Reliability based casting process design
optimisation

R. A. Hardin, K. K. Choi, N. J. Gaul and C. Beckermann*

Deterministic optimum designs are unreliable without consideration of the statistical and physical
uncertainties in the casting process. In the present research, casting simulation is integrated with
a general purpose reliability based design optimisation (RBDO) software tool that considers
uncertainties in both the input variables as well as in the model itself. The output consists of an
optimal design that meets a specified reliability. An example casting process design is presented
where the shape of a riser is optimised while considering uncertainties in the fill level and riser
diameter. It is shown that RBDO provides a much different optimum design than a traditional
deterministic approach. The deterministic optimal solution offers a 12% increase in casting yield
over typical safety margin design practice, but has an unacceptable 61% probability of failure.
The RBDO design has a 7% increase in casting yield over the safety margin approach and a

probability of failure of 4-6%.
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Introduction

Casting process simulation has become an invaluable
tool in the production of economical and high perfor-
mance cast components. Its application by experienced
and knowledgeable operators leads to reduced casting
defects, casting yield improvement and reduced trial and
error iteration in development of a casting’s rigging.
Increasingly, casting simulation is being used as a
collaborative tool between component designers and
casting producers to reduce lead times, to develop
casting friendly component designs and to produce
better castings. The majority of casting simulation is
being used in a purely deterministic approach, replacing
iterative trial and error process development on the shop
floor with iterations on the computer. In this purely
deterministic approach, the experience and knowledge
of the engineer operating the software determines to a
great extent that the software is used effectively and that
the casting process developed is the best it can be.

To maximise the effectiveness of casting simulation
and improve the likelihood of an operator achieving an
optimal solution, automatic optimisation algorithms for
casting process development are being researched,'™
and commercial software such as MAGMAfrontier,®”
OPTICast'® and AutoCAST-X*'"1? have been devel-
oped. The most common application found in all of
these automatic process optimisation tools is the solu-
tion to the problem of casting feeding system optimisa-
tion. In optimisation of the casting feeding system,
optimal sizes and locations of feeders are determined
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such that casting yield (ratio of mass of casting produced
to mass of metal poured) is maximised and the desired
quality level is met, which is typically defined as an
absence of, or low level of, shrinkage porosity in the
casting. Despite the power and promise of these devel-
opments in casting process optimisation, there are major
shortcomings in these purely deterministic optimisa-
tion approaches: neither the reliabilities of the casting
production process nor the reliabilities of the casting
model are considered. Uncertainties in the casting process
conditions and variables, and in the casting model
parameters and properties must be considered since these
will affect the feasibility (i.e. reliability) of the optimised
solution. Casting process optimisation where the feasi-
bility of the process solution is not considered is termed
deterministic design optimisation (DDO). In DDO, the
probability of success or failure of the solution is not
calculated. Determination of the optimum solution’s
probability of success is based largely on the software
operator. Based on their experience, they must judge the
feasibility of the solution and make adjustments if
needed. Reliability based design optimisation (RBDO),
on the other hand, considers uncertainties in the variables
of the design problem in determining an optimum design
solution that meets a target probability of success. In
RBDO, even the uncertainties of the models used in
solving the optimisation problem can be considered to
determine a fully reliable optimum solution.

Here, the authors present an optimisation study for
a casting process design using the recently developed,
general purpose, lowa Reliability-Based Design Opti-
misation (I-RBDO) software.!*!® Using uncertainties in
the design process variables, and uncertainties in analy-
tical models and variables used in design processes, the I-
RBDO tool determines optimum designs that meet target
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reliability levels satisfying performance measures and
constraints that designers specify. The -RBDO method
has been applied to a range of design problems such as
structural design,”’16 fluid—solid interations,"” reducing
residual deformation in welding,'® magnetic energy
storage systems'® and multibody system dynamics.””
The objective of the current study is to investigate use
of I-RBDO with casting simulation.

The casting process design optimisation methods
presented here are demonstrated using the steel casting
shown in Fig. 1. The casting consists of a rectangular
bar that is fed by a cylindrical top riser. The goal is to
use simulation predictions to produce a steel casting that
is free of shrinkage porosity. The design of the casting
feeding system will be performed using a typical
industrial approach where a safety margin between the
casting surface and the bottom of the riser shrinkage
piping is used to determine the riser size. The safety
margin approach will then be compared to optimised
risers designed using DDO and RBDO methods, where
the optimum design uses the smallest riser volume giving
a porosity free casting. The design variables are the riser
diameter and height, and for the RBDO analysis, the
statistical uncertainties in these variables are represented
by the probability distributions shown schematically in
Fig. 1. By considering these uncertainties in the casting
production process design, RBDO provides an optimal
casting process design that meets the target reliability
level within the porosity free constraint that the casting
process designer specifies.

To the authors’ knowledge, this is the first application
of the RBDO method to casting process design. As a
result, the intent of this paper is to demonstrate the
concepts behind the RBDO method rather than all
technical details, which are given in the references cited
here. The optimisation problem considered here is
relatively simple, but it is well defined. This problem
serves well to demonstrate the RBDO technique,
allowing it to be readily visualised and compared with
the DDO method used. This study, as do most design
optimisation studies, also provides insight into the
design and the effects of variables on the design’s
objectives, even for a seemingly simple optimisation
problem as this. Tackling a more complex casting
process design optimisation problem with numerous
variables and constraints is outside the scope of this
paper, which is to introduce the RBDO method to the
casting community.
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Overview of DDO and RBDO optimisation
methods

Whether by DDO or RBDO methods, casting process
design optimisation inherently involves multiple vari-
ables, multiobjectives and multiconstraints. Many of the
objectives conflict, such as achieving a porosity free
casting with the smallest size feeders. As such, the most
successful optimisation algorithms developed for casting
process optimisation with conflicting objects have been
the multiobjective evolutionary algorithms® or multi-
objective genetic algorithms such as modeFRONTIER !
which has been implemented in the casting process
optimisation software MAGMAfrontier.°® As has been
demonstrated,’ given casting process and model variables
(i.e. initial rigging, metal and mould properties, heat
transfer coefficients, pouring temperature and time, etc.),
and given process constraints (i.e. porosity level, other
defects, customer requirements, alloy, etc.), an optimised
process can be determined to meet required objectives (i.e.
maximum casting yield, required mechanical properties,
etc.). These applications of optimisation algorithms to
casting processes are deterministic as described below. In
the optimisation problem solved in the current work,
there is a single objective function to minimise the volume
of the riser. The present version of the I-RBDO software
addresses problems having a single objective function
with multiple variables and constraints as described
below.

A general DDO problem is commonly defined in
terms of a single objective ‘Cost’ function of design
variables to be minimised as

Minimise Cost(X)
subject to constraint or performance (D
functions G;(X) <0 forj=1,...,nc

where X={X;, X;, ..., Xnd}T is the vector of nd input
design variables, and nc is the number of constraint
functions defined such that the jth constraint is violated
when G;(X)>0. Typically, there is a design space defined
for the vector of input design variables X such that they
must fall between upper and lower bounds, X" and X"
respectively, so that X*=X=XV. In equation (1), it is
important to point out that the input design variable
vector is deterministic. In the casting process DDO
problem studied here, the cost function Cost(X) is the
total amount of metal poured to produce the casting,
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and this cost is minimised when the casting yield is
maximised. The solution process to the general DDO
problem can be visualised for two input design variables
(X1, X3) and two performance constraint functions (Gj,
G,) as is shown in Fig. 2. Here, the cost function
Cost(X) is shown by the iso-Cost function value contour
lines indicated by dashed lines, where the direction of
decreasing cost is shown. The two performance con-
straint functions are visualised in Fig. 2 by showing the
boundary curves between acceptable values of Gj(X)=0
and the infeasible domain on the hatched side of the
curves where Gj(X)>0. These boundaries, where G(X)
and G»(X) are 0, are termed failure surfaces. Depending
on the optimisation algorithm used,*® ! the solution
process begins at the initial design point as shown in
Fig. 2 and advances to the optimum design point at
X1=d, and X,=d,, such that equation (1) is satisfied.
This optimum is shown by the red design point in Fig. 2.
Though visualised in Fig. 2 as well defined contours and
smooth functions, in the present work, they are not
necessarily so, since the cost function and performance
constraints are results from casting simulation software.
The I-RBDO software tool used here can use the
results from any simulation package, or combination of
packages, to provide the cost function and performance
measures in a completely general way.'>'¢2°

For reliability based optimisation, both the multi-
objective aspect of the problem through the multiple
constraints Gj(X) and the uncertainties in the casting
manufacturing process and model input variables must
be defined. In Fig. 3, the input variables and output
performance measures and constraints, and their uncer-
tainty distributions, are shown for a casting process and
its simulation. For example, the variability of model
inputs such as computational grid used, filling condi-
tions, model algorithms and accuracy, actual casting
process variability, cast metal and mould thermophysi-
cal simulation properties used and manufacturing
variability of mould cavity dimensions might be consi-
dered in reliability based optimisation. In the optimisa-
tion problem considered here, two input process design
variables and their uncertainties are used in the RBDO
analysis, the riser height and diameter dimensions shown
in Fig. 1. These variables are dependent on the casting
process. As indicated in Fig. 3 under the ‘Casting
Simulation’ block, there are important predictions from
the casting simulation that can affect the performance
of the casting process design, such as defect predictions
like porosity and inclusions or resulting structural
material properties of the casting arising from its as
cast microstructure. Here, porosity prediction is used as
a performance constraint, but in a more complex
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3 Diagram of input variables, output performances measures and constraints, and their uncertainty distributions, for

casting process and its simulation
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optimisation problem, other possible variables shown in
Fig. 3 might also be considered. In the I-RBDO
software used in the current work, uncer-
tainties and variations in the casting process variables
and the casting modelling software variables and
parameters are described via statistical distributions.
Normal, Lognormal, Weibull, Gamma, Gumbel and
Extreme I and Extreme II distributions may be used.
The differences between the RBDO and DDO solu-
tions are presented in Fig. 4. Again using the two design
variable optimisation problem visualised in Fig. 2, when
the variabilities of X; and X, are considered, probability
distributions exist about each of the design points d; and
d> at the DDO solution. This is the starting point of the
RBDO problem formulation, where the deterministic
design variable vector X from equation (1) is replaced by
a random design variable vector XRV={x RV, X,®Y, ..,
Xoa®V3T. In Fig. 44, two random variables and their
distributions X;®Vand X,®Y are shown on the abscissa
and ordinate axes with the means of these distributions
at design points d; and d». In both subfigures of Fig. 4,
the cost function contours and failure surfaces are
unchanged from Fig. 2. Showing them again is unne-
cessary. In the general RBDO problem formulation,
there is a variable design vector d={d;, d, ..., doa}",
which is made up of mean values of each of the nd
random design variables. The mean value operator is
denoted by pu(), so that d=p(X®Y). In this two-
dimensional design variable example, a joint probability
distribution for the random design variables X;®Y and
X,RV is formed by their product about the DDO
solution as seen in Fig. 4a. Here, the joint probability
distribution is represented by the three red ellipse shaped
contour lines about the DDO solution. In general, for
any number of independent random design variables nd,
the joint probability distribution is formed by the
product of all the marginal probability distributions of
the design variables.'® As can be readily seen in Fig. 4a,
and visualised by the series of red points representing
random samples about the DDO solution, roughly 50%
of the distribution and random samples fall outside the
failure surfaces and in the infeasible domain. The
deterministic optimum design is only about 50% reliable,
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which is often the case with DDO solutions. The
RBDO solution addresses this shortcoming of the
DDO solution.

Using the concepts visualised in the discussion of
Fig. 4a, a general RBDO problem is defined in terms of
a cost function of the design vector d to be minimised as

Minimise Cost(d)

Subject to PFj(d) = P[GJ(XRV) >0] < P]T;Jgir (2)

forj=1,...,nc and db <d<dV

where Pgj(d) is defined as the probability of failure for
the jth constraint function at the design vector d, G;j is
the jth constraint function, P[] is the probability
measure such that P[G; (X®Y)>0] is the probability that
the jth constraint function is violated, nc is the number

of constraint functions, P;J?“ is the target probability of

failure for the jth constraint function, and d" and dY are
the lower and upper bounds respectively, defining the
design space. The solution process to equation (2) is
visualised for two random design variables in Fig. 4b,
where the design point must be shifted to the minimum
cost function value such that the target probability of
failure is satisfied for the joint probability distribution
relative to the failure surfaces. For example in Fig. 4b, if
the target probability of failure for both constraints is
5%, and if only 5% of the joint probability distribution
falls outside the outermost joint probability contour
drawn in Fig. 4b, then that outermost probability
contour corresponds to the target probability of failure
contour of 5%. Equation (2) is satisfied when the
outermost probability contour drawn in Fig. 4b falls
completely inside the feasible design domain [where
Gj(XRV)SO] such that Cost(d) is minimised. For
example, with a 5% target probability of failure, the
design point shifts from the DDO solution, which is only
~50% reliable in Fig. 4a, to an RBDO design point,
which is 95% reliable in Fig. 4b. In general, the target
probabilities of failure for the nc constraints in
equation (2) need not be equal as in this visualised
example, which would alter the shifting in the design
point relative to a given constraint’s failure surface.
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Sensitivity and sampling based
optimisation and I-RBDO method

The details of the reliability based optimisation algo-
rithms used in the I-RBDO software is beyond the scope
of the current paper and have been presented in detail
elsewhere.'*'%?? This section is provided to give an
overview of the fundamental concepts and terminology
related to RBDO. In most conventional design optimi-
sation algorithms, evaluations of the cost and objective
functions in equations (1) and (2) are performed using
‘true’ evaluation of the functions. In the current appli-
cation example, such ‘true’ function evaluations are the
results of porosity predictions from computer modelling
of the casting process and the riser volume calculation.
Typically in textbook optimisation algorithms,**** the
sensitivities of the ‘true’ function evaluations to changes
in the design variables are used in the solution algorithm
to guide the solution to the minimum cost satisfying the
constraints for the problem through a series of steps of
function evaluations. This is termed design sensitivity
analysis. This is visualised for example in Fig. 2 for the
series of design points marching towards the optimum
point, where the direction of the decreasing cost function
satisfying the constraints could be determined from its
gradient with respect to the two design variables. An
excellent example of applying such a design sensitivity
analysis technique to optimal riser design for a porosity
free casting was referenced earlier,! where ‘true’ function
evaluations were made using two-dimensional casting
simulations to predict porosity. The drawback of sen-
sitivity based optimisation is that, while the sensitivity
based RBDO method is very effective and robust, there
are engineering design problems, such as casting process
design, for which design sensitivity information cannot
be obtained readily or is computationally expensive. For
these design problems, an alternative method needs to be
developed. For such optimisation problems, sampling
based optimisation methods have been developed, which
replace evaluations of the ‘true’ function with results
from a much less computationally expensive surrogate
model."* Surrogate models (also termed metamodels)
are developed from a limited number of evaluations of
the ‘true’ function evaluations. Furthermore, use of
surrogate models becomes quite advantageous in RBDO
calculations when computing the probability of fai-
lure of a design. The probability of failure calculations
performed here is carried out using 200 000 Monte
Carlo points that are evaluated using the surrogate
model. This is performed for every iteration of opti-
misation. Performing 200 000 casting simulations for
each optimisation iteration would be impractical.
Another advantage of sampling based optimisation is
that the fidelity of the surrogate model to the true model
is known by determining the error between surrogate
model evaluations and the true function evaluations that
are used to develop it. The surrogate model accuracy can
be tailored to the desired accuracy while considering the
trade off in the computation expense of true function
evaluations required to create it.

In the current work, both the DDO and the RBDO
calculations use a sequential quadratic programming
optimisation algorithm,-* where the casting simula-
tion model is approximated using dynamic Kriging
(DKG) models.'*'* The DKG method fits the true
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model more accurately than the universal Kriging
method by improving four areas: (i) using genetic
algorithm and generalised pattern search algorithm for
parameter search in the maximum likelihood estimate,
(i1) using the penalised maximum likelihood estimate for
small design of experiments (DoEs) sample size, (iii)
correlation model selection using maximum likelihood
estimate, and (iv) selection of the mean structure using
the cross-validation error. For sampling based RBDO,
stochastic design sensitivity analysis is carried out using
the score function.!>1°

The computational flow diagram of the sampling
based RBDO used in the current work is shown in
Fig. 5. When the RBDO algorithm starts at the initial
design, it determines the minimum number of DoE, i.e.
the minimum number of casting simulations, required
to create the DKG models. It checks to see if any
previously run casting simulations are within the local
window for the current design. The local window is a
subdomain of the entire design space of the design
variables. A local window is used because it is more
efficient to create the DKG models within a given local
window than it is to use the entire design space.'® Details
can be found in the reference. The local window is
centred around the current design point, and the size of
the local window is determined from the input distribu-
tions. If no DoE samples are found or if there are not
enough samples to satisfy that the DKG model is
sufficiently accurate, the code generates random uniform
initial DoE samples within the local window. The
casting simulations for these DoEs are then carried
out. Using the casting simulation results for the DoE
samples, the DKG models are created. The accuracy of
the DKG model is checked by comparing the change in
the mean squared error of the previous DKG model and
the updated DKG model when additional DoE samples
are added in the ‘sequential DoE sampling’ loop seen in
Fig. 5. Additional DoE samples are added, i.e. more
casting simulations are performed, until the DKG model
converges, i.e. the DK G model does not change as more
DoEs are added. Once the DKG model has converged
to the desired accuracy, Monte Carlo simulations at
200 000 random points are evaluated using the DKG
model in each optimisation iteration shown in Fig. 5 as
the ‘update design’ loop. Using the results of the Monte
Carlo simulation, the probabilistic sensitivity is calcu-
lated using the statistical distributions of the input
random variables (i.e. distributions of R and H).
Interested readers are referred to Lee er al'>!° for
details on these probabilistic sensitivity calculations, as
that is out of the scope of this paper. The probability of
failure and sensitivity results from the Monte Carlo
simulations are then provided to the optimisation
algorithm. The RBDO optimiser used in the I-RBDO
software is MATLAB’s built in sequential quadratic
programming algorithm.

Description of example for casting
process feeding system optimisation
The example case study application presented here
compares the DDO and RBDO methods for the casting
feeding system design as shown in Fig. 1. The casting is

a 600 mm long by 100 mm wide by 50 mm thick bar. A
cylindrical shaped riser is used and shown in green in the
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5 Computational flow diagram of sampling based RBDO in the I-RBDO software

figure. The riser volume is to be minimised; this is the
cost function. The constraint in this optimisation
problem is that the average porosity within the bar
casting must be <0-1%. Hence, the casting yield is to be
maximised while keeping the average porosity in the
bar to be <0-1%. The two design variables to be
optimised are the radius R and height H of the riser,
which are considered to include uncertainties arising
from the manufacturing process. Since a sampling
based optimisation method is used, the sensitivities of
the riser volume to the radius and height are not
explicitly used by the software. For the RBDO analysis,
the uncertainties in R and H must be defined. In this
example problem, it is assumed that there is much less
control in the process of filling the riser to a given
height than to form the riser radial dimension during
the moulding process. The distributions for R and H to
be used in the RBDORBDO analysis are shown
schematically in Fig. 1. Here, the uncertainty in R is
defined by assuming it follows a normal distribution
with a standard deviation of 3 mm, and the uncertainty
in H is defined by a standard deviation of 10 mm. The
results from the DDO and RBDO cases will be
compared to a case termed here as a ‘typical practice’
riser design. For the ‘typical practice’ case, the riser
aspect ratio (height divided by diameter) is assumed to
be constant at 1, and the smallest riser size was found
by trial and error simulations that satisfied a 10 mm
safety margin, defined as the distance between the end
of the riser pipe and the casting cope surface. Because
the ‘typical practice’ case employs a safety margin, it is
also referred as the safety margin method of riser
design.
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Casting simulations were performed to determine
porosity in the casting using MAGMAsoft version 4.6
with steel properties for the German steel grade GS-
20Mn5 from the software’s database. This steel is a
0-2%C, 1-25%Mn plain carbon steel with chemistry
similar to an AISI 1522 steel. It has a liquidus tem-
perature of 1506°C and solidus temperature of 1428°C.
Filling was not simulated, and an initial temperature of
1600°C was used. The casting software MAGMAsoft
solves the heat conduction/solidification problem,
assuming no melt flow. Its porosity predictions are
based on a proprietary model, the accuracy of which
cannot be assessed in the current study. If the porosity
model’s accuracy was known, its statistical variability
could be included in the RBDO analysis, but that is
outside the scope of the current work. In the casting
simulation software, there is an adjustable parameter
(feeding effectivity) used in the porosity prediction
algorithm, which was set to 30%. Green sand mould
properties from the MAGMAsoft property database
were used. The casting simulation software’s automatic
mesh generation algorithm was used throughout the
optimisation process with a constant number of com-
putation volumes set to 200 000. This algorithm gene-
rates the computation meshes for the casting, riser and
mould using this value for target total number of com-
putation volumes used in the simulation. The resulting
mesh is typical of what a foundry engineer might use in
initial and routine simulations to develop a casting
production process.

In Fig. 6, the riser end sections of two computational
meshes used in the optimisation study are shown with
the riser in green and part of the casting in grey. The
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6 Example computational meshes used in casting simulations showing risers (green) and part of casting (grey) used for
a smallest riser sizes simulated (R=20 mm, H=80 mm) having 24 192 metal CVs and b largest riser size simulated

(R=65-4 mm, H=186 mm) having 37 364 metal CVs

mesh for the smallest riser size simulated (R=20 mm,
H=80 mm) is shown in Fig. 6a, having 24 192 metal
computational volumes (CVs). The mesh for the largest
riser size simulated (R=65-4 mm, H=186 mm) having
metal 37 364 CVs is shown in Fig. 6b. These meshes give
relatively fast run times of 1 to 2 min per casting
simulation on a Linux workstation using four Intel
Xeon E5472 3-0 GHz CPUs. Approximately 360 casting
simulations were required in the DDO and RBDO
analyses performed for a total simulation run time of
~9 h for this optimisation problem. This demonstrates
the practical feasibility of the optimisation method and
software since the casting simulations could be run even
faster on a newer CPU and a 16 CPU workstation or a
cluster.

The ‘typical practice’ casting simulation cases were
run first to determine the smallest riser size that satisfies
the margin of safety condition. Once R and H for the
‘typical practice’ case were found, those dimensions were
used as the starting point for the DDO analysis. Before
the search ranges for R and H and convergence
tolerances were established for the DDO and RBDO
solutions, 106 test simulations were run, covering ranges
for R and H from 20 to 65 mm for R, and from 66 to
175 mm for H. This testing led to establishing search
ranges and convergence tolerances for the I-RBDO
method, such that a solution could be achieved in a
reasonable number of simulations. Porosity results from
these 106 test runs are combined with the 116 casting
simulations used in the DDO solution to create a visual
map of how the porosity constraint varies with R and H,
which will be shown in the results section. After the
testing simulations, the search ranges for R and H for
the DDO and RBDO analyses presented in this paper
were defined in the software as 30 to 65 mm for R, and
60 to 190 mm for H.

The I-RBDO software uses the sequential quadratic
programming algorithm in MATLAB for both DDO
and RBDO analyses. The MATLAB optimisation
algorithm uses normalised tolerances, and these were
set to values recommended by the I-RBDO developers.
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In the DDO analyses, the tolerances for the objective
function and variables were set to 0-001, and the
constraints to 0-05. In the RBDO analysis, all tolerances
were 0-05.

Using the I-RBDO software, the DDO analysis was
performed first followed by the RBDO analysis. The
commercial casting simulation package MAGMAsoft
was run in an iterative fashion for the cases requested by
the I-RBDO software. All casting simulations and their
interfacing with the I-RBDO software were performed
manually. As requested from the output of the -lRBDO
software, a casting simulation case having a riser size of
R and H to be simulated is selected according to its
design of experiments algorithm. For a given simulation
case, the preprocessor in the MAGMAsoft software was
used to set up the case having the R and H to be
simulated, the mesh generator was executed to prepare
the case and then the simulation was executed. After
running the case, the post-processor was loaded and was
used to determine the average porosity for the casting
(excluding riser) as a ‘user result’. When the average
casting porosity is determined from the casting simula-
tion for a given set of values of R and H, the porosity
(i.e. constraint) and riser volume (i.e. cost) are passed
back to the I-RBDO software. In other words, the
porosity and riser volume are the performance measure
responses input to the I-RBDO software at its requested
sets of variables R and H. The I-RBDO software
analyses this information from the casting simulation as
if it were a ‘black box’ as discussed in connection with
Fig. 5. Then, according to its DoE and other algorithms,
the I-RBDO tool requests a new casting simulation case
(or cases) to be run until the optimisation process has
converged. Automating the interfacing of the casting
simulation and the I-RBDO software would save
significant time required for the overall process. The
process of manually using the preprocessor to set up a
case, to the extracting of results in the post-processor,
and to inputting them to the -RBDO software required
about four additional minutes per simulation beyond the
casting simulation time. This was about twice the actual
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Feeder Radius, R = 59.5 mm
Feeder Height, H= 119 mm
Feeder Volume = 1324x10° mm’

Casting Yield = 69.4%
Probability of Failure = 0%

- 0
Porosity = 0% Feeding (%)
_____________ 100.0
99.5
() 99.0
Feeder Radius. R = 44.9 mm Casting Yield = 81.2% 36.5
Feeder Height. I1=109.9 mm _ Probability of Failure = 60.8% 98.0
Feeder Volume = 695x10" mm”
Porosity = 0.099% 87.5
97.0
96.5
b 96.0
(b) 955
e Feeder Radius, R=51.5mm  Casting Yield = 76.6% 950
Feeder Height, H= 109.8 mm Probability of Failure = 4.6%
Feeder Volume = 915x10" mm’ 345
Porosity = 0% 94.0
93.5
33.0

‘ (c)

7 Midwidth sections showing riser piping via MAGMAsoft feeding percentage result for a case run using 10 mm safety
margin to determine riser height with riser diameter equal to plate width, b resulting riser piping and results for DDO
analysis and c results and predicted riser piping for RBDO case

casting simulation CPU time. Automating the interfa-
cing of the [-RBDO and casting simulation software
used is an ongoing task for the future. After that
development, more complex investigations using RBDO
to design casting processes will be possible.

Casting process feeding system
optimisation results

In Fig. 7, cross-sections are shown through the mid-
width section of the casting and riser to visualise the
feeding ‘shrinkage pipe’ for the three approaches used to
design the risers. The shrinkage pipe is the light purple
(empty) v shaped region in the riser that transitions
through the blue (porous) region to the grey (sound)
region. This v shaped shrinkage pipe forms as metal is
drained from the riser to make up for solidification
shrinkage in the casting. In Fig. 7a, the result is shown
for the ‘typical practice’ case with a riser aspect ratio of 1
and using a 10 mm safety margin to determine the
riser size of 119 mm height and 59-5 mm radius. The
resulting riser dimensions, riser volumes, average
porosity predicted and casting yield are given for each
feeding system design method in Fig. 7.

The dependence of the performance measures (riser
volume and porosity) on the variables R and H is shown
in Fig. 8. This figure is analogous to Fig. 2, where the
general concepts of the DDO solution were presented.
This figure visualises the ‘typical practice’ and DDO
design solutions relative to the performance measures
and variables as shown by the red diamond (<) and red
square ([J) for the ‘typical practice’ and DDO solutions
respectively. Rather than use R, Fig. 8 uses diameter,
since the aspect ratio (height divided by diameter) can be
more readily determined from the plot. A dashed line is
provided to show risers having an aspect ratio of 1, since
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recommended values for aspect ratios in steel casting are
in the range 1 to 1-25. In Fig. 8, the porosity is plotted as
the coloured flood contours. The contours are deter-
mined from 232 scattered simulation porosity results at
values of R and H used in the I-RBDO testing and to
obtain the DDO solution. Kriging interpolation was
used in the commercial plotting software Tecplot to
generate the contour map. The 232 porosity results
plotted in Fig. 8 are made up of 106 simulations shown
by small white triangles (A) that were run during the I-
RBDO testing and determining good settings to use (i.e.
parameters for design variable search ranges and
solution tolerance), and the 126 simulations run after-
wards for solving the DDO problem, shown as larger
white squares ([1). The testing simulation run results
were used as initial seed data for the DDO solution.
Therefore, 232 casting simulation results were provided
to the I-RBDO software to determine the DDO
solution. Note too that the porosity visualised through
the scattered data Kriging interpolation in the plotting
software is not equivalent to output from the Kriging
surrogate modelling used in the [-RBDO method. The
porosity performance measure constraint can be visua-
lised by the contours ~0-1% porosity. The performance
measure objective function (riser volume) is shown in
Fig. 8 as the black solid contour lines. The sets of
diameter and H values requested in the DDO solution
process are shown by the white squares in Fig. 8, while
the triangles give the initial cases provided to the I-
RBDO analysis. For the DDO cases simulated (white
squares) note, there are many simulation runs in the
neighbourhood of the DDO solution (red square
symbol), indicating the tolerances in the I-RBDO
analysis could have been relaxed. This is a demonstra-
tion of the importance in gaining experience with the I-
RBDO method and its parameters in order to solve a
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8 Interpolated average porosity at riser diameter and height values from casting simulations for 232 test runs and DDO
cases run as coloured flood contours. Small white triangles (A) are 106 test simulations run before the DDO simula-
tions. Larger white squares ([]) are 116 simulations run to solve DDO solution. Riser volume is given by black solid
contour lines. Red symbols are ‘typical practice’ solution at diamond (&) and DDO solution at square (1)

problem efficiently. Porosity results are clearly much
more sensitive to changes in diameter than height, which
is due in part that riser volume changes with the square
of changes in R. The quite conservative nature of the
‘typical practice’ result is apparent from the plot as well.
The coloured contour plot of the porosity results in
Fig. 8 demonstrates that even for a relatively straight-
forward casting process design case such as this, the
porosity prediction does not have a smooth appearance.
The porosity contours have isolated regions of higher
and lower porosity, and many more casting simulations
would be required to smooth out the porosity plot. This
is an indication that this DDO problem is ideally suited
to a sampling based optimisation method like that in the
present I-RBDO tool.

Similar to the DDO solution visualised in Fig. 8, the
corresponding RBDO solution with constraint and
objective functions is visualised in Fig. 9 along with
the design points for the DDO and safety margin casting
process solution methods. In Fig. 9, the 125 casting
simulation riser design points that were run in the
RBDO solution process are shown using the small white
triangles (A). Using the scattered data Kriging inter-
polation in the plotting software, the porosity is plotted
using coloured flood contours in Fig. 9 for the RBDO
solution casting simulation cases. Here, porosity results
are plotted on a more sensitive porosity scale than
Fig. 8, since this finer porosity scale (to a maximum of
1%) is well defined for the 125 RBDO casting simulation
cases. This is because the RBDO design point values are
more densely and uniformly distributed in the search
window in Fig. 9 than in Fig. 8. This results from the
DoE method used in constructing the surrogate model
for the reliability analysis. In Fig. 9, the larger red
triangle is the RBDO solution. The other red symbols
are the ‘typical practice’ solution indicated by the
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diamond (<) and the DDO solution as the square ([J).
Here, it is clear that the RBDO solution is achieved by
increasing the radial dimension of the riser. The
interpolated porosity contours in Fig. 9 suggest a better
location for the RBDO solution, indicated by data
circled by the red ‘O’, where the porosity is as low as the
RBDO solution and the porosity contours forgiving to
changes in R and H. In fact, looking through the casting
simulation results, there appears to be one result at
R=55-6 mm and H=84-7, where the porosity vanishes.
However, that result appears to be an outlier and the
software clearly rejected the region as feasible for the
RBDO solution.

A summary of the results from the casting feeding
system design studies for all three design methods is
provided in Fig. 10« for the riser dimensions and aspect
ratios, and in Fig. 100 for the casting yield and
probability of failure results. The casting yield for the
‘typical process’ safety margin design approach is ~69%,
and its probability of failure was found to be 0% based
on the assumed uncertainties in R (standard deviation of
+3 mm) and H (standard deviation of +10 mm), as
seen in Fig. 10b. This casting process design approach is
conservative.

The optimised casting process solution from the DDO
method is summarised in Fig. 7 and in Fig. 10 by the
middle bars. The DDO solution required 116 runs of the
casting simulation software to determine the solution. In
the DDO result, both R and H are markedly reduced
from the safety margin method; R is reduced from 59-5
to 44-9 mm, and H is reduced from 119 to 109-9 mm.
The DDO solution maximises the casting yield as seen in
Fig. 7b while keeping porosity in the casting to just
<0-1%. The DDO solution has an average casting
porosity of 0-099%, whereas the safety margin method
had 0%. The casting yield in the DDO solution is 81-2%,
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about a 12% increase over the safety margin method.
Qualitatively speaking, the shrinkage pipe of the DDO
solution feeder in Fig. 7b appears much flatter at the
bottom than that in the safety margin method. It
appears the DDO riser piping has no margin for error
that it might extend down into the casting and violate
the porosity constraint. It is not surprising that the
probability of failure for the DDO solution was
determined to be 60-8% as seen in Fig. 7b.

The RBDO solution riser pipe and results shown in
Fig. 7¢ required an additional 125 casting simulations,
which is an additional 54% computation time over the
DDO solution. A target probability of failure for the
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RBDO solution of 5% was provided to the I-RBDO
software before running this case. The resulting prob-
ability of failure of the RBDO solution was 4-6%, which
is much lower than that of the DDO solution but higher
than that of the safety margin method, which is a
very conservative design approach. The safety margin
method design was found to have 0% probability of
failure because none of the 65 simulation cases in its
local window for reliability analysis resulted in any
porosity in the casting. The large probability of failure
for the DDO solution is not surprising. Deterministic
design optimisation solutions are typically found to have
a probability of failure in the neighbourhood of 50%
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Summary results from casting feeding system design studies for three design methods a riser dimensions and
aspect ratio and b casting yield and probability of failure of design to meet porosity constraint
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when analysed using the [-RBDO method. The differ-
ence in the probability of failure between the RBDO and
the safety margin case is insignificant from a practical
point of view. For the RBDO solution, the casting yield
is 76-6%, which is 4-6% less than the DDO solution, and
is 7-2% higher than the safety margin solution as seen in
Fig. 7b. These results indicate that the 10 mm safety
margin design approach gives a conservative, safe
design, but it is less economical than the RBDO
solution. Clearly, the DDO method offers a dramatic
increase in casting yield (or decrease in riser volume),
but it is not feasible.

Note that in Figs. 7 and 10a, the H for the RBDO
solution is nearly identical to that for the DDO solution
(109-8 versus 109-9 mm for RBDO and DDO respec-
tively), and R is increased from 44-9 mm in the DDO
solution to 51-5 mm in the RBDO solution. This shift in
the radial dimension from the DDO to the RBDO
solution is also visualised in Fig. 9. The uncertainty for
H is much larger than that for R, and to prevent the
shrinkage from piping into the bar, one might wrongly
think that A should be increased to be sure it is large
enough to prevent this by increasing the safety margin.
However, many foundries know from experience that
the radial dimension of risers should be increased to
prevent piping into the casting. The resulting RBDO
solution is seen to agree with foundry practice and
achieves its solution by increasing R to a large enough
value that the solution is insensitive to a large change in
H. From the riser volume contour lines and the coloured
porosity contour lines in Fig. 9, which run somewhat
parallel to increasing H, it is also clear that increasing H
in the region of the solution does not give a reduction in
porosity, only a moderate increase in riser volume.

For top risers used in steel casting (the type of riser
examined here), the aspect ratio [AR=H/(2R)] is
recommended to be at least 1, and for side risers (with
contact to the side rather than the top of a casting) as
large as 1-5. If the AR exceeds 1-5, there is no benefit to
the riser’s feeding effectiveness arising from the addi-
tional height and the additional wasted metal in the riser
is uneconomical. In addition, secondary under riser
shrinkage may form in steel castings with ARs >1-5.
The AR results of this study are shown in Fig. 7a. The
safety margin approach used an AR of 1, the DDO
result gave an AR of 1-22, while the AR for the RBDO
solution was 1-07. As a result from the RBDO analysis,
ARs closer to 1-1 for casting feeding systems with top
risers can be used and appear to be more efficient and
reliable.

Conclusions

Application of optimisation methods to casting process
design provides more than just optimal solutions. It
provides an overview of possible solutions, some of
which might be novel and innovative. It gives foundry
engineers insight into the sensitivity and stability in both
the actual process, and process models, to variables and
parameters. Here, RBDO and casting simulation are
integrated to go a step further in the development of
optimisation methods by including uncertainties in
process and model variables, and determining an
optimal solution with a known probability of success.
For the typical approach to riser design using a safety
margin of 10 mm, the probability of failure was 0%
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based on assumed uncertainties in riser height and
radius and the results of the casting simulations. The
probability of failure for the RBDO design method was
4-6%. The safety margin design approach gives an overly
conservative safe design that is much less economical
than the RBDO solution, which had a 7% casting yield
improvement over the safety margin approach. It has
been demonstrated that a purely deterministic optimal
solution offers a remarkable 12% increase in casting
yield over typical design practice, but had an unaccep-
table 61% probability of failure. The deterministic
optimisation solution required 232 casting simulations
and the RBDO solution required an additional 125
simulations. This resulted in an additional 54% compu-
tation time required in achieving the RBDO solution. It
is well worth the additional cost to achieve an optimal
solution that is reliable, since the deterministic solution
is not. Another advantage of the RBDO method is that
its output consists not only of a reliable optimum design
but the reliability level of the design. Not only is the
RBDO more reliable than the DDO solution, but it has
a higher casting yield than the safety margin approach,
which is representative of industrial practice. As a result,
the additional computational cost of the RBDO method
is offset by manufacturing cost savings. An additional
insight from this study is that the RBDO solution
corresponds to the practice followed by most foundries,
that increasing the radial dimension of risers, rather
than the height, is the most reliable way to resize a riser
that is not feeding a casting adequately.

It has been demonstrated that a deterministic
optimisation approach produces a design that is only
~50% reliable and therefore fails to produce a reliably
sound casting. The results demonstrate that further
research into applying the RBDO method to casting
process design and cast component design is worth
pursuing. Since the interfacing between the RBDO
optimisation and casting software has been manual up
to this point, a conclusion of this study is that developing
an automated interface between them is a worthy topic
for future work. The fact that full automation of casting
process design optimisation is possible and effective has
been demonstrated for DDO in recent versions of
commercially available casting simulation software.®®
Such autonomous methods eliminate the need to
manually set up each new simulation case (geometry,
meshing, etc.) and extract results from the post-processor
for input into the optimisation software. While the
hundreds of simulations that are necessary in an
optimisation may seem like a large number, automation
and other recent advances have made computational
casting optimisation practical for industry. After this
development, follow on investigations building from the
current work can examine more complex castings, and
more process variables and uncertainties. Numerous
foundries already use DDO based casting process design
optimisation software® '? for castings that are much more
complex than the simple example presented here. Since
RBDO increases the computation time by only ~50%
over DDO, RBDO can be expected to become a valuable
tool in the casting industry. In addition, linking mechan-
ical property predictions from casting simulation results
to finite element stress analyses along with the RBDO
analyses is an continuing topic of research of the authors.
This is leading to the development of new methods for

VoL 28 NO 3

191



Hardin et al.

192

Reliability based casting process design optimisation

reliability based manufacturing process and design
optimisation of castings.
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