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Abstract

Microstructure evolution in equiaxed dendritic solidification is investigated through the study of free dendritic growth in a supercooled
melt. A detailed measurement of microstructural features (such as side-branch spacings, envelope shape, projection area, and contour length)
of freely growing succinonitrile dendrites is performed using images from the microgravity experiment of Glicksman and co-workers. The
measurements show that the microstructure evolution of an equiaxed dendrite is divided into two regimes: an initial linear regime and a
subsequent non-linear coarsening regime. It is found that unique scaling relations exist between the measured geometry parameters and the
primary tip radius or speed for both regimes. The underlying mechanisms involved in dendritic structure evolution are discussed. In addition,
using the phase-field method, we perform numerical experiments to investigate the effects of melt convection on equiaxed dendritic growth.
The dendrite tip operating state (i.e. the tip velocity and radius) is quantitatively evaluated as a function of the flow velocity and dendrite
orientations and compared with Microscopic Solvability Theory. Other structural features (such as the side-branches) of an equiaxed dendrite
in the presence of flow are also examined in order to show how convection influences microstructure evolution in equiaxed dendritic growth.

© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Equiaxed dendritic solidification or free dendritic growth
is a frequently observed growth mode in casting and weld-
ing processes. The understanding and control of its struc-
tures are therefore of great importance to metallurgical
engineers. Due to its rich behavior as a non-linear phase
transformation process, equiaxed dendritic growth has also
drawn much research attention in physics and mathematics
communities.

Three different stages can be distinguished in free dendri-
tic growth: (i) the steady-state propagation of the tip region;
(ii) the linear, nearly periodic formation of the initial side-
branches; and (iii) the non-linear, irregular side-branching
evolution. The tip is the best-studied region of the dendrite.
Many theoretical, numerical and experimental efforts have
been devoted to investigate the steady-state growth of the tip
region, and they have resulted in enormous advances in the
understanding of this phenomenon [1-5]. In this paper the
focus is on: (i) the microstructural evolution in the side-
branching region away from the tip; and (ii) the influence
of convection on dendritic growth.

The formation of dendritic side-branches can generally be
attributed to the Mullins—Sekerka instability [6]. Based on
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this idea, Langer and co-workers [7-9] investigated the
thermal noise amplification mechanism for side-branching,
which has become the preferred explanation for the side-
branching phenomenon. However, a comparison between
Langer’s three-dimensional symmetric model [8] and the
experimental results of Huang and Glicksman [4] shows
only approximate, qualitative agreement and the experimen-
tally observed side-branches have much larger amplitudes
than can be explained by purely thermal noise in the model.
This discrepancy was ascribed later by Brener and Temkin
[10] to the assumption of a paraboloidal needle crystal in
Langer’s model. Brener and Temkin’s model [10], which is
based on the more realistic non-axisymmetric, three-dimen-
sional needle-crystal shape proposed by Brener [11], indeed
predicts much faster-growing side-branch amplitudes than
Langer’s symmetric model. The predicted side-branch
amplitudes are also found to be in reasonable agreement
with the experimental results of Bisang and Bilgram
[12,13] for xenon dendrites and with the experimental
results of La Combe et al. [14] for succinonitrile (SCN)
dendrites [13]. These studies confirm that the side-branches
are indeed triggered by thermal noise. However, available
measurements of the initial side-branch spacing are not well
predicted by either Langer’s model or Brener and Temkin’s
model.

The above-mentioned models only deal with the initial,
linear side-branching behavior. For the region further
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Fig. 1. Example of a side-branching dendrite growing into a supercooled melt: the image is from the microgravity experiment of Glicksman and co-workers [5]

for SCN.

away from the tip (i.e. the non-linear side-branching
regime), no theories are available to describe its
strongly non-linear coarsening behavior. Brener and
Temkin’s model, [10] accounts for the competitive
growth of active or survived side-branches only. Experi-
ments by Hiirlimann et al. [15] using xenon and Dougherty
and Chen [16] using an NH4CI solution, as well as the
measurements of Li and Beckermann [17] on SCN
dendrites, have demonstrated that the side-branch structure
far from the tip is still self-similar and can be scaled with the
tip radius R. These experimental findings agree well with
Brener and Temkin’s prediction [10] that this strongly non-
linear growth regime is self-similar up to Z/R < 1/Pe,
where Z is the distance from the tip and Pe is the tip Peclet
number. However, many of the experimental findings have

not yet been explained theoretically and can only be treated
as empirical results.

In parallel with theoretical and experimental advances in
understanding microstructural evolution in free dendritic
growth, significant progress in numerical modeling has
recently been made due to the advent of the phase-field
method [18-20]. The phase-field approach belongs to a
larger class of methods that rely on treating a micro-
scopically sharp interface as a diffuse region immersed in
the calculation domain. Its attractiveness is rooted in the fact
that explicit tracking of the interface and explicitly satisfy-
ing interfacial boundary conditions are completely avoided
by solving a certain evolution equation for the phase-field
variable. This makes it especially suitable for simulating the
formation of complex interfacial patterns in solidification.
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Fig. 2. Schematic illustration of the measurements performed in the present investigation.

Indeed, using the phase-field method several investigators
(see Ref. [21] and the references therein) have succeeded in
simulating the morphological evolution of 2D and 3D
dendrites with side-branches, something that is difficult to
achieve using conventional front-tracking methods. So far
most phase-field simulations are limited to diffusion-
controlled growth at relatively large dimensionless super-
coolings.

In this paper, the authors review their recent results in
understanding and modeling the morphological evolution of
an equiaxed dendrite. The work involves both measure-
ments of the structure of freely grown SCN dendrites
using images from the microgravity experiments of Glicks-
man et al. [5] and phase-field simulations of equiaxed
dendritic solidification with convection. The experimental
study focuses on microstructural evolution in the side-
branching regime, and the underlying mechanisms involved
in the side-branching structure development are discussed.

With respect to numerical modeling, the phase-field method
is employed to investigate the influence of melt convection
on microstructural evolution in equiaxed dendritic growth.
The emphasis is on the quantitative evaluation of the
dendrite tip operating state (i.e. the tip velocity and radius)
and the initial side-branching behavior.

2. Measurements of dendrite morphology

A typical freely growing dendrite branch is shown in
Fig. 1. The image is from the microgravity experiment of
Glicksman and co-workers [5] for SCN. The three different
regimes mentioned in Section 1 can be easily identified
in this image. In order to characterize the morphological
features of a dendrite in the side-branching regimes, a number
of measurable geometrical parameters are proposed: the
envelope of the active or surviving side-branching tips,
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Fig. 3. Measured normalized secondary arm spacings (symbols), A/R, as a function of the normalized distance, Z/R, from the primary tip; the two solid lines
represent a best fit of the data for Z/R < 30 and Z/R > 30, respectively; the interrupted lines are model results for the initial linear side-branching regime (with
o= 0.02).
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Fig. 4. Normalized projection area, F/Rz, versus normalized distance from the tip, Z/R; the two lines represent a best fit of the data for Z/R < 30 and Z/R > 30,
respectively.
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Fig. 5. Normalized contour length, U/R, versus normalized distance from the tip, Z/R; the two lines represent a best fit of the data for Z/R < 20 and Z/R > 40,

respectively.

X.nv; the side-branch spacings, A, the contour length, U; and
the area, F, of the projection of a dendrite, and the primary
stem contour, X,,. The definitions and the measurements of
these geometrical parameters are illustrated schematically
in Fig. 2. For other details, refer to Refs. [17,22].

The measurements are performed on images from the
microgravity experiment of Glicksman et al. [5] for free
dendritic growth of SCN into a uniformly supercooled
melts. The supercoolings analyzed here vary from 0.23 to
0.78 K, which give tip radii ranging from 19 to 72 wm. Figs.
3—5 show the results of the side-branch spacing, projection
area and contour length measurements, respectively,
normalized by the tip radius, in log—log plots. The measure-
ments clearly show that: (i) the dendrites are self-similar and
can be scaled with the tip radius; and (ii) there exist two
different regimes that are divided at about Z/R = 30. The
two regimes correspond to the initial linear and the subse-
quent non-linear side-branching regimes and are discussed
in Sections 2.1 and 2.2, respectively.

2.1. Initial linear side-branching regime

The initial side-branching regime of a dendrite is charac-
terized by the growth of the first few branches newly formed
near the dendrite tip. The measured side-branch spacings,
projection area and contour length in this regime all fall into
a narrow band in Figs. 3-5, respectively, demonstrating that
the initial side-branch formation is a well-defined instability
that can be scaled with the tip radius. A power-law fit of the
measured spacing data for Z/R < 30 gives the variation of

the average spacing (A) with Z as:
(AYR = (1.69 = 0.16)(Z/R)" 1980015 (1)

Using this result, the authors tested Brener and Temkin’s
non-axisymmetric model, which is based on the non-
axisymmetric needle crystal shape and predicts the spacings
as:

MR = 27315 °B3AZIR)'° =~ 1.32(ZIR)'", )

where o is the usual selection constant [=0.02 for SCN].
Although Brener and Temkin’s model has previously shown
good quantitative agreement in the side-branch amplitude
with experimental measurements [13], its side-branch
spacing prediction (Eq. (2)) agrees only qualitatively
with the present measurements (Eq. (1)). There is a nearly
30% deviation that cannot be explained by measurement
error. In order to overcome this shortcoming, the authors
developed a simple model of the initial side-branch spacing
development. The following is a brief description of this
model. A more detailed discussion can be found in Ref.
[22].

The present model is based on a Mullins—Sekerka
instability analysis performed on the needle crystal surface.
Mullins—Sekerka’s linear stability analysis gives the local
critical and maximum instability wavelengths, A, and A,
as:

)\C = Z’IT—\/zaldo/Vn and
Ay = 2m604dy/V, = V3.,

3)
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where V, is the local normal interfacial velocity, «; is the
thermal diffusivity of the liquid, and d, is the capillary
length. For the non-axisymmetric 3D needle crystal shape
of Brener [11], there is the following expression for V, along
the ridges:

Vo = Vill + (GZIR™12, “)

where V; is the dendrite tip velocity. Substituting Eq. (4)
into Egs. (3), and using the usual selection criterion for the
dendrite tip operating state o= 2a1d0/(VtR2), the varia-
tion of the local maximum instability wavelength A,
with distance away from the primary tip, Z, for the non-
axisymmetric needle crystal is given by:

A/R = 2130 [1 + (3ZIR 1™ = 1.72Z1R)"”. 5)

The approximate expression is a curve fit for 8 < Z/R < 30
and an experimental value of o = 0.02 for SCN [4]. Eq. (5)
is identical in form to Eq. (2) from Brener and Temkin’s
model [10], except for the value of the pre-factor. The
agreement with this more sophisticated model implies that
the present model, despite its simplicity, is essentially
correct.

The present arm spacing measurements, being made on
dendrites grown in a convection-free environment, allow for
a comparison with the model over the entire linear side-
branching regime, which is shown in Fig. 3. Both the expo-
nent of 0.198 = 0.015 and the pre-factor of 1.69 = 0.16 in
the experimental correlation, Eq. (1), are in excellent agree-
ment with the present model for the maximum instability
wavelength of the non-axisymmetric needle crystal (Eq.
(5)). This good agreement not only validates the present
simple model but also confirms that: (i) the maximum,
and not the critical, instability wavelength determines the
observed initial side-branch spacing; and (ii) the non-
axisymmetric needle crystal of Brener [11] gives a realistic
dendrite shape. Furthermore, since the present model relies
directly on the Mullins—Sekerka stability theory, the present
comparison can be regarded as an experimental validation
of this important theory.

While the selection mechanism of the initial side-branch
spacings is well clarified by the present spacing measure-
ment and model, the projection area measurement allows
the demonstration of another important growth mechanism
of dendritic crystals. The measured data for the projection
area F for Z/R <30 can be fitted by a power law which
yields the following scaling relation:

FIR? = (0.847 =+ 0.04)(Z/R)'8+003, (6)

Comparing with the behavior of F(Z) for the non-axisym-
metric needle crystal model of Brener [11], FIR® =~
0.85(Z/R)1/6, the present correlation of F(Z) (Eq. (6))
shows the same scaling exponent of 1.6 and the same
prefactor of 0.85 to within the measurement uncertainty.
The fact that real dendrites with side-branches and a needle
crystal (without side-branches) have the same projection

area indicates that the theoretical steady-state solution is
preserved in some geometrical parameters (the projection
area here) of the actual dendritic pattern. Similar results
have been reported by Counder et al. [23] for two-dimen-
sional dendritic growth, anisotropic viscous fingering, and
anisotropic diffusion-limited aggregation. While the projec-
tion area is exactly preserved in the initial linear regime, it
can be seen from Fig. 4 that a small deviation of F(Z) exists
from that of the needle crystal in the non-linear regime.
This deviation may be attributed to coarsening, which is
discussed in Section 2.2.

2.2. Non-linear regime

As the side-branches evolve into a non-linear regime far
down from the tip, a coarsening phenomenon occurs during
which some side-branches continue to grow as others are
squeezed out, resulting in a very irregular side-branch struc-
ture. It is presently not clear whether this coarsening process
can be described by available theories. Hence, the purpose
here is simply to define and measure meaningful geo-
metrical parameters of side-branching dendrites in the
non-linear coarsening regime, and to assess the need to
develop new theories of coarsening of the side-branch
structure in free dendritic growth.

The measurements of the side-branch envelope and the
side-branch spacing are a preliminary attempt to understand
the coarsening process of the side-branching structure in the
non-linear regime. These measurements experimentally
verify the coarsening mechanism due to the competitive
growth of the active side-branches [17] and confirm that
the coarsening of the structure near the junction between
an arm and the primary stem is dominantly driven by the
reduction of the interfacial free energy [22]. Unfortunately,
the measurements only reveal two individual coarsening
phenomena that occur at two special locations of a side-
branching dendrite, respectively. In order to investigate
the overall coarsening of a side-branching dendrite as a
whole, ‘integral’ parameters have to be used. Such integral
parameters take into account all of the non-linear interac-
tions among the different side-branches.

There are two integral parameters that can be used to
characterize the overall properties of a dendrite: the volume
and the surface area of a dendrite. Since direct measurement
of these two parameters during growth is not possible,
instead the measured projection area F and the contour
length U of a dendrite in the side-branch plane are used.
Fitting the measured data in Figs. 4 and 5 yields:

FIR? = (0.578 = 0.04)(Z/R)""**%93  for Z/R > 30, (7)

U/R = (0.378 * 0.04)(Z/R)"**0%  for Z/IR > 40. (8)

An important geometrical parameter that can be derived
directly from the measurement of F and U is the dimension-
less parameter dF/(RdU). This represents a local mean char-
acteristic length that can be used to describe the overall
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Fig. 6. Evolution of phase-filed contours for a dendrite. Upper panels: without convection; Lower panels: with convection; the anisotropy strengths are 0.01,

0.03, and 0.05 going from left to right.

coarsening of a dendrite. Combining Eqs. (7) and (8) yields:

)0.22. (9)

The exponent of 0.22 is not close to the classical coarsening
exponent of 1/3, indicating that the overall coarsening of a
side-branching dendrite cannot be explained by capillary-
driven coarsening alone.

The parameter dF/dU reflects the mean value of all curva-
tures in an axial section of a side-branching dendrite, includ-
ing that from the primary stem. By removing the effect of
the primary stem from dF/dU it is possible to separately
study the coarsening process of an individual side-branch
during dendritic growth. To do this, the authors propose a
mean side-branch radius, p,,, defined as:

dr 0.22 (
—— = 1.75(Z/IR)"~" =1.7
i = 1790 17

LY
R

pm = (dF — dF,)/(dU — dU,y), (10)

where F, and U, are the projection area and the contour
length of the primary stem. It can be seen from Fig. 2 that
the quantity (AF — AF,)/(AU — AUj) is actually an area-
averaged radius of a side-branch if a branch is approximated
as a cylindrical rod. Using measurement results for F,, and

Uy [22]:

pu/R = 0.801(Z/R)***! = 0.0801(V,#/R)***!
(11)
for 40 < Z/R < 200,

which can be approximated and rewritten as:
P2 = 0.572(R*V)t = 0.572Qa,dp/o)t = 57 20,dyt  (12)

Compared with classical LSW theory, which describes the
coarsening behavior of spherical particles in the limit of
zero volume fraction solid as ﬁ3(t) — p% = %aldot, where
Do is the initial mean particle radius, the above result shows
the same coarsening exponent of 1/3, but a much larger
coarsening rate constant. Such a large rate constant cannot
be explained using available theories for isothermal two-
phase coarsening at a finite solid fraction. A reason for the
discrepancy could be that the side-branches on a free
dendrite have close neighbors only in the Z direction,
while they are surrounded by supercooled melt in the
circumferential direction and in the tip region. In particular,
in the tip region of the active (or growing) side-branches,
coarsening is controlled by heat transfer between the inter-
face and the supercooled melt (net solidification) and com-
petitive growth. Hence, the overall side-branch coarsening
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process in free dendritic growth is driven by the combined
effects of net solidification and interfacial energy reduction.
Interestingly, the measured coarsening exponent shows
excellent agreement with theories of purely capillary-driven
coarsening. Only a more complete analysis of non-isothermal
coarsening, with net solidification, can clarify this matter.

3. Phase-field simulation

The present phase-field simulation of dendritic growth
with melt convection is directly based on the formulation
of Karma and Rappel [21]. The heat, mass, and momentum
conservation equations are derived using a volume aver-
aging approach [24]. By including phase-field variable
dependent advection terms in the conservation equations,
the method addresses in a physically realistic way the trans-
port of mass, momentum, heat, and solute by the ‘residual’
flow in the diffuse interface region. In this paper the authors
only present some of the results obtained by using this
method for the simulation of equiaxed dendritic solidifica-
tion with melt flow. A description of the method can be
found in Ref. [24] whilst a more detailed discussion of all
results is available in Ref. [25].

Fig. 6 shows computed evolutions of equiaxed dendrites,
growing at a fixed dimensionless supercooling of A = 0.55,
for three different anisotropy strengths (e = 0.01, 0.03 and
0.05) without flow (top panels) and with flow (bottom
panels). For the bottom panels, the melt flows from the top
to the bottom with a uniform inlet velocity of Udy/a;; = 0.07

and the Prandtl number is Pr = v/a; = 23.1. It can be seen
that in the presence of flow the dendrite acquires a highly
asymmetric shape, with the upper tip growing much faster
than the lower and horizontal tips. The flow causes much
higher temperature gradients near the upper tip than near the
lower tip. Another interesting observation is that the hori-
zontal tips grow slightly upwards. This dendrite ‘tilting’ is
due to the asymmetry of the heat fluxes on the sides of the
horizontal branch. In the following the detailed morpholo-
gical features of the dendrite are investigated through an
examination of the tip operating state and the side-branch-
ing behavior.

3.1. Tip operating state

The operating state of a growing dendrite consists of the
steady-state tip velocity V, and radius R which are uniquely
selected by the system under given growth conditions. Here,
the effects of melt convection on the tip operating state, by
measuring tip velocities and radii from the present simula-
tions, are evaluated.

Tip velocity and radius measurements are carried out on
all three tips (upstream, normal to flow, and downstream). It
is found that while the upstream tip reaches a steady velo-
city, the horizontal and downstream tips continue to slightly
slow down due to the ever increasing size of the dendrite
relative to the domain. Nonetheless, approximate steady
values of V; and R can be measured for each tip. The knowl-
edge of the tip radius and tip speed allows for the calculation
of the selection constant, o, as defined in V[R2 =
2dyay/o*. As an example, for A =055 e=0.03,
Udyloy = 0.135 and Pr = 23.1, it is found that o = 0.31
for the steady-state upstream tip, o =~ 0.36 for the tip
normal to flow, and o = 0.38 for the downstream tip. For
the corresponding pure diffusion case, it is found that
o” = 0.38. The difference between the value of o for the
upstream tip and the no-flow tip suggests a significant influ-
ence of melt flow on the stability constant. This issue is
investigated in more detail in the following by comparing
the present results to the solvability theory of Bouissou
and Pelcé [26] for dendrite tip growth with a uniform
flow approaching from a direction opposite to the growth
direction.

Bouissou and Pelcé [26] present a solvability theory that
allows the selection constant o to be predicted for the
upstream tip in the presence of flow. The main result of
this theory is that the ratio of the selection constant without
flow, (o), to the value with flow, o, is a function of a
dimensionless parameter y according to Ref. [26]:

(0'*)0

*

=1+ flx = aRe)dyUIB"*RV))], (13)
where fis a function, 8 = 15¢, and:

2Re \'? —Rel2
_e) exp(—Re/2) (14)

a(Re) = ( erfc(+/Rel2) ’

I
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Fig. 8. Evolution of phase-flied contour for a side branching dendrite in the
presence of flow.

in which Re = UR/v is the Reynolds number. Note that the
parameter y contains not only the flow velocity but also the
anisotropy strength. For small y, as is the case in the present
simulations, Bouissou and Pelcé found that f(y) = 0, imply-
ing that the selection constant is independent of the flow
velocity; for y greater than about 30, f(y) = b)(“/ 14
where b is a constant. Fig. 7 shows a comparison of the
o ratios determined from the present simulations with
Egs. (13) and (14). The authors [25] determined the function
f by solving numerically the complex solvability integral
provided in Ref. [26]. It can be seen that the simulation
o ratios can be significantly above unity and increase
strongly with increasing y. This result is not in agreement
with Egs. (13) and (14), which show that the o ratio
remains very close to unity for the low y values achieved in
the present simulations. The disagreement can be explained
by the strong variation of the solid/liquid interface curvature
very near the tip and the deviation of the tip shape from a
parabola especially for large anisotropy strengths.

By evaluating the local curvature of the interface from the
phase-field predictions as a function of the distance, Z, from
the dendrite tip, it was found that the deviation from a para-
bolic shape is limited to a distance no larger than about one
tip radius. The authors then fitted a parabola to the predicted
interface in the region away from the tip, and determined the
tip radius, R,, from this parabolic fit. Note that p,, is likely to
be the tip radius measured in experiments. The o ratios,
(0p)o/oy, based on the parabolic fit radius, instead of the
actual tip radius, are also shown in Fig. 7. It can be seen that
they remain close to unity, even though the tip velocities
vary by several hundred percent. The good agreement with
the theory of Bouissou and Pelcé, Egs. (13) and (14), indi-
cates that within the parabolic tip shape approximation the
present simulations provide the correct tip velocity
selection.

3.2. Side-branching behavior

By incorporating a thermal noise source term into the

energy equation used in the phase-field method, Karma
and Rappel [27] recently studied the initial stage of side-
branch formation during dendritic growth without flow.
Their calculation of the side-branching characteristics
(root-mean-square amplitude and mean side-branch spacing)
shows good agreement with analytical predictions based
on linear theory of noise amplification [8,10].

The evolution of the side-branching in dendritic growth
with flow is illustrated in Fig. 8. The figure shows the effect
of the orientation of a growing branch with respect to the
flow on the side-branching behavior. Among the four
branches of an equiaxed dendrite the upstream branch is
the only one where the formation and development of
side-branches is observed. A comparison with the corre-
sponding pure diffusion case indicates that while the devel-
opment of side-branches on the upstream branch is
apparently promoted by melt flow, the side-branching
phenomenon on the other branches (downstream or normal
to the flow) seems to be suppressed by this flow. The
systematic measurement of the side-branch spacings and
the mean side-branch amplitude are in progress and will
quantify the effects of the melt flow on the microstructural
evolution in equiaxed dendritic solidification.

4. Conclusions

The recent work of the authors in the understanding and
modeling of microstructure evolution in equiaxed dendritic
growth is reviewed. The work involves both experimental
measurements and numerical simulations. Measurements
are performed on freely growing SCN dendrited using
images from the microgravity experiment of Glicksman
and co-workers and focus on the side-branching behavior.
The results reveal unique scaling relations between the
geometry parameters of side-branching dendrites and the
steady-state primary tip radius. Two different regimes in
the side-branching evolution, an initial linear regime and a
subsequent non-linear coarsening regime are found. A
simple model, based on the Mullins—Sekerka linear stability
theory, is developed to describe the initial side-branching
behavior and is found to be in excellent agreement with the
experimentally measured arm spacings, indicating that the
initial side-branch spacings are selected by the maximum
instability wavelength. In the non-linear regime, it is found
that the conventional measurements of individual side-
branches, such as the spacing or the length or side-branches,
can only reveal part of the coarsening process. A mean side-
branch radius, which is derived from measurements of
integral parameters, is proposed to characterize the overall
coarsening process of an individual side-branch during free
dendritic growth. While its coarsening behavior follows the
classical cube root of time law, the large coarsening rate
constant suggests that new theories of non-isothermal
coarsening need to be developed to explain the measure-
ments completely.
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Regarding the modeling work, a phase-field model is
presented for the direct numerical simulation of microstruc-
tural evolution in dendritic growth with melt flow. The
dendrite tip velocities, radii, and selection criterion in the
presence of flow are evaluated. It is found that depending on
the tip growth direction with respect to the flow the tip radii
and velocities can be either above or below the values for
pure heat diffusion. For the upstream tip, the simulated
selection constants are in agreement with the Microscopic
Solvability Theory with flow of Boussou and Pelcé [26], if
the tip radius is based on a parabolic fit of the predicted
dendrite shape away from the tip. If the actual tip radius is
used, however, the finite crystalline anisotropy causes
significant deviations of the simulation results from the
theory. Introducing noise into the simulation, the authors
also investigated the side-branch formation in the presence
of melt flow. The preliminary results show that, depending on
the direction of the flow; the development of side-branches can
be either promoted or suppressed. A quantitative evaluation of
the predicted side-branch structure in the presence of melt flow
is presently underway. Extension of the simulations to three
dimensions and lower supercoolings will ultimately allow
for direct comparisons with the experimental measurements
reviewed in the first part of this article.
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