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Abstract. The specific area of the solid-liquid interface is an important integral measure
for the morphological evolution during solidification. It represents not only the inverse of a
characteristic length scale of the microstructure, but it is also a key ingredient in volume-
averaged models of alloy solidification. Analytical descriptions exist for either pure coarsening
or pure growth processes. However, all alloy solidification processes involve concurrent growth
and coarsening. In the present study, the kinetics of the solid-liquid interface of a columnar
dendrite are studied using a 3D phase-field model. The simulation results are combined with
data from recent experiments to study the influence of the cooling rate on the evolution of the
interfacial area.

1. Introduction
A key aspect in predicting the microstructure in castings is the detailed knowledge of how
geometrical features evolve over time during solidification. Often, local features, such as
the secondary dendrite arm spacing, are used for the geometrical characterization of the
microstructure. However, they represent incomplete descriptions of the solid structure and their
measurement can become difficult during the late stages of solidification, when the structure
undergoes fundamental transformations. Alternatively, integral measures, such as the specific
area of the solid-liquid interface, can be introduced that more generally characterize the overall
morphology [1, 2]. One definition of the specific interface area is the amount of interface area A
per volume of the enclosed solid phase Vs,

Ss = A/Vs, (1)

which may also be considered a characteristic inverse length scale of the microstructure. Another
definition is the ratio of the interface area A to the sample volume V containing both solid and
liquid phases

Sv = A/V = fsSs, (2)

where fs = Vs/V is the solid volume fraction. Sv is also referred to as the interfacial area
density. Ss and Sv can be measured directly from metallographic sections. Both quantities are
key ingredients in volume-averaged (macroscopic) models of alloy solidification and are needed,
for example, in modeling of microsegregation (back-diffusion) or melt flow through the mush [3].
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In the latter example, the permeability of the mush Kp is directly related to the interfacial area
density via the Kozeny-Carman relation Kp ∝ (1− fs)3/S2

v .
Under isothermal conditions, the evolution of the inverse specific interface area S−1

s is usually
described by the following relation for surface energy driven coarsening [1]

S−n
s − S−n

s0 = Kt (3)

or

S−1
s =

(
S−n
s0 +Kt

) 1
n , (4)

where t, n, Ss0, and K are time, coarsening exponent, specific interface area at t = 0, and
coarsening rate constant, respectively. For volume diffusion-limited coarsening an exponent of
n = 3 has been firmly established by both experiments and theory. This exponent was first
obtained in the context of Ostwald ripening by the LSW theory [4, 5, 6], describing the long-
time evolution of a system of dispersed spherical particles. While the LSW theory assumes an
idealized geometry and vanishing solid fractions, it has been possible to extend the validity of
n = 3 to more general geometries [1, 7] and higher solid fractions [8], including morphologies
that are initially dendritic. In the latter case, the coarsening rate constant K is known to be
a strong function of the solid fraction [8]. While in pure coarsening theories the solid fraction
is assumed to remain constant, a model has been developed for the case of concurrent growth
and coarsening [9]. While this model is limited to low solid fractions, an exponent of n = 3 was
obtained even in the presence of solidification.

In contrast to pure coarsening, solidification implies that the solid fraction fs increases over
time. Eventually, the specific interface area becomes strongly affected by coalescence and the
theory of Ref. [9] is no longer valid. For processes that involve only growth, but no surface
energy driven coarsening, the interfacial area density Sv is often correlated to fs by

Sv = Cfps (1− fs)q , (5)

where C, p, and q are constants. According to Eq. (5), Sv experiences a steep increase during
growth, goes through a maximum, and then decreases due to impingement and coalescence
of interfaces. Different values for the exponents p and q have been suggested in the literature.
Speich and Fisher [10] found that data from a broad range of recrystallization experiments could
be described by p = q = 1. These exponents were later confirmed by a computational model for
the growth and impingement of grains [11]. Other suggestions have been p = q = 2/3 [12] and
p = q = 1/2 [13]. A geometrical model of growing and impinging spheres has demonstrated that
the parameters C, p, and q are influenced by the nucleation kinetics and the spatial distribution
of the spheres [14]. Hence, generally valid values for C, p, and q are unavailable.

In summary, Eqs. (4) and (5) are useful relations for the specific interface area, but are
limited to seemingly opposing cases. While Eq. (3) was developed for the isothermal case (θ̇ = 0,
fs =const), where the interface area evolves over time due to coarsening, Eq. (5) is meant to
describe situations where fs varies with time due to growth (θ̇ 6= 0, fs 6=const) but the interface
area does not change when the solid fraction is held constant. Hence, the question remains how
these two models can be combined for situations that involve both growth and coarsening, such
as dendritic solidification of alloys.

The direct measurement of the specific interface area during alloy solidification has not been
possible until about a decade ago. Now, high-speed X-ray tomography is able to provide
time-resolved geometric data during metallic alloy solidification [15, 16]. In addition, recent
advancements in computational methods allow for detailed studies of solidification using phase-
field simulations. The present work uses a 3D phase-field model to analyze concurrent growth
and coarsening during directional solidification of a binary alloy. Experimental data for the
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specific interface area are extended to cooling rates that are beyond the limit of present X-ray
tomography. As a result, we are able to show how the specific interface area kinetics change
with cooling rate.

2. Model
To analyze the morphological evolution during growth and coarsening we use a three-dimensional
phase-field model of a columnar dendrite (Al-6wt.%Cu). The model setup corresponds to a
Bridgman experiment, where dendrites grow in a fixed temperature gradient G that moves at
constant velocity Vp. We employ a phase-field model for directional solidification of a binary
alloy, based on the frozen gradient approximation of the temperature field, that is discussed in
detail in [17]. The model is extended to include finite-rate solute diffusion in the solid [18].

The numerical implementation of the problem is based on the FEM library AMDiS [19, 20],
which enables the use of adaptive mesh refinement and efficient parallelization on a HPC
infrastructure. A semi-implicit time integration scheme is employed to allow for adaption of the
time steps to the different time scales of the interface dynamics during growth and coarsening.
The present simulation is for a pulling speed of Vp = 300µm/s and temperature gradient of
G = 200 K/cm. The material data are representative of an Al-Cu alloy and are given by an
alloy solute concentration c0 = 6 wt.%, liquidus slope m = −2.6 K/wt.%, partition coefficient
k = 0.14, and mass diffusivities in the liquid Dl = 3000µm2/s and solid Ds = 0.3µm2/s,
respectively. The capillary length is taken as d0 = 0.005µm and the surface energy anisotropy
coefficient as ε4 = 0.02. The computational domain covers a 1/8 sector of a full dendrite by using
available symmetries. The width of the simulation domain is 70µm, i.e. one half of the primary
dendrite spacing, while the length is 350µm. No-flux conditions are applied on all boundaries
and the initial geometry of the seed at the bottom of the domain is a parabola of revolution.
The domain is limited at the top, such that the dendrite tip impinges on the upper wall, and the
simulation proceeds by further solidification and coarsening of the previously grown structure
(see Fig. 1). Numerical and phase-field parameters were chosen in order to obtain converged
results for the steady state dendrite tip undercooling. This value was then used as the initial
liquid undercooling in the present simulation. The computations were performed on a HPC
cluster using 512 CPU’s and took about one week of time. The smallest element size was
0.153µm and the average problem size was 2.5× 107 degrees of freedom.

(a) t = 0.5 s (b) t = 1 s (c) t = 2.5 s

μm50μm50

(d) t = 7 s

Figure 1: Evolution of the dendrite geometry: (a)-(b) full view of the growing dendrite, (c)-(d) 
cutaway view of half of the dendrite during the coarsening stage.
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3. Results and discussion
Fig. 1 shows snapshots of the computed dendrite at different times. The first stage is
characterized by a rapid increase of the interface area, while at later times coarsening and
coalescence of sidebranches can be observed. At high solid fractions, liquid channels and
inclusions are formed inside the solid structure (Figs. 1c, 1d).
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Figure 2: Averaging volumes at different positions along the growth direction (top), and evolution 
of the averaged interface area and solid volume (bottom).

For the evaluation of the interface area A and the solid volume Vs of the dendrite shown in
Fig. 1, five sample volumes are placed along the direction of growth inside the computational
domain; see Fig. 2 (top). The size of the sample volumes is chosen small enough to neglect
temperature variations within them, but large enough to avoid excessive scatter in the integral
measures. The tilted shape of the sample volumes further aids in suppressing scatter by covering
an approximate constant number of sidebranches between adjacent volumes. The interface area
A and solid volume Vs for each sample volume are plotted in Fig. 2 (bottom) as a function of
time, where t = 0 refers to the instant when a portion of the interface enters the sample volume.
It can be seen that A differs more strongly between the five sample volumes than Vs. The center
sample volume is most representative of the average variation in A and is used exclusively in
the following analysis.

A scaled undercooling and cooling rate can be defined, respectively, as

θ =
Tl(c0)− T

∆T0
, θ̇ =

−Ṫ
∆T0

, (6)

where T is the temperature, Ṫ is the cooling rate, Tl(c0) = Tm−|m|c0 is the equilibrium liquidus
temperature and ∆T0 = |m|c0(1/k − 1) is the equilibrium freezing range. Figure 3 shows the
computed solid fraction as a function of the scaled undercooling. As expected, the solid fraction
is equal to zero until the scaled undercooling reaches the dendrite tip undercooling (θ ≈ 0.04);
afterwards, the solid fraction increases sharply with increasing scaled undercooling. This solid
fraction variation can be compared to the classical lever rule and Scheil equation predictions,
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which assume that the dendrite tips are located at the equilibrium liquidus isotherm (θ = 0). In
terms of the present nomenclature, the lever rule and the Scheil equation are given, respectively,
by

fs =

[
1 + k

(
1

θ
− 1

)]−1

(lever rule) (7)

and

fs = 1−
[
1 + θ

(
1

k
− 1

)] 1
k−1

(Scheil equation). (8)

The above equations can also be written in time-dependent form fs(t) by using the relation
θ = θ̇t, where it is assumed that T (t = 0) = Tl(c0). Figure 3 shows that, other than for the
dendrite tip undercooling effect, the lever rule and the Scheil equation closely bound the fs(θ)
variation from the phase-field simulation.
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Figure 3: Solid fraction as a function of 
the scaled undercooling.
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Figure 4: Variation of the interfacial area 
density with solid fraction.

The computed interfacial area density Sv is plotted in Fig. 4 against the solid fraction. The
figure shows that Sv varies in accordance with Eq. (5). By fitting the present data to Eq. (5),
it is found that the exponents are equal to p = 0.99 and q = 0.92, which is close to p = q = 1
suggested in Ref. [10]. Clearly, exponents of p = q = 1/2 [15] do not fit the simulation results.

The various temporal evolutions of the inverse specific interface area S−1
s are shown and

compared in Fig. 5. Figures 5a, 5b, and 5c represent experimental data from three different
studies [21, 16, 15], while Fig. 5d provides the results for the present simulation. The plots are
ordered by increasing cooling rate. The experimental data for Ss are fit to Eq. (4) in order to
determine the exponent n. For a vanishing cooling rate (θ̇ = 0), Fig. 5a indicates that the value
of n = 3 that is expected for pure coarsening is approximately attained. The exponent decreases
with increasing cooling rate. For the present simulation with the highest cooling rate (Fig. 5d),
an exponent of n = 3 is obtained for short times (t < 2 s), while an exponent of n = 0.86 fits the
simulation data at longer times (t > 2 s). The exponent of n = 3 during the initial growth stage
is in agreement with the finding in Ref. [9] for concurrent growth and coarsening of spheres in
the limit of low solid fractions. The solid fraction at t = 2 s is equal to 0.5, indicating that the
neglect of coalesence of solid is only appropriate up to this fraction. The exponent of n = 0.86
observed at higher solid fractions (t > 2 s) may be explained as follows. By inserting the Scheil
equation, Eq. (8), into Eq. (5), assuming that p = q = 1 and using S−1

s = fs/Sv, an analytical
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relation for the inverse specific interface area as a function of time can be derived as

S−1
s =

1

C

[
1 + θ̇t

(
1

k
− 1

)] 1
1−k

. (9)

Comparing this relation to the general coarsening law given by Eq. (4) gives

n = 1− k, (10)

where k = 0.14 in the present simulation. Figure 5d shows that an exponent of n = 0.86 does
indeed provide a good fit of the predicted S−1

s at long times. Note that this derivation is only
valid for p = q = 1 and cannot be applied to the data in Figs. 5b and 5c.
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Figure 5: Evolution of the characteristic length scale for increasing scaled cooling rates: 
experimental data from the dissertation of D. Kammer [21] (a), personal communication with 
P. Voorhees [16] (b), and Limodin et al. [15] (c); (d) shows the present simulation results.

4. Conclusions
In this work we have studied the kinetics of the solid-liquid interface of a columnar dendrite by
performing a 3D phase-field simulation. The computed interface area and volume are integrated
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over a representative volume element and presented in terms of the inverse specific interface
area as a function of time and the interfacial area density as a function of solid fraction. These
results are compared to existing models for pure coarsening and pure growth. For the latter
case, Eq. (5), exponents close to p = q = 1 are obtained, which compares favorably with
the exponents suggested by Speich and Fisher [10]. Comparing the present data to a pure
coarsening law, Eq. (4), gives an exponent of n = 3 at short times and n = 0.83 at longer
times. The former is in agreement with the concurrent growth and coarsening theory of Ref.
[9], while the latter is explained in the special case of p = q = 1 and the solid fraction following
the Scheil equation. An examination of previous experimental data, together with the present
simulation results, reveals that the coarsening exponent decreases with increasing cooling rate.
Nonetheless, considerable additional research is necessary to obtain a generally valid relation for
the evolution of the specific interface area in alloy solidification. Simulations are underway that
investigate the effect of different cooling rates and other alloy characteristics on the interface
kinetics.
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