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AbstractÐTwo-dimensional Ostwald ripening of an Al±4% Cu alloy solid/liquid mush in the presence of
melt convection, and the in¯uence of ripening on the ¯ow, is studied numerically using a recent extension
of the phase-®eld method that accounts for ¯ow in the liquid phase. Through a parametric study, the
ripening kinetics are investigated and compared for cases with and without melt convection. The cases
without convection show good agreement with available coarsening theories for a ®nite fraction of solid.
In the cases with ¯ow the mean radius of the solid particles increases at a faster rate than without convec-
tion. The ripening exponent changes from 1/3 to 1/2, while the rate constant depends on the fraction of
solid. Comparisons are made with the convective ripening theory of Ratke and Thieringer. Although the
present analysis of coarsening is hampered by the limited number of particles in the domain, some qualitat-
ive results are presented for the e�ect of convection on the particle radius distribution. Finally, the present
simulations allow for a determination of the permeability of the mush as a function of the fraction of
solid, and the dependence of the permeability on the ripening kinetics is shown to be scalable using the
speci®c surface area or the mean radius. # 1999 Acta Metallurgica Inc. Published by Elsevier Science Ltd.
All rights reserved.
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1. INTRODUCTION

One of the most challenging problems in modeling

of solidi®cation of metal alloys is the mutual inter-
action between physical phenomena occurring on
di�erent length scales. In particular, the macro-

scopic transport processes in a solid/liquid mushy
zone are closely coupled to the evolution of the
solid morphology on a microscopic scale. Several
methods allow for the incorporation of a variety of

microscale phenomena in the macroscopic transport
equations [1±4]. In any of these methods, a key fac-
tor in determining the extent of macroscale solute

and heat transport is the modeling of convection in
the mushy zone. Interdendritic melt ¯ow is like a
¯ow through a porous medium, and the per-

meability P of the mush, as de®ned in Darcy's law

U � ÿPrp
Z

�1�

is often used to correlate the mean or super®cial
velocity U through a mush volume with the press-
ure gradient Hp and the dynamic viscosity Z. The

permeability generally depends on the size and geo-
metry of the microscopic ¯ow channels formed by

the growing solid, and may be anisotropic [5±9].

The channel geometry is often characterized by the

speci®c surface area SV (=solid/liquid interfacial

area per volume of solid) or the hydraulic radius

Rh. For a given fraction of liquid fl in a representa-

tive mush volume, the permeability can vary

strongly due to changes in the morphology of the

microstructure. Once the initial microstructure is

established, Ostwald ripening [10] is the main mech-

anism by which such changes in the morphology

can occur. Ripening (or coarsening) generally

causes the speci®c surface area to decrease with

time, and hence the permeability to increase. It is

important to realize that Ostwald ripening can be

in¯uenced by convection in the mush. In other

words, the morphology of the mush not only gov-

erns the ¯ow, but the ¯ow also in¯uences the evol-

ution of the morphology. This interplay between

¯ow and Ostwald ripening in a mush is the subject

of the present study.

Models for the permeability of a mush are often

based on the Blake±Kozeny equation, where the

hydraulic radius is correlated to the primary or sec-

ondary dendrite arm spacings. Theoretical studies

have relied on analytical solutions describing the

¯ow of a viscous ¯uid through regular arrays of

cylinders to deduce the permeability [11, 12].
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Numerical simulations of ¯ow through arrays of
cruciforms have also been used to establish models

for the permeability of a mush [13]. These
approaches still need calibration through exper-
imental data, which are not available for small and

high liquid volume fractions [8, 9]. In these regimes
experimental methods fail due to the fragility of the
dendrites or ripening e�ects. In order to escape this

dilemma, Bhat et al. [8] have simulated directly the
¯ow through a microstructure in two dimensions,
where the solid geometry was taken from digitized

images of a real mush. All previous studies take the
solid morphology to be ®xed and do not consider
interactions between the ¯ow and the evolving
microstructure.

The ripening e�ect was ®rst described in 1900 by
Ostwald [10]. It is the main mechanism by which
the higher order dendrite arms adjust their spacing

in a solidifying mush. Ripening occurs near thermo-
dynamic equilibrium through a reduction in the sur-
face free energy. The di�erent curvature

undercoolings of the various sized particles in a
mush lead to concentration gradients (in an alloy)
in the melt, causing the particles to exchange solute

such that the larger particles grow at the expense of
the smaller ones. The ®rst quantitative analysis of
ripening in the limit of purely di�usive transport
and a vanishing volume fraction of solid was pro-

vided by Lifshitz, Slyozov and Wagner (LSW) [14,
15]. This theory shows that the particle radii
achieve a stationary, self-similar distribution and

that the mean radius, R, grows with time, t, accord-
ing to

R3 ÿ R3
0 � Kdifft �2�

or in the long-time limit

R � �Kdiff t�1=3 �3�

where R0 is the initial mean radius and Kdi� is the

di�usion ripening rate constant. Similarly, the
speci®c surface area can be shown to decrease with
the cube root of time [16]. Several extensions of this

theory have been proposed to take into account the
e�ect of a ®nite volume fraction of the dispersed
phase, di�erent dimensionalities of the ripening sys-
tem, and coupled thermal and solutal transport [17,

18]. In general, these extensions again lead to a self-
similar radius distribution and a ripening exponent
of 1/3, but there are di�erences in the radius distri-

bution functions and the rate constants (for two-
dimensional results see Refs [19±21]). Experiments
have con®rmed the general ripening laws in terms

of self-similarity and the ripening exponent.
However, present theories are unable to account for
the transient behavior of a ripening system or co-

alescence of particles which can occur at higher
volume fractions of the dispersed phase [17].
Several studies have been performed to investi-

gate the e�ect of relative movement between the

solid particles and the melt on ripening. A theoreti-

cal analysis of ripening in the presence of moving
particles was ®rst presented by Ratke and
Thieringer [22]. Particle motion leads not only to

changes in the radius distribution, but also in the
ripening exponent (it changes from 1/3 to 1/2). This
tendency has been veri®ed in experiments [23].

Ripening dominated by convection has also been
studied by Akaiwa et al. [24] and Wan and Sahm

[25].
Recently, a number of numerical simulation

methods have been developed to investigate ripen-

ing problems [21, 26, 27]. For example, KuÈ pper and
Masbaum [27] solve numerically the Cahn±Hilliard
equation. While such simulations show much prom-

ise in analyzing more complex ripening systems,
they often employ simplifying assumptions. To our

best knowledge, all previous numerical simulations
of ripening are limited to purely di�usive transport
of heat or species.

The present study of coupled ripening and melt
¯ow in a binary alloy mush is based on numerical
simulations employing the phase-®eld method. This

model has a broad theoretical basis and can be de-
rived starting with a free energy functional of the

Ginzburg±Landau type that includes not only phase
related free energies, but also interfacial contri-
butions. Langer [28] ®rst applied the phase-®eld

method to solidi®cation problems. Kobayashi con-
tributed much to the popularity of the phase-®eld
method by simulating the growth of thermal den-

drites [29]. Several studies have since improved the
theoretical foundation [30] and accuracy [31] of the

method. Recent applications include solidi®cation
of alloys [32, 33] and other multiphase, multicom-
ponent systems [34]. In the phase-®eld method, an

order parameter (or phase indicator function) f is
introduced that varies smoothly from one constant
value in the solid phase (i.e. 0) to another constant

value in the liquid phase (i.e. 1) across a thin, but
®nite and numerically resolvable layer representing
the solid±liquid interface. The phase-®eld equation

is used to propagate f in space and time. The
phase-®eld method completely avoids the explicit

calculation of interface normals and curvatures,
which are needed in alternative methods that are
based on front-tracking together with explicit satis-

faction of the Gibbs±Thomson condition at the
solid±liquid interface. The present authors have
recently extended the phase-®eld method to include

convection in the liquid phase [35, 36]. The only ap-
plication of the phase-®eld method to ripening

reported in the literature is the study of Warren
and Murray [37] for a binary alloy in two dimen-
sions. While their study demonstrates the potential

of the phase-®eld method in simulating Ostwald
ripening, it is limited to purely di�usive solute
transport and no results are reported for the long-

time, stationary ripening behavior, preventing a
detailed comparison with available theories.
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In the following we provide a brief overview of
the governing equations and numerical solution

procedures employed in the present study. Then,
detailed numerical results are presented for two-
dimensional ripening of a solid±liquid mixture (or

mush) of a solidifying Al±Cu alloy both under dif-
fusive and convective conditions. The ripening
results without and with convection are compared

with existing mean-®eld theories. Finally, we present
results for the e�ect of ripening on the permeability
of the mush, and compare them with other avail-

able data.

2. GOVERNING TRANSPORT EQUATIONS

A detailed derivation of the present phase-®eld
model with melt convection is published elsewhere

[35, 36], and only a brief summary is provided here.
The governing transport equations consist of the
evolution equation for the phase ®eld, the species

conservation equation, and the mass and momen-
tum conservation equations. These equations are
part of a more general phase-®eld model that can

be used to predict a variety of solidi®cation micro-
structures [36]. The energy equation is speci®c to
the system considered here and is presented in the
next section.

The phase distribution is described by the order
parameter f, which changes smoothly from f � 0
in the liquid to f � 1 in the solid across a di�use

interface layer of thickness 6d. We assume a
stationary front pro®le of the form f�x� �
1=2�1ÿ tanh�x=2d�� across the di�use interface. This

pro®le is transported by the Gibbs±Thomson con-
dition at the interface T � Tm �mlCl ÿ Gkÿ v=m,
where T is the temperature, Tm is the melting point
of the pure substance, Cl is the concentration in the

liquid, ml is the liquidus slope from the equilibrium
phase diagram, k is the curvature of the liquid/solid
interface, G � s=DSf is the Gibbs±Thomson coe�-

cient given by the ratio of the surface tension s to
the entropy of fusion DSf, v is the normal interface
velocity, and m is the linear kinetic coe�cient.

The resulting phase-®eld equation is given by [35,
36]

@f
@ t
� mG

�
r2fÿ f�1ÿ f��1ÿ 2f�

d2

�
� m

d
f�1ÿ f��Tÿ Tm ÿmlCl �:

�4�

The species conservation equation is written in
terms of a mixture concentration C de®ned as
C � �1ÿ f�Cl � fCs, where Cs is the concentration

in the solid. Assuming equilibrium partitioning
inside the di�use interface layer, i.e. Cs � kCl

(where k is the partition coe�cient), the solute bal-
ance is given by [35, 36]

@C

@ t
� r �

�
1ÿ f

1ÿ f� kf
vlC

�

� r � ~D

�
rC� �1ÿ k�C

1ÿ f� kf
rf

�

with ~D � �1ÿ f�Dl � kfDs

1ÿ f� kf

�5�

where Ds and Dl are the mass di�usivities in the
solid and liquid, respectively, and vl is the intrinsic
velocity of the liquid. The second term on the left-

hand side of equation (5) accounts for the advective
¯ux of species in the liquid, while the right-hand
side includes the species ¯uxes due to di�usion and

interfacial segregation. The above species conserva-
tion equation is valid in the entire domain regard-
less of the phase present, and it can easily be seen

that it reduces to the correct forms in the single-
phase liquid (f � 0) and solid (f � 1) regions.
The mass and momentum conservation

equations, assuming equal densities, r, of the solid
and liquid phases and a stationary rigid solid, are
given by [35, 36]

r � �1ÿ f�vl � 0 �6�

@

@ t

��1ÿ f�vl

�� r � �vl�1ÿ f�vl

�
� ÿ1

r
�1ÿ f�rpl � n � r2

��1ÿ f�vl

�
ÿ h

nf2�1ÿ f�
d2

vl �7�

where pl is the pressure and n is the kinematic vis-
cosity of the liquid. The above equations are valid
in the single-phase liquid and the di�use interface
region; in the solid, the solution of the momentum

equation is vl � 0. The last term in equation (7) is
an interfacial stress, which gradually forces the vel-
ocity to zero as the fully solid region is approached.

The constant h is chosen such that for plane ¯ow
past the interface the velocity pro®le outside the
smeared interface matches the one for a sharp inter-

face with a no-slip condition at f � 0:5. A value of
h � 2:757 was determined from an asymptotic
analysis [36], and was shown to be independent of

the di�use interface thickness.

3. SIMULATION CONDITIONS AND SOLUTION
PROCEDURES

We consider ripening of a solid/liquid mixture of
an Al±Cu alloy of concentration C0 � 4 wt% inside

a two-dimensional, square domain of size
L� L � 0:9� 0:9 mm2. The domain can be thought
of as a representative cross sectional area element

of a mushy zone. Initially, spherical solid particles
exist randomly in the liquid. The initial volume
fraction of solid in the domain is varied. The par-
ticles are ®xed in space and their initial size distri-
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bution is set according to the two-dimensional coar-
sening theory of Marqusee [20]. The thermophysical
properties of the Al±4 wt% Cu alloy are summar-

ized in Table 1. Note that the mass di�usivities Dl

and Ds di�er by approximately four orders of mag-
nitude.

The domain is assumed to be isothermal, which
can be justi®ed by the large ratio of the thermal to
the mass di�usivity. Since we are primarily inter-

ested in ripening (as opposed to solidi®cation), the
system is taken to be adiabatic, such that the fol-
lowing energy balance holds:

rcp _T � L _f s � Lh _f i �8�

where the dot denotes a derivative with respect to
time, rcp is the solid/liquid mixture heat capaci-

tance, L is the latent heat, fs � 1ÿ fl is the solid
volume fraction in the domain, and h _f i is the aver-
age rate of change of the phase-®eld variable over
the entire domain. Note that the temperature in the

system adjusts only due to changes in the mean cur-
vature of the particles, according to the Gibbs±
Thomson condition. These adjustments are very

small, resulting in an approximately constant solid
fraction. Nonetheless, for consistency we did solve
the above energy balance in conjunction with the

transport equations of the previous section.
Since the primary solidi®cation process is not

simulated, the initial temperature, liquid velocities,

and concentration distributions in the solid and
liquid phases have to be speci®ed. For this purpose,
a certain initial solid fraction, fs, is ®rst chosen for
the domain. Then, the initial concentration in the

liquid is assumed to be uniform and given by the
Scheil equation, i.e.

Cl � C0

�1ÿ fs �1ÿk
: �9�

The initial temperature is taken to be the equili-
brium liquidus temperature corresponding to the in-
itial liquid concentration from the Scheil equation.

The initial radial concentration pro®les in the

spherical solid particles were also calculated from
the Scheil equation by varying the solid fraction
from zero to the initial solid fraction. This results in

an initial spatially nonuniform concentration distri-
bution in the solid particles that is independent of
the solidi®cation path. Since the ¯ow develops

quickly relative to the total ripening time simulated,
the initial velocity was simply set to zero.

The boundary conditions are as follows. The ¯ow
is driven by a constant pressure drop Dp imposed at
the north±south boundaries, such that the ¯ow is

from the top to the bottom of the domain. The con-
centration and phase-®eld variables are assumed to
have a zero gradient at the east and west bound-

aries. Periodic boundary conditions are applied for
all dependent variables at the north and south

boundaries.
Numerical solutions to the transport equations

were obtained using a standard control volume dis-

cretization scheme, with explicit time stepping for
the phase-®eld equation and an implicit scheme for
C, vl, and pl. The momentum equation was discre-

tized on a staggered grid and the velocity±pressure
coupling was achieved using the Simple algorithm

[40]. The simulations were performed on a 301�
301 uniform grid and for a su�ciently long time to
achieve self-similar ripening behavior and until the

number of particles became too small to allow for
an analysis of the mean ripening behavior. The
interface thickness parameter d was chosen to be of

the order of the grid size, but small compared to
the average radii of the particles (see Table 1). In

this case, and for motion mainly driven by the
mean curvature, the solution of the phase-®eld
equation was found to be independent of the inter-

face thickness. For numerical reasons the interface
mobility m was chosen arti®cially small (see Table
1). In view of the extremely small interface vel-

ocities present during ripening, it can be understood
that this choice had no e�ect on the computed
results.

A stringent test problem for the present model
(without phase change) is given by Stokes ¯ow

through regular arrays of in®nite cylinders as
shown in Fig. 1. Unit cells containing both square
and triangular arrangements are considered.

Analytical expressions for the drag force on the
cylinders as a function of the solid fraction, fs, in

the unit cell have been obtained by Sangani and
Acrivos [11] and Drummond and Tahir [12]. The
distribution of the phase-®eld variable f was set

before a computational run using a radially sym-
metric tangent hyperbolic pro®le to a�ect the
smearing of the (stationary) solid/liquid interface.

This is illustrated by the variation of gray tones in
Fig. 1. A square grid of 51� 51 control volumes
was utilized in the simulations for the square array,

and 52� 45 for the triangular array. The interface
thickness corresponded to about ®ve control

Table 1. Thermophysical properties of Al±4 wt% Cu alloy used in
the simulations [38, 39]; for practical reasons the value of d was
chosen to be approximately equal to the length of one grid cellÐ
the actual interface thickness, 6dact., is of the order of 10ÿ9 m; the
actual kinetic coe�cient, mact:

k , is approximately 0.33 m/s KÐthe
value in the table was obtained by multiplying mact:

k by the ratio
dact./d

Property Value

Tm 933.6 K
ml 2.6 K/%
G 2:41� 10ÿ7 mK
Dl 3� 10ÿ9 m2=s
Ds 3� 10ÿ13 m2=s
k 0.14
L 9:5� 108 J=m3

rcp 2:58� 106 J=K m3

r 2:475� 103 kg=m3

Z 0.014 poise
6d 1:27� 10ÿ5 m
m 2:6� 10ÿ5 m=s K
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volumes. The numerical results, together with the

analytical predictions, are plotted in Fig. 2. The

mean liquid velocity through the unit cell is normal-

ized by the pressure drop per unit width (drag

force) and 4pZ. It can be seen that the numerical

results are generally in excellent agreement with the

exact Stokes ¯ow solutions. Minor deviations are

present for small solid fractions, which can be

attributed to the relatively coarse numerical grid

used. For the smallest volume fraction, the diameter

of the cylinders (measured at f � 0:5) contains only
six grid cells, implying that the di�use interface

thickness is of the same magnitude as the cylinder

diameter. Nonetheless, remarkably accurate results

are obtained. For the square array [Fig. 2(a)], large
di�erences in the predictions occur for solid frac-

tions greater than about 0.5. This can be attributed
to the fact that the analytical solutions break down
in this regime. The present numerical method cor-

rectly predicts the mean velocity approaching zero
when the packing fraction is reached. No such dis-
agreement exists for the triangular array [Fig. 2(b)].

The computational results at high solid fractions,
when the di�use interfaces from neighboring cylin-
ders almost overlap, show that the present model

has excellent convergence properties for large inter-
face thickness to ¯ow passage width ratios.
Table 2 summarizes the conditions for the simu-

lations of ripening, the results of which are pre-

sented and discussed in the following. Cases A, B,
C, and D correspond to (initial) solid volume frac-
tions of 5.9, 11.6, 20.7, and 29.2%, respectively.

Simulations were performed for each of these cases
with and without convection. For the convection
cases, the applied pressure drops Dp are also listed

in Table 2. Since the permeability decreases with
increasing solid fraction, the pressure drop was
increased from Case A to Case D in order to obtain

mean ¯ow velocities of a similar magnitude. For
Case B, three convection simulations with di�erent
pressure drops (B1, B2, and B3) are reported in
order to investigate the dependence of the ripening

kinetics on the ¯ow velocity for the same solid frac-
tion.

4. RIPENING IN A DIFFUSIVE ENVIRONMENT

Figure 3 shows the evolution of the phase ®eld
for Cases A±D without convection, starting from
the initial distribution up to t � 5000 s. It can be
seen that for all cases the number of particles

decreases strongly, while the particle size increases
(i.e. the solid fraction is approximately constant).
For the two higher solid fractions, coalescence pro-

cesses can be occasionally observed. In that case,
the shape of the particles becomes highly non-
spherical. Otherwise, especially at the lower solid

fractions, the particles retain an almost spherical
shape at all times.
An example of the evolution of the computed

solute concentration ®eld is shown in Fig. 4 for

Case C. In order to better visualize the concen-
tration gradients, di�erent gray scales are used for
the solid and the liquid phases. The solid/liquid

interface is indicated as a solid line. The results
without convection are shown in the upper panels
[Figs 4(a)±(d)]. The concentration gradients in the

liquid are considerably lower than in the solid
because of the large disparity in the di�usion coe�-
cients. In fact, the di�usion in the solid is so slow

that the concentration distribution in the solid can
be regarded as a history of the interfacial curvature
evolution according to the Gibbs±Thomson con-
dition. The concentration gradients in the liquid are

Fig. 1. Unit cells and sample computed velocities for the
simulation of ¯ow through regular arrays of in®nite cylin-
ders; the ¯ow is periodic in the east±west direction and the
phase-®eld distribution is indicated by the gray levels: (a)

square array; (b) triangular array.
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generally the highest around the smallest particles,

since they have the largest curvature and therefore

the highest melting rate. High concentrations are

present in the regions where two particles coalesce.

This is caused, according to the Gibbs±Thomson

condition, by the negative curvatures corresponding

to the concave shape of the solid/liquid interface in

the coalescence region. At later times, regions of

high solute concentration due to coalescence can be

observed inside a number of the larger particles.

Figure 5(a) shows the evolution of the mean

radius for Case C (fs � 20:7%). The corresponding

plots for Cases A, B, and D are similar and not

included here. The procedure used to evaluate the

mean radius from the computed phase-®eld distri-

butions is explained in Ref. [41]. It can be seen that

after some time, the slope of the mean radius evol-

ution for di�usion-controlled ripening approaches a

value of 1/3 on the log±log plot. This is in agree-

ment with the classical ripening exponent of 1/3 in

equations (2) and (3). The ¯uctuations in the mean

radius evolution apparent in Fig. 5(a) are due to

particles disappearing and coalescing, and cannot

be avoided with the limited number of particles

employed in the present simulations. The ¯uctu-

ations become stronger with time, because the par-

ticle number decreases continually (see Fig. 3). The

same problem exists when plotting the normalized

radius distribution, as shown in Fig. 5(b) for Case

C at 2000 s. The method used for evaluating the

radius distribution is also explained in Ref. [41].

For easy reference, the initial distribution and the

distribution according to LSW theory (as well as

the ¯ow results; see below) are included in Fig.

5(b). It can be seen that the distribution for the

purely di�usive case remains fairly close to the in-

itial distribution, which was taken to be the asymp-

totic distribution from the two-dimensional ripening

theory (without ¯ow) of Marqusee [20]. The maxi-

mum of the computed distribution appears to shift

toward smaller radii and a relatively long tail is

established beyond 1.6. The tail is due to coalesc-

ence of particles, because the radii can be very large

(and even negative) for the solid neck connecting

two coalescing particles. The computed radius dis-

tributions for the lower solid fraction cases A and

B (not shown here) do not exhibit such a tail

because no coalescence occurs (see Fig. 3).

Aside from the mean radius, the speci®c surface

area, SV, is another quantity that allows for an

examination of the ripening kinetics. It is obtained
from the computed phase-®eld distribution by inte-

grating jrfj over the domain [41]. The results for
all four cases are shown in Fig. 6(a), with the
asymptotic behavior for Case C magni®ed in Fig.

6(b). Because the speci®c surface area is an integral
quantity for the simulation domain, its time evol-
ution is much smoother, even for small numbers of

particles, than the one for the mean radius (cf. Figs
5 and 6). As can be seen from Fig. 6, the speci®c
surface area thus allows for a less ambiguous evalu-

ation of the mean ripening kinetics. For the di�u-
sion simulations, the long-time asymptotic behavior
of the speci®c surface area shows the expected
ripening exponent of ÿ1/3 for all four solid frac-

tions. The comparison with the ¯ow results is dis-
cussed in the next section.
Finally, we have used the present results for the

evolution of the mean radius to estimate the ripen-
ing rate constant Kdi� in equations (2) and (3) for
the four di�usion simulations, by assuming a ripen-

ing exponent of 1/3. For easy comparison with
other theories, the rate constants are then nondi-
mensionalized using the following equation from

Voorhees [18]:

Kdiff � K�diff

�dimÿ 1�GDl

�1ÿ k�mlC0
�10�

where K�diff is the dimensionless di�usion rate con-
stant and dim is the dimensionality of the system

(dim � 2 here). Note that according to LSW theory,
K�diff � 4=9 for di�usive ripening of spheres in three
dimensions and in the limit of vanishing solid frac-

tion. The dimensionless rate constants, K�diff , esti-
mated from the present simulations are listed in
Table 2 and plotted as a function of the solid

volume fraction in Fig. 7. It can be seen that the
present rate constants are generally in good agree-
ment with the monopole (M) and dipole (D) ap-
proximate numerical results of Akaiwa and Meiron

[26] and the two-dimensional theory of Marqusee
[20]. In accordance with the previous results [20,
26], the rate constant increases with increasing solid

fraction. Any di�erences with the previous results
are well within the uncertainties introduced by the
limited number of particles used in the present

simulations, or could be caused by coalescence of
particles in the higher solid fraction cases.

Table 2. Summary of simulation cases and results for the scaled ripening rate constants and permeabilities

Case fs (%) K�diff Dp (N/m2) K�conv PS2
V PR2

A 5.9 0.32 0.1 1.34 11.7 3.6
B1 11.6 0.41 0.2 1.79 3.6 1.09
B2 11.6 0.41 0.5 1.60 3.6 1.09
B3 11.6 0.41 1.0 1.51 3.6 1.09
C 20.7 0.60 0.2 2.52 0.85 0.26
D 29.2 1.08 0.3 3.80 0.32 0.09
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5. RIPENING IN A CONVECTIVE ENVIRONMENT

An example of computed phase ®elds, solute con-

centrations, and liquid velocities for ripening with

convection is shown in Figs 4(e)±(h) (lower panels)

for Case C at the same times as the corresponding

pure di�usion results [Figs 4(a)±(d); upper panels].

Considerable di�erences between the no-¯ow/¯ow

cases are apparent in the evolution of the particle

shapes and sizes. These di�erences are due to advec-

tion of solute by the ¯ow. As the particles coarsen,

the liquid velocities increase strongly. This can be

attributed to the drag being reduced at later times

Fig. 3. Predicted phase-®eld evolution for the four ripening simulations without convection; the value
of the phase-®eld variable is indicated by a continuous gray scale, where f � 0 (liquid) is black and

f � 1 (solid) is white.
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due to the decreased speci®c surface area or
increased hydraulic radius, while the applied press-

ure drop is held constant.
Figure 5(a) indicates that in the presence of con-

vection the mean radius of the particles increases

progressively faster than under purely di�usive con-
ditions. At later times, the liquid velocities become
high enough to accelerate the ripening process, such

that the ripening exponent for the convection simu-
lation tends toward a value of 1/2, as schematically
indicated in Fig. 5(a). The ripening theory devel-

oped by Ratke and Thieringer [22] shows that in
the presence of convection the mean radius
increases according to

R2 ÿ R2
0 � Kconvt �11�

where Kconv is the convection ripening rate con-
stant. In the long-time limit, we thus have R±t1/2.
The theory of Ratke and Thieringer [22] was orig-

inally intended for ripening of freely falling spheres
under the assumption of Stokes ¯ow (U±R2).
Although the particles do not move in the system

considered here, the analysis of Ratke and
Thieringer can be used because the ¯ow of the
liquid through the simulated mush is also Stokes
¯ow with respect to the mean particle radius. It is

shown in the next section that Darcy's law,
equation (1), indeed applies in the present convec-
tion simulations and that the permeablity scales

with P±R2. The computed radius distribution at
2000 s for Case C with convection is shown in Fig.
5(b) and compared to the corresponding di�usion

case. The analytically determined distribution of

Ratke and Thieringer [22], valid for three dimen-

sions and in the limit of zero solid fraction, is

included for reference. As already discussed in the

previous section, the number of particles is too

small to allow for a quantitative analysis of the

radius distribution obtained from the present simu-

lation. Qualitatively, it may be seen that the distri-

bution from the convection simulation is somewhat

broader than in the di�usion case. This trend is

supported by the theory of Ref. [22].

The change in the ripening exponent due to con-

vection is more obvious in the plots of the evolution

of the speci®c surface area of Fig. 6. Results for all

four cases (A±D) are included in Fig. 6(a). In par-

ticular, the magni®ed plot of Fig. 6(b) for Case C

clearly shows that convection causes the ripening

exponent for the speci®c surface area to change

from ÿ1/3 to ÿ1/2 in the long-time limit.

The ripening rate constants in the convection

cases, Kconv, can be estimated by plotting R2 ÿ R2
0

against t, which is demonstrated in Fig. 8 for Cases

B1, B2, and B3. Despite the strong ¯uctuations due

to the limited number of particles, it can be seen

that the mean radius evolution indeed approaches a

R2±t behavior. Figure 8 also allows for an examin-

ation of the e�ect of the applied pressure drop and,

hence, the mean ¯ow velocity on the ripening rate

at constant solid fraction (Cases B1, B2, and B3 all

have solid fractions of 11.6%). It can be seen that

the convection rate constant increases with the

applied pressure drop.

The ripening rate constants for the convection

cases can be analyzed in more detail by scaling

Fig. 4. Evolution of the predicted solute concentration ®elds (gray scale), liquid velocities (arrows), and
phase ®eld (a black contour line is drawn at f � 0:5) for Case C; for the solute concentration in the
liquid, a gray scale with ten equidistant intervals between 4.861 and 4.871 wt% Cu is used, while four
intervals between 0.682 and 0.6805 wt% Cu are used for the solid: (a)±(d) (upper panels) di�usion-con-

trolled ripening; (e)±(h) (lower panels) ripening with convection.
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them using the theory of Ratke and Thieringer [22].

According to that theory, a dimensionless convec-
tion rate constant, K�conv, can be de®ned as

Kconv � K�conv

2p
�dimÿ 1�GDl

�1ÿ k�mlC0

�
U

DlR2

�1=3
�12�

where U is the relative velocity between the solid

and liquid. Note that U±R2 for Stokes ¯ow, such

that the rate constant is in fact independent of the

mean radius. Ratke and Thieringer determined that

K�conv � 1:575 for convective ripening of spheres

in three dimensions and in the limit of a
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Fig. 5. Results for the predicted particle radii in Case C with and without convection: (a) evolution of
the mean radius; (b) normalized radius distribution (simulation results are at 2000 s).
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vanishing solid fraction. For the ¯ow through the

mush of the present system, the relative velocity U

is given by Darcy's law which, by integration of

equation (1) over the length L of the system, can be

written as

U � P
Dp
LZ
: �13�

Hence, the main result of this theory is that the
dimensional rate constant Kconv is proportional to

��P=R2�Dp�1=3. It is shown in the next section that

Fig. 6. Log±log plots of the predicted speci®c surface area evolution for Cases A±D with and without
convection: (a) comparison of all cases; (b) magni®ed plot for Case C.
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the normalized permeability, P/R2, is independent

of the applied pressure drop, as one would expect

from Darcy's law, and constant in time. Therefore,

for an increase in the pressure drop by a factor of

®ve, going from Case B1 to Case B3, the dimen-

sional rate constant should increase by a factor of

51=3 � 1:71. An examination of the slopes of the

straight lines sketched in Fig. 8 shows an increase

in the dimensional rate constant by a factor of ap-

proximately 1.5 going from Case B1 to Case B3,

which is in reasonable agreement with the theory

considering the uncertainties introduced by the lim-

ited number of particles.

Scaling the ripening rate constants for all convec-

tion simulations using equations (12) and (13),

results in the dimensionless rate constants K�conv

listed in Table 2. These values are plotted as a func-

tion of the solid volume fraction in Fig. 9. The

dimensionless rate constants increase with increas-

ing solid fraction in a manner similar to the di�u-

sion cases (see Fig. 7). Furthermore, it can be seen

that the dimensionless rate constants for Cases B1,

B2, and B3, which di�er only in the applied press-

ure drop, are indeed close to each other. A theory

that predicts the observed increase of the convec-

tion rate constants with solid fraction is, to the

authors' best knowledge, not available in the litera-

ture.

6. EVALUATION OF THE PERMEABILITY

As discussed in Section 1, the direct numerical

simulation of the ¯ow through the mush allows for

the evaluation of the permeability, P, as de®ned by

Darcy's law, equation (1). Here, it is of particular

interest to examine the e�ect of ripening on the per-

meability. The permeability was determined by

measuring the mean velocity, U, for the compu-

tational domain from the predicted liquid velocities

and substituting it together with the applied press-

ure drop, Dp, into equation (13).

Figure 10(a) shows the predicted evolution of the

permeability for all simulation cases. The per-

meability increases with time because ripening

reduces the drag by decreasing the speci®c surface

area or increasing the hydraulic radius. This e�ect

is particularly signi®cant for the lower solid fraction

cases (A and B). The rate of increase of the per-

meability decreases with time because the ripening

rate decreases (i.e. dR=dt±tÿ1=2). It is important to

remember that the solid volume fraction is approxi-

mately constant in time for each case, implying that

the variations in the permeability are due to ripen-

ing only. The ¯uctuations in the curves are again

due to the disappearance or coalescence of par-

ticles.

An important issue in determining the per-

meability of the mush in solidi®cation systems is

the choice of a suitable microstructural length scale,

Fig. 7. Predicted dimensionless rate constants as a function of the solid volume fraction for the di�u-
sion-controlled ripening cases, and comparison with the theory of Marqusee [20] and the numerical

results of Akaiwa and Meiron [26].
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such that the scaled permeability is the same at a

given solid volume fraction regardless of the geome-
try of the microstructure. The obvious choices for
such a length scale in the present system are the
mean radius, R, and the speci®c surface area, SV,

both of which evolve with time. Figure 10(b) shows

the variation of the scaled permeabilities P/R2

(lower curve) and PS2
V (upper curve) for Case D.

After some initial transient, both of the scaled per-
meabilities remain constant other than for the una-

Fig. 8. Predicted evolution of the squared mean radius for the ripening simulations with convection of
Cases B1, B2, and B3; these cases di�er only in the applied pressure drop.

Fig. 9. Predicted dimensionless rate constants as a function of solid volume fraction for all ripening
simulation cases with convection.
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voidable ¯uctuations due to the limited number of

particles. This shows not only that Darcy's law is

applicable in the present simulations, but also that

either scaling succeeds in predicting the e�ect of

ripening on the permeability.

Taking an average over time, a single value of

the scaled permeabilities can be determined for each

of the convection cases. All of these values are

listed in Table 2, and the values for PS2
V are ad-

ditionally plotted in Fig. 11 as a function of the

Fig. 10. Evolution of the measured permeabilities for all ripening simulation cases with convection: (a)
dimensional permeability; (b) scaled permeabilty.
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liquid volume fraction, 1ÿ fs. As expected, the

scaled permeabilities for Cases B1, B2, and B3 are
identical to within the present measurement uncer-
tainties and only one mean value is listed. Also

included in Fig. 11 are the analytical results of
Drummond and Tahir [12] for Stokes ¯ow through
a triangular array of equal-sized cylinders and the

numerical results of Bhat et al. [8] for two-dimen-
sional ¯ow through a cross section of a measured
columnar dendritic microstructure. It can be seen

that for large liquid fractions (>0.8), all results
agree with each other. This indicates that the scaled
permeabilities are independent of the ripening kin-
etics, because the previous results are all for non-

evolving, ®xed microstructures. For decreasing
liquid fraction, both the present scaled permeabil-
ities and the results of Bhat et al. [8] are increas-

ingly lower than the permeabilities for the
triangular array of cylinders. More detailed com-
parisons are not possible in this regime due to the

large scatter of the data of Bhat et al.

7. CONCLUSIONS

The interactions between ripening and melt ¯ow
in a solidi®cation microstructure or mush of an Al±
Cu alloy have been investigated numerically using

the phase-®eld method. The accuracy of the present
phase-®eld method with convection is demonstrated
by comparing predictions of Stokes ¯ow through
arrays of cylinders with analytical solutions. A

detailed parametric study is performed to investi-

gate the ripening kinetics both for di�usion and

convection cases with various volume fractions of
solid in the domain. The results for the di�usion

cases, both in terms of the ripening exponent and

the dependence of the ripening rate constant on the
solid fraction, are shown to be in good agreement

with previous theories of ripening. At higher solid

fractions, coalescence of particles is observed. The
limited number of particles in the present compu-

tations hinders a quantitative analysis of the par-

ticle size distributions at long ripening times.
The simulation cases with convection show that

the ripening exponent changes from the classical

value of 1/3 for di�usion controlled ripening to 1/2
as the ¯ow velocities increase due to the coarsening

of the structure. This, as well as the predicted trend

toward a broader radius distribution, is in agree-
ment with the convective ripening theory of Ratke

and Thieringer [22]. The ripening rate constants

estimated from the present convection simulations
are scaled using the Ratke±Thieringer theory,

resulting in dimensionless rate constants that

depend on the solid volume fraction only. These
results still have to be analyzed theoretically.

The simulation results are also used to investigate

the e�ect of ripening on the permeability of the
mush, as de®ned in Darcy's law. It is shown that

ripening causes a continual increase of the per-

meability with time. This e�ect can be predicted by
scaling the permeability with the mean radius or the

Fig. 11. Predicted permeabilities scaled with the speci®c surface area as a function of the liquid fraction
for all ripening simulation cases with convection, and comparison with the analytical results of
Drummond and Tahir [12] for a triangular array of cylinders and the numerical results of Bhat et al.

[8] for a measured columnar dendritic microstructure.
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speci®c surface area. The scaled permeabilities are
in quantitative agreement with previous results for

®xed (time invariant) microstructures.
An obvious extension of the present study is to

simulate a non-adiabatic system, such that ripening

and solidi®cation occur simultaneously. The investi-
gation of the e�ect of melt convection in such a sys-
tem is of great practical interest. Extension of the

simulations to three dimensions is also desirable,
but must await the development of more e�cient
numerical techniques and/or faster computers.
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