fig. 15can be compared directly to the upper panelBigf 13 Although the two models corresponding to
Cases | and Il give the same results for the far-field pressure difference, the mixture pressures inside the diffuse
interface vary in a somewhat different fashion. With increasjritne mixture pressure profile in Case IHig. 15)
develops a “double hump”, and the depths of the humps do not vary appreciably,withe “double hump”



304

Y. Sun, C. Beckermann / Physica D 198 (2004) 281-308

/ / ‘z/
St g .
o AR o 0.8
L L r =l
-10F , | _ .‘_20
p \ L=V H06
. K ([ 1,=100 =
p, -15F / i‘| f;
, ; Ho4 2
20F i £
,f H (=%
’ i o2
asf \ 02
\A
= \\
-30 ~ o
1 1 1
20 -10 0 10 20
phase 1 xI6 phase2

Fig. 14. Calculated pressure profiles for Case Il for flow normal to a diffuse interface as illustrated in Fig=11:30, and 100Re= 1073
andWe=105).

disappears again with increasing (Fig. 15). The appearance of the “double hump” in Case Ill can be attributed
to the asymmetric nature of the mixture velocity profile across the diffuse interface, as shéwn 12 Recall

that Case lll is equivalent to the thermodynamically derived model in[R2f, and other choices for the mixture
density and viscosity variationg, and ., inside the diffuse interface would result in different mixture pressure
profiles. Hence, the physical significance of the “double hump#ign 15is not entirely clear. Also note that for
increasingr ,, the mixture pressure profile in Case Ill extends increasingly into phaB&21&a), which again

can be attributed to the asymmetric nature of the mixture velocity profile. In fact fot00, the minimum in the
second hump occurs at approximately 0.01, which can be regarded as being outside of the diffuse interface. In
contrast, for Case | the width of the mixture pressure hump does not changg aitll the hump is well confined
within the diffuse interfaceRig. 13a). As with the velocity profile in the first example (Secti®ni.3, the strong
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Fig. 15. Calculated pressure profiles for Case llI for flow normal to a diffuse interface as illustrated in Figr} % 1aB0, and 100 and, =1,
and (b)r, =1, 30, and 100 and, = 100 Re=10"3 andWe=10"5).
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dependence of the pressure profile on the interface width and on the mixture property variadiomg, creates a
large ambiguity in Case llI.

9. Conclusions

Adiffuse interface model for two-phase flows with phase-change and surface tension is derived using an ensemble
averaging approach. The derivations start from well-established local sharp interface balances and the diffuse
interface is viewed as a superposition of microscopic (atomic-scale) and macroscopic (averaged) morphologies.
The present model assumes that the two phases coexist inside the diffuse interface and have different velocities
and pressures. Interactions between the phases and interfacial sources, including the capillary stress, are modele
explicitly.

The present model is tested for two simple one-dimensional two-phase flows. In each case, the results are
compared to those from a simplified mixture version, where the velocities of the phases inside the diffuse interface
are assumed equal, that is equivalent to a thermodynamically derived fhafi¢turthermore, the special case of
one phase being rigid and stationary is examined by either letting its viscosity approach [@flhity setting its
velocity to zero and not solving any equations for that pjakdt is shown that the present two-phase approach
gives results that are generally independent of the diffuse interface width, such that the variation of the velocity and
pressure outside of the diffuse interface does not depend on the variation of the variables inside of it. This property is
of great advantage in large-scale simulations of two-phase fRjwisecause it allows computations to be performed
for arbitrarily large diffuse interface widths (as long as the width is smaller than the average radius of curvature to
be resolved). The mixture approach, although somewhat simpler and also equivalent to thermodynamically derived
models, does not possess this property. In both approaches, however, the depth of the pressure hump that is induce
by the capillary stress is inversely proportional to the diffuse interface width. Hence, in order to resolve flows at
the scale of the diffuse interface, e.g., breakup or merging of interfaces, its width must be chosen in a physically
realistic way, as expected.

To complete the theory for two-phase flows, an evolution equation for the phase-field variabieeded for
non-equilibrium situations. Such a phase-field equation is derived ifRebising the same two-phase averaging
approach, for the case of solidification. A generalization to the kind of two-phase flows considered here will be
presented in a forthcoming publicatif2B].
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Appendix A. Limiting cases for the average shear stress

The general expression for the average shear stress given 3t examined further by applying it to the
limiting cases discussed in Sectidmand illustrated ir-ig. 1 In the limit of Case Il, applying E(:35) to the fluid,
phase 2, only and setting = 0 yields

h2T2 = 2 [V(¢>2z72) + V(pouz)" — %V : (¢>2172)I} , forCasell (A.1)

Eq. (A.1) is identical to the expression usually employed in flow through porous nj2djawhere the average
viscous stress is taken to be proportional to the gradient of the superficial vefeaity Substituting the continuity
equation, assuming constant density and viscosity, and taking the divergence(afBgesults inV - (¢2712) =
w2(V3(pou) + 1/3V[1(1/p2 — 1/p1)]) for Case Il. This illustrates that the average viscous stress contains a
contribution due to flows that arise in the presence of phase-change and a density difference between the phases.
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Applying Eq.(35)to Case lll @1 = u» = u), the average viscous stress of the mixture is given by:
_ _ _ —f— _ 2
T=P111+ P2t =1 (Vu +Vu' — §(V . 17)1) , forCaselll (A.2)

wherew = ¢1u1 + ¢ou2. The term—2/3(V - u)I accounts for the compressibility of the mixture inside the diffuse
interface forp; # p2 (see Eq(16)). Eq.(A.2) is identical to the constitutive relation for the viscous stress used in
the thermodynamically derived model of Anderson efE2]. Although the expressiop = ¢1u1 + ¢ou2 for the
mixture viscosity arises naturally in the present derivations, it should be kept in mind tlzatd > are actually
effective viscosities (see E€B1)) that could depend on the phase fractigns If one chooses a more complex
model for the effective viscosities, a different relation fowould result.

Returning to Case iy # uy), but considering the limit where phase 1 is a solid that is modeled as a fluid with
a large viscosity, i.ew1 > u2, EqQ.(35)for phase 1 reduces to

_ _ _- 2 — .
P1T1 = 11 (Vul + VuI — é(v . ul)I) , forCaselwithuy > uo. (A.3)

Then, withuy very large and finite, Eq.(A.3) indicates that in this limit the gradients@f will vanish and phase

1 will be like a rigid body. This would not be the caserif were proportional to the gradient of the superficial
velocity, ¢1u1, in this limit, because; varies inside the diffuse interface. Rot > u2 Eq.(35)for phase 2 reduces
to Eq.(A.1), which was originally obtained by assuming = 0.

Appendix B. Variation of the pressures across the diffuse interface due to surface tension

The expression for the interfacial force density due to curvature variations in the presence of surface tension
given by Eq.(40) is examined in this appendix for macroscopically planar and spherical interfaces in the absence
of flow and gravity. Under these assumptions, the variation of the pressures of the two phasek;,, across the
diffuse interface can be obtained frahV p1 = M7 and$,V p2 = M3, respectively. Results are showrFig. B1
for the choicea=b=1 andS =1/ in Eq. (8). The dimensionless phase pressures plottdeignB1 are defined
asp; = (p1— p2,00)/(0/8) and p5 = (p2 — p2,00)/(0/8), wherep, , is again a reference pressure far from the
interface in phase 2. The non-dimensional mixture pressure variations shbignBia and b are identical to those
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Fig. B1. Phase and mixture pressure variations inside (a) planar and (b) spheric&/§witt0) interfaces in equilibrium.
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in Fig. 5a and b, respectively. The difference between the pressures of each phasg,, at the same location is

due to the combined effects of the average curvaty@md the microscopic curvature of the atomic structures inside
the diffuse interface,fd¢, according tgp; — p2 = o(k — dS/d¢). For a planar diffuse interface & 0; Fig. Bla),

the difference between the pressures of each phase is solely due to microscopic curvatures and varies according tc
p1— p2 = —o dS/dp = —a/8(1 — 2¢). In order to maintain this difference, the pressure of one phase mustincrease
and the pressure of the other phase must decrease across the interface, while the mixturepressure+ ¢ p2,

varies as already explained in connection VHit). 5. At ¢ = 0.5 the difference between the phase pressures vanishes
because the microscopic curvature changes its sign (i.e., it is locally planar) as explained in Se&tigr= 0

and¢ = 1 the pressure difference between the phases for a planar interface is egual @ = F0/6, which is a
physically meaningful and well-defined value. For a spherical diffuse interfageB1b, the phase pressures vary

in a similar manner except that the pressure difference is given by p» = o[2/R — (1 — 2¢)/$].

Appendix C. Variation of the pressures across the diffuse interface due to interfacial drag

The interfacial drag model given by E@3) can be better understood by considering a simple one-dimensional
flow across a diffuse interface (in tiedirection) where the relative velocityy — u; = (ux — u;) - n, is assumed
constant and the inertia, viscous shear stress, and gravitational terms are all neglected. Then, the momentum equatiol
for phasek reduces to

d)kd_ﬁk _ KKy drpihS
dn Widj + Pk 8

Using Eq.(8)for Switha=b=1 andS = 1/5, the above equation can be integrated to obtain the following expression
for the variation of the dimensionless pressure of phagg lredefined fronFig. B1), across the diffuse interface

P1— Ploo P193h d (ﬁ)

Gk — i1)). (C.1)

: (C.2)

L= G —io) ) b1+ dora

where the viscosity ratio is defineds= 111/12. This pressure is plotted Fig. C1for viscosity ratios of 1, 10, and
1000. Because of the drag between the two phases, the pressure of phase 1 decreases in the direction of the flow fron

dimensionless pressure of phase 1
phase-field, ¢

-1.5F |
-6 4 R
phase 1 nilé phase2

Fig. C1. Variation of the dimensionless pressure of phase 1 given bfC’EY)across the diffuse interface for viscosity ratios of 1, 10, and 1000.
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phase 1 towards phase 2 (i.e.3 & u2) > 0). The majority of the pressure drop occursdoer ¢1 < 0.5. This can be
explained by the fact that the drag experienced by phase 1 increases with increasing volume fraction of phase 2. |
one views the diffuse interface as a porous medium in the limibet 0, the increasing drag can be visualized as
being caused by the permeability decreasing with increasing volume fraction of the porous matrix (phase 2). More
generally, Eq(C.1)can be thought of as a modified Darcy’s law (in 1D) for the relative flow of two viscous fluids.
Such a law could find use in numerous applications other than diffuse interface mo&&ing.l also indicates

that the total pressure drop across the diffuse interface decreases with increasing viscosity ratio. Since the pressul
is non-dimensionalized with1, increasing the viscosity ratio should be viewed as decreasinghile keepingu1

constant. The pressure drop in phase 1 decreases with decreabigause the “matrix” (i.e., phase 2) deforms more
easily. In the limit ofr , — oo, phase 2 can offer no resistance to the flow and the pressure drop in phase 1 vanishes.
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