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A physical model is proposed for the solid/liquid interfacial drag in both globular and dendritic 
equiaxed solidification. By accounting for the presence of multiple particles and the non- 
sphericity and porosity of the individual equiaxed crystals, a drag correlation is developed, 
which is valid over the full range of solid volume fractions. It is shown that neither the solid 
liquid interfacial area concentration nor the grain size alone is adequate to characterize the 
interfacial drag for equiaxed dendritic crystals in both the free particle and packed bed regimes; 
thus, the present model is based on a multiple length scale approach. The model predictions 
are compared to previous analytical and numerical results as well as to experimental data avail- 
able in the literature, and favorable agreement is achieved. 

I. INTRODUCTION 

RELATIVE motion between solid and liquid during 
alloy solidification is one of the most critical transport 
phenomena associated with macrosegregation and 
microstructural development in solidification of metal 
alloys. In order to predict the relative movement as well 
as its ensuing effects in a solidifying alloy, accurate 
knowledge of the solid/liquid interracial drag over the 
entire range of solid volume fractions is required, m Two 
regimes can be distinguished in solidifying alloy cast- 
ings: (1) the free particle regime, where crystals can 
move in the melt, and (2) at higher solid fractions, the 
packed bed regime, where the crystals are stationary and 
the melt penetrates through the bed. 

Numerous studies on solid/liquid interfacial drag have 
been carried out due to this drag's importance in many 
engineering disciplines, as discussed in Ahuja. 121 Within 
the context of equiaxed alloy solidification, notable 
works include those by Piwonka and Flemings, t3~ 
Murakami and Okamoto, t41 Poirier and Ganesan, tSj and 
de Groh e ta / .  t61* Piwonka and Flemings t3~ were the first 

*After submission of the present article, the authors became aware 
of two very recent articles by Poirier and co-workers on the perme- 
ability of equiaxed mushy zones, t28'291 

to measure the permeability in AI-4.5 wt pct Cu alloys 
with equiaxed dendritic structures. Their data are un- 
fortunately of limited use because the microstructures 
were not well characterized, so that a relationship be- 
tween the permeability and the geometrical parameters 
of dendrite structures cannot be fully established. 
Murakami and Okamoto, t41 using borneol-paraffin 
alloys, reported experimental data for the permeability 
of a mushy zone consisting of globular grains, and more 
recently, Poirier and Ganesan 15~ measured the perme- 
ability of AI-Cu equiaxed systems with both globular 
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and dendritic-globular structures. These two recent stud- 
ies are restricted to solid volume fractions higher than 
0.5 (i.e.,  the packed bed regime). In the other extreme, 
Zakhem e t a / .  I71 determined the free settling character- 
istics of single equiaxed crystals and dendrite fragments 
and de Groh et al.[6] proposed a correlation for the inter- 
facial drag. 

It is apparent from this literature survey that a general 
correlation capable of predicting the interfacial drag in 
an equiaxed system for all solid volume fractions is still 
lacking. Such a correlation, however, represents a key 
constitutive relationship for solidification models that in- 
clude fluid flow in the mushy zone and the transport of 
free equiaxed crystals. The present article, therefore, is 
intended to develop a physical model for the calculation 
of the interfacial drag in a system composed of multiple 
equiaxed crystals. Both globular and dendritic morphol- 
ogies are considered. Three important effects that dictate 
flows around and through dendrites in the system under 
consideration are addressed in the model: the presence 
of multiple crystals, the nonsphericity of the crystal en- 
velopes, and the porosity of equiaxed dendritic crystals. 
Furthermore, because for equiaxed dendrites there is a 
potentially large disparity between the size of the solid- 
liquid interfacial area and the overall grain size, the pres- 
ent model explicitly accounts for multiple length scales. 
Finally, the model is compared to previous analytical 
and semianalytical results and validated by the limited 
experimental data available in the literature. 

II. MODEL DEVELOPMENT 

A.  Basic Considerations 

This article is a continuation of the work by de Groh 
et al.161 on free settling of single equiaxed crystals. The 
present model extends the previous work by accounting 
for the presence of multiple crystals. Use is made of the 
"porous dendrite envelope" concept introduced by 
de Groh et al. t6] or more generally, the multiphase ap- 
proach proposed by Wang and BeckennannJ 81 The den- 
drite envelope is defined as a smooth surface connecting 
the primary and secondary arm tips and contains both 
the solid dendrite and the interdendritic liquid. Hence, a 
control element consisting of multiple equiaxed dendritic 
crystals shown in Figure l(a) can be viewed to be oc- 
cupied by three phases: solid (s), interdendritic liquid 
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Fig. 1--Schematics of (a) the physical problem: flow through a control element of equiaxed dendrites; and (b) the model: flow through a 
porous/plain composite channel. 

(d), and extradendritic liquid (l), with the two liquid 
phases separated by the dendrite envelope. The reader is 
urged to refer to References 8 through 10 for a more 
thorough discussion of the multiphase approach as well 
as its various applications. The liquid phases are asso- 
ciated with different interfacial length scales and possess 
different flow behaviors. The fluid flow around the den- 
drites is mainly controlled by the extradendritic liquid 
fraction and the nonspherical shape and size of the den- 
drite envelope, while the flow through the dendrites is 
determined by the permeability within the porous den- 
drite envelope. These two flows interactively affect the 
drag force experienced by the dendrites. The globular 
crystal represents a limiting case of an equiaxed dendrit- 
ic crystal, in which the interdendritic liquid is absent and 
the envelope coincides with the solid/liquid interface. 

With reference to Figure 1 (a), several important pa- 
rameters necessary for the following model development 
are introduced: 

(1) The interfacial area concentrations, Ss and Se, de- 
noting the surface areas of the solid/interdendritic liquid 
and dendrite envelope interfaces, respectively, divided 
by the total volume, V0, of the control element shown 
in Figure 1 (a). The inverses of S, and Se are the afore- 
mentioned two interfacial length scales that characterize 
dendritic solidification. For highly dendritic crystals, the 
difference between Ss and Se can be several orders of 
magnitude. In globular solidification, S, and S~ coincide. 
(2) The sphericity of the dendrite envelope, ~be, defined 
as the ratio of the surface area of a hypothetical sphere 
of the same volume as the dendrite envelope to the actual 
envelope surface area. The sphericity (lying between 

zero and unity) is a measure of the deviation of the den- 
drite envelope shape from a perfect sphere, with ~be = 1 
representing a spherical dendrite envelope. 
(3) The volume fraction of phase k, ek, designating the 
fraction of the phase volume within the control element, 
where k corresponds to s (solid phase), d (interdendritic 
liquid phase), or I (extradendritic liquid phase). Hence, 
es + ed + et = 1. For globular crystals, ed = O. 
(4) The volume-averaged intrinsic velocity of phase k, 
(Vk) k. Physically, the term (vk) k is nothing else but the 
average velocity of a phase in the control element; e . g . ,  
(v,) s is the solid velocity. 

In addition, the internal solid fraction, esi, within the 
porous dendrite envelope, the total liquid fraction, and 
the total liquid velocity are defined, respectively, as 

and 

e,, = e , / ( e ,  + ed) [1] 

ef = ea + el [2] 

pfEf<Vf> f =  pd~,d~Vd> d "~- Plel<Vl> l [3] 

where subscript f denotes the total liquid, consisting of 
the inter- and extradendritic liquids. In the following, it 
is further implicitly assumed that thermophysical prop- 
erties of the inter- and extradendritic liquids are 
identical. 

Traditionally, there have been different approaches to 
the modeling of the interfacial drag in a multiparticle 
system. For high solid fractions ( i . e . ,  the packed bed 
regime), the porous medium approach is often adopted, 
with the permeability representing a key parameter.tH'12j 
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While at low solid fractions (i.e., the free particle 
regime), the submerged object model is more frequently 
used. t6'131 In the latter approach, a multiparticle system 
is viewed as an assemblage of submerged objects, and 
the interfacial drag is calculated by modifying the Stokes 
law for a single spherical particle. Recently, however, 
it has been shown that both approaches can be unified, 
thereby resulting in a generalized drag model (valid for 
all solid fractions) for solid sphere systems. I141 Indeed, 
in the submerged object approach, the total drag force 
in a unit volume of the dendrite system shown in 
Figure l(a) can be written as m 

Md = 18(1 -- el)lxyC~ 
- ~ e}((vs) s - (vy) [41 
d; 

where the drag is based on the superficial relative ve- 
locity, namely, e:((v:): - (vy), and de is the diameter 
of an equivalent sphere having the same volume as the 
dendrite envelope: tSj 

6(1 - el) 
de = - -  [51 

4,~s< 

The settling ratio of a particle in a multiparticle system, 
C~, accounts for all departures from the idealized single 
solid sphere settling as described by Stokes law. Under 
the low particle Reynolds number condition, these in- 
clude (1) the porosity of and (2) the nonsphericity of the 
dendrite envelope as well as (3) the presence of other 
particles. 

The drag force, M e , must also be equal to the pressure 
gradient Ap/Ax, and the latter can be written as 

ap 
-~: e/( (v:): - (v,)') [61 

according to Darcy's law for flow in packed beds. 
Equating Eqs. [4] and [6] yields 

.7 
K - [71 

18(1 - et)C~ 

This relation demonstrates a mathematical equivalence 
between the overall permeability, K, and the settling 
ratio, C~, and furthermore implies the equivalency of the 
porous medium and submerged object approaches. Note 
from Eqs. [4] and [7] that the knowledge of either K or 
C~ is necessary to determine the interracial drag. 

B. Overall Permeability 

To determine the overall permeability, K, it is as- 
sumed that the flow through the multidendrite system 
shown in Figure 1 (a) is equivalent to the one through a 
composite channel that consists of a fine porous layer 
(modeling the interdendritic region) adjacent to a thin 
plain layer (modeling the extradendritic region). This is 
shown in Figure l(b). The porous sublayer is character- 
ized by an interdendritic permeability, Kd, which is a 
measure of the interdendritic flow rate under a certain 
pressure gradient. The extradendritic flow is mainly de- 
termined by the size of the extradendritic region, so that 
an extradendritic permeability, K~, can be defined as the 

flow resistance of the composite channel when the inter- 
dendritic region is fully solid. Hence, the following two 
limiting cases exist: 

K = ( 1 -  et)Ka w h e n K t = 0  [8] 

and 

K = K t  w h e n K a = 0  [9] 

The term appearing before Kd in Eq. [8] is a volumetric 
factor to transform Kd into K when the extradendritic 
region is impermeable. According to the general corre- 
lation method proposed by Churchill and Usagi, t151 
which has found many successful applications in a spec- 
trum of engineering disciplines, a generalized correlation 
for K can be constructed that is of the form 

K = {[(1 - e,)Ku]" + KT} 1/" [10] 

where n is an index to be determined. Equation [10] 
identically reduces to the limiting cases expressed by 
Eqs. [8] and [9]. To facilitate the following derivation, 
a dimensionless diameter is introduced as in Neale 
et al.: 1161 

de 3(1 - et) 

/3 - 2V'-K = ~beSeVK [11] 

Then, the general correlation, Eq. [ 10], can be rewritten 
as  

/3d 
/3 = [(I - e t ) "  + (/3d/~D2"l t12~ [12] 

where fld and /3t are likewise defined by Eq. [11] with 
K replaced by Kd and Kt, respectively. 

C. Flow Partition Coefficient 

Another useful piece of information can now be ob- 
tained: the distribution of the liquid flow rate in the inter- 
and extradendritic regions. A flow partition coefficient, 
Kv, is defined as the ratio of the liquid flow rate passing 
through the equiaxed dendrites to the total flow rate 
through the whole system, namely, 

edf(vd) d -- (V,)') = K:s((V:):-- (V,)') [13] 

and 

e,f(vy - (v,)') = (I - K~)e:((v:) f- (v,)') [14] 

The coefficient Kv is also called the fluid collection ef- 
ficiency of porous aggregates in chemical engineer- 
ing. tLTl Assuming creeping flow in the overall composite 
system as well as in the interdendritic region under the 
low particle Reynolds number condition, the total liquid 
and the interdendritic liquid velocities can be linearly re- 
lated to the common pressure gradient imposed, respec- 
tively, as 

(1--Esi)((vd)d--(Vs)S)'=Kd(~) [15] 
/Xd 

o,,>') = [161 
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where the left-hand sides of Eqs. [15] and [16] represent 
the superficial relative velocities as required by Darcy's 
law. Substituting Eqs. [15] and [16] into [13] and further 
noting Eq. [11] then yields 

K~ = (1 - el) (/3//3a) 2 [ 17] 

As a constitutive relation, Eq. [17] can greatly simplify 
the solution of the multiphase model recently proposed 
in Reference 18. This is because only the momentum 
equation for the total liquid phase needs to be solved, 
and the individual liquid velocity fields, (Vd) d and (vt) ~ 
can be algebraically obtained from Eqs. [13] and [14] 
together with Kv calculated from Eq. [17]. 

Both the overall permeability K (or/3) and the flow 
partition coefficient K~ depend on three quantities:/3d,/3t, 
and n, whose evaluations follow. 

D. Evaluation of  the Interdendritic Permeability 

The interdendritic permeability, Ka, within the den- 
drite envelope can be estimated from the Kozeny-  
Carman equation, {jq namely, 

( 1  - -  gsi)  3 (1 - -  8 s i )3 (1  - -  El) 2 

g d - 5 ( A s / V e )  2 - 5S2s [ 1 8 ]  

where As and V~ are the solid/liquid interfacial area of 
the dendrite and the envelope volume, respectively. The 
second identity is simply to express Ka in terms of the 
solid/liquid interfacial area concentration, S~, an easily 
measured stereological quantity. One thus obtains 

3V'5Ss 

/3d  = ~ e S e ( l  _ _  Esi)3/2 [19] 

E. Evaluation of  the Extradendritic Permeability 

The evaluation of/3z needs a few more steps. It is clear 
from Eq. [12] that/31 has to correctly represent two lim- 
iting cases: el ~ 1 (a single dendrite) and fla ~ oo 
(packed bed of solid spheres). In the former case, 
de Groh et al.[61 have proposed a correlation for the set- 
tling ratio, namely, 

1 2/3211 - tanh (fld)//3a] 
= - -  [ 2 0 ]  

Cp(fbe) 2/32 + 311 - tanh (/3d)//3a] 

where ~b~ is the sphericity of the dendrite envelope. The 
correction factor, Cp(ck3, accounts for the nonspherical 
shape of the dendrite envelope, while the second term 
on the right-hand side of Eq. [20] describes the effect of 
the permeability of the dendrite envelope and is based 
on the analytical results of Neale et al. 061 

In the other limiting case (i.e., packed bed of solid 
spheres), the well-known free-surface cell model attrib- 
uted to Happel t~9j gives 

4 
2 + ~ r l  5 

C7 = with 
2 - 3'q + 3"q 5 - 2r/6' 

'O = (1 -- el) ~/3 [21] 

An expression for C~, which encompasses both limiting 
cases, can simply be taken as the product C~C m. Con- 
verting to the parameter,/3~, using Eqs. [7] and [11], one 
thus obtains 

{~  4 ~75 
2+ 5 

fit = (1 - et) 2 - 3,1 + 3,15 - 2@ 

t 
l/z 

2 /32 [ l  -  n_h [ 2 2 ]  

Cp(~be) 2 s  ;[1 - tanh (/3d)//3a]) 

The function Cp(qbe) which accounts for the non- 
spherical envelope shape has been experimentally deter- 
mined in the packed bed regime for liquid fractions up 
to 0.7.12~ It is widely accepted that the Kozeny-Carman 
equation is also valid for nonspherical particles provided 
that the interfacial area concentration is used as the char- 
acteristic length. This suggests that 

Cp(cb~) = 4)2 for 0.7 > et > 0.0 [231 

The shape function, however, has not been evaluated in 
the free particle regime, with the only empirical corre- 
lation available in the limit of a single equiaxed dendrite 
as proposed by de Groh et al.[6l In the absence of reliable 
information on Cp(tbe) within the range of 1 > el > 0.7, 
the correlation of de Groh et al. t6] is generalized to dilute 
systems in this work: 

Cp(4)e) = 1.26 lOglo for 1 > el > 0.7 [24] 

F. Evaluation of  the Index n 

The last parameter, n, can be determined by compar- 
ing the present model consisting of Eqs. [12] and [22] 
with the analytical results obtained by Neale et al. tl61 for 
a swarm of permeable spheres for different values of fla. 
The best approximation is achieved when 

n = 0.176 log10 fie + 0.275 [25] 

as can be seen from Figure 2. It should be noted that 
although the results of Neale et al., I161 which are ob- 
tained from the cell theory first proposed by Happel, t~9] 
are only approximate, several more recent studies t26'27] 
have indicated that these closed-form results are re- 
markably accurate. 

G. Model Summary 

The present model to calculate the solid/liquid inter- 
facial drag in equiaxed solidification is summarized in 
Table I. The parameters es, esi, Ss, Se, and ~be are the 
necessary inputs. Theoretically, the volume fractions 
(e.g., es and e~i) are primary variables to be calculated 
from transport equations, and Ss, Se, and ~be can be mod- 
eled as functions of certain geometric parameters and the 
volume fractions in question. [8] In particular, it is shown 
in Reference [8] that (1) the solid/interdendritic liquid 
interfacial area concentration, S,, is inversely propor- 
tional to a representative interdendritic arm spacing, 
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Table !. 

Model inputs 

Geometric relation 

Interdendritic permeability 

Extradendritic permeability 
Index in the general 

correlation 

General correlation 

Overall permeability 

Drag force per unit volume 

Flow partition coefficient 

Summary of the Drag Model 

es, e~i, S .  S~, and ~ 
6(1 - el) 

de = ~ or 

6(1 - et) 
S e = ~  

3V~ s, /3~-- 
(1 - e,,.) 3/~ 4,,S, 

~lt given by Eq. [22] 

n = 0.176 iogl0/3d + 0.275 
/3s /3= 

[(1 - e~)" + (#d/$j)2"] v2" 

= [ 3 ( 1 -  e,)] 2 
s~'r L ~ J  

,w' = ~ e]((vl) I -  (v,)') 
d, 

~,,((v,,)" - (v )9  
K, = e ( ( 9  f _  6 ' ) ' )  

= (1 - e~)( t l / /3a)  2 

which, in turn, evolves according to the 1/3 power of 
the local solidification time due to coarsening of the den- 
ddte arms, and (2) the envelope area concentration, Se, 
is proportional to the 1/3 power of the local equiaxed 
grain density, which, in turn, evolves according to nu- 
cleation kinetics and the advective transport of free 
equiaxed crystals. Both of  these structural parameters, 
as well as the internal solid fraction e,i, are routinely 
used in advanced solidification models, ts'2t! 

Experimentally, the parameters e, and Ss can be mea- 
I5 221 sured using quenched specimens. ' The envelope area 

concentration Se may be determined like Ss, after the 
dendrite envelope is manually drawn by connecting the 
primary and secondary arm tips in a micrograph of a 
quenched microstructure. The internal solid fraction e,~ 
can then be estimated from the same micrograph. Al- 
ternatively, a simple calculation method for e,~ has been 
proposed by Jang and HellawelP 231 and de Groh et  al. t61 
that is based on estimates of a few geometrical quantities 
associated with the dendrite morphology. The last pa- 
rameter, the envelope sphericity ~be, can be evaluated 
from Eq. [5] after Se and el are determined as described 
previously and the dendrite envelope diameter de is cal- 
culated from the relation Ir/6 ~ = (1 - et)Vo. T h e  den- 
drite envelope sphericity ~be and diameter de may also be 
estimated by assuming a simple shape for the dendrite 
envelope, as illustrated by Ahuja TM and de Groh et  al.  t6J 
It should be pointed out that the envelope sphericity 
effect is of secondary importance in determining the 
multiparticle interfacial drag and, thus, a crude estimate 
will suffice. 

III. RESULTS AND DISCUSSION 

The present model encompasses many important lim- 
iting cases, which include the single equiaxed dendrite 16] 
and packed beds of impermeable u9] and permeable 
spheres. [~6] In the following, comparisons are made with 
other available theoretical results and experimental data 
for both globular and dendritic grains. Since the present 
correlation identically reduces to the one by de Groh 
et  al.  t6] in the single equiaxed dendrite limit, the follow: 
ing discussion concentrates on multiparticle systems. For 
convenience of discussion, the packed bed regime is as- 
sumed to be defined by the validity range of the 
Kozeny-Carman equation; i . e . ,  0 < et < 0.7, as found 
in Figure 3(b). Hence, the free particle regime covers 
0.7 < e~ < 1. Note that the preceding criterion is based 
on the extradendritic liquid fraction, as the particles may 
be porous. Physically, the transition from the packed bed 
to the free particle regimes can be expected to occur over 
a range of et (between 0.5 and 0.7), depending on the 
shape of the crystals and the packing arrangement. 

A .  G l o b u l a r  G r a i n s  

For globular grains, the envelope coincides with the 
solid-liquid interface, so that Se = Ss and et = e/. Since 
ed = 0 and /3d---> ~, the general correlation (Eq. [12]), 
reduces to 

, r ,  f l  : ( l  - e,) 2 - 3 -#+  ~-~5-_ 2r/6 C i ( / )e ) j  [26] 

Combining Eqs. [11], [23], [24], and [26], it is inter- 
esting to note that the relationship between S2K and et is 
universal for all spbericities in the packed bed regime 
( i . e . ,  0 < et < 0.7), whereas the relation in the free 
particle regime ( i . e . ,  0.7 < et < 1) does depend on the 
sphericity. Nonetheless, the area concentration Se is a 
useful lengthscale to nondimensionalize the permeability 
K. Figure 3(a) shows a comparison of S2K as calculated 
from Eqs. [11] and [26] and various experimental data. 
The portion of the theoretical curve in the free particle 
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regime is only drawn for <be ----- 1 (i.e., spherical grains). 
Of  the experimental data included in Figure 3(a), 
Murakami and Okamoto's t4] and Poirier and Ganesan's (s] 
data are especially relevant since they were obtained for 
alloy systems. Only the experimental data for globular 
grains from Poirier and Ganesan (5] have been included 
in this figure. These two sets of data cover only the 
packed bed regime, where the product S2eK is indepen- 
dent of the sphericity of the globular grains. To further 
verify the model prediction in the free particle regime 
for spherical grains, we resort to Garside and Dibouni's 
data. [24] These authors have summarized results of a 
wide variety of sedimentation and fluidization experi- 
ments reported in the literature for solid/liquid systems. 
The most reliable values of  the settling ratio at high 
liquid fractions were provided in Table II of their article. 
These values are also plotted in Figure 3(a) to best rep- 
resent the data range of  all experiments reported in the 

literature for perfect spheres. It can be seen from 
Figure 3 that the present correlation gives reasonable 
agreement with all experimental data over the full range 
of liquid fractions. 

Several analytical or semianalytical relations for cal- 
culating the permeability in a mushy zone consisting of 
globular crystals have been proposed in the solidification 
literature. One is the well-known Kozeny-Carman equa- 
tion, which, for globular grains, can be written as 

S~K = e3/5 [27] 

This empirical correlation is generally considered to be 
valid only in the packed bed regime. Another theoretical 
result, recommended by Poirier and Ganesan, [5] is a nu- 
merical solution obtained by Zick and Homsy t25] for 
dilute particulate systems of solid spheres. It is of inter- 
est to compare the present model prediction represented 
by Eq. [26] with these two results. As can be seen in 
Figure 3(b), the present model prediction agrees fairly 
well with the more exact solution of Zick and Homsy [25] 
in the free particle regime, where the Kozeny-Carman 
equation leads to significant overpredictions. In the 
packed bed regime (et < 0.7), the present prediction is 
in excellent agreement with both the Kozeny-Carman 
equation and Zick and Homsy's  solutions, t25] This lends 
support to the present correlation as a generalized drag 
formula for globular grains and all liquid fractions. As 
shown in Section B, Zick and Homsy's  result [25~ cannot 
be used for dendritic grains and all liquid fractions, be- 
cause it accounts for only a single interfacial length 
scale, namely, the sphere diameter. 

B. Dendritic Grains 

For systems composed of multiple dendritic grains, 
only limited experimental data were reported for the 
packed bed regime by Piwonka and Flemings I3] and 
Poirier and Ganesan. (5] In the absence of extradendritic 
liquid (et = 0), these packed bed data essentially confirm 
the validity of the Kozeny-Carman equation (Eq. [18]), 
for the interdendritic permeability, tSJ* Recall that the 

*The most recent packed bed data of Poirier and co-workers Izs'29~ 
for equiaxed dendritic structures also feature no extradendritic liquid 
and are shown in Refs. 28 and 29 to be well correlated by Eq. [18] 
with et  = O.  

present model reduces to Eq. [18] for et = 0. However, 
several of Poirier and Ganesan's data correspond to a 
"dendritic-globular" structure, where the micrographs 
allow the identification of a significant extradendritic 
liquid fraction, in addition to the interdendritic liquid. 
Thus, together with the comparisons shown in de Groh 
eta/. t61 for the single equiaxed dendrite (et = 1), these 
selected data should provide some limited validation of 
the full interfacial drag model shown in Table I. 

Since no values of ed, Se, and <be w e r e  reported, we 
must seek a comparison with the dendritic-globular data 
in Poirier and Ganesan tS] under certain assumptions. 
First, in the packed bed regime, where the experimental 
data lie, a sensitivity analysis of the sphericity effect in- 
dicates that the predicted values of SZeK differ by only 
3 pct for <be between 0.75 and unity. Therefore, ~b e = 1 
can be safely used in the comparison between theory and 
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experiment. Second, the envelope surface area, Ae, is 
assumed to be equal to the solid/liquid interfacial area, 
As, under the particular experimental conditions of 
Poirier and Ganesan. The interfacial area concentration, 
Se, is then equal to Ss, with the latter quantity provided 
in Poirier and Ganesan. t51 The assumption can be ex- 
pected to be reasonable because the data of Poirier and 
Ganesan tSJ correspond to slightly dendritic crystals. For 
example, at the same liquid fraction (e s = 0.294), Se for 
Case 4(a) in Table 1 of their article, which corresponds 
to the globular structure, is identical to S, for Case 4(b) 
corresponding to the dendritic-globular structure. The 
same conclusion can be reached for Cases 8(a) and 8(b) 
in the same table. Based on these assumptions, Figure 4 
displays the model predictions for a globular system 
(e,i = 1) and a dendritic system with e,i = 0.92, in ad- 
dition to the experimental data of Poirier and Ganesan lSl 
for dendritic-globular grains. It is worth noting that the 
dendritic system has a lower  permeability than the glob- 
ular system at the same total liquid fraction (or solid 
fraction). It is also apparent that without accounting for 
the porosity of the grains ( i .e . ,  e,~ = 1), the permeability 
would be significantly overpredicted. It can further be 
seen that the curve with es~ = 0.92 matches reasonably 
well with the data. From the micrographs shown in 
Poirier and Ganesan, tS~ this value of the internal solid 
fraction appears to be quite reasonable. More quantita- 
tive validation, however, must await future experiments 
in which all parameters e,, e~, S~, S~, and ~ are mea- 
sured. Recall that the et --- 1 limit in Figure 4 corre- 
sponds to a single equiaxed dendrite, for which full 
experimental validation of the present correlation has 
been provided in de Groh et al.[6] but cannot be shown 
in Figure 4 because the ordinate scale is inappropriate 
for this limiting case. 

In order to examine the effects of the extradendritic 
liquid fraction in more detail, a parametric study was 
performed for S,/S~ = 0.1, (~e = 1, and various internal 
solid fractions. Figures 5(a) and (b) show the overall per- 
meability, nondimensionalized with S~, and the flow par- 
tition coefficient, K~, respectively, as a function of the 

-2 I I I I 

-4 

-6 
/ qf - - - - -  globular(~si=l.O) 

/ 
/ o Poin'er and Ganesan [51 

I I I - 8  I m I 

0 0.2 0.4 0.6 0.8 

Total liquid volume fraction, ef 

Fig. 4--Comparison of the present model with experimental data of 
Poirier and Ganesan t~t for dendritic grains. 

extradendritic liquid fraction, et. The curves with e~i = 
0.01 correspond to the NH4C1-H20 analogue alloy, for 
which very low internal solid fractions have been re- 
ported, t6"231 As expected, it can be seen that systems con- 
Sisting of more porous dendrites have higher 
permeabilities at the same extradendritic liquid fraction, 
particularly in the densely packed regime (Figure 5(a)). 
In the free particle regime, the permeability or drag is 
rather insensitive to the porosity of the dendrites, be- 
cause the flow around the dendrites is predominant. This 
is also evident from Figure 5(b), which shows that the 
portion of the flow through the dendrites approaches 
zero in the free particle regime ( i .e . ,  larger et). Further- 
more, it is also consistent with the single crystal exper- 
iments of References 2 and 6, which showed no 
appreciable change in the interfacial drag as secondary 
dendrite arms were added to the internal dendritic struc- 
ture of the models. On the other hand, in the packed bed 
regime, the flow partition coefficient quickly increases 
as et decreases and reaches unity at et = 0, at which 
point all flow must be through the interdendritic spaces. 
The effect of the porosity of the dendrites on the flow 
partition coefficient is also shown in Figure 5(b). In par- 
ticular, note that the interdendritic liquid is already 
nearly immobilized when e~ > 0.5, even if a dendrite is 
highly porous (e .g . ,  e,, -~ 0.01 for the NHgC1-H20 crys- 
tal). This is due to the fact that the complex solid/liquid 
interfacial structure exhibits a large resistance to fluid 
flow. Finally, Figure 5 also shows why Zick and 
Homsy's result for solid spheres t251 cannot be used for 
equiaxed dendritic grains and all liquid fractions: all 
curves corresponding to different esi would collapse into 
a single one, and the highly variable nature of the flow 
partitioning between the extra- and interdendritic liquids 
would not be taken into account. 

IV. CONCLUSIONS 

Through use of the porous dendrite envelope concept 
and based on the multiphase approach, a generalized 
model for the multiparticle interfacial drag in equiaxed 
solidification has been developed for the full range of 
solid fractions. The final drag or permeability correlation 
reflects the effects of numerous structural parameters, 
including the internal porosity of dendritic grains, the 
interdendritic arm spacings, the sphericity of the den- 
drite envelope or of globular grains, and the equiaxed 
grain density. Thus, the model is equally applicable to 
globular and dendritic morphologies. The model also 
provides information about the flow partitioning between 
the inter- and extradendritic liquids. It is demonstrated 
that the predictions agree well with previous experimen- 
tal, analytical, empirical, and numerical results. Addi- 
tional experimental validation is required for multiple 
equiaxed dendritic grains in the presence of significant 
extradendritic liquid fraction. The developed correla- 
tions for the drag and the flow partition coefficients have 
been incorporated into a recently proposed multiphase 
alloy solidification model that includes melt convection 
and solid transport, t~81 
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Fig. 5- - (a)  Permeability and (b) flow partition coefficient as func- 
tions of the extradondritic liquid fraction and internal solid fraction 
for ~, = 1 and S,/Se = O. 1. 

NOMENCLATURE 

A inteffaciai  area, m 2 
C~ settling ratio 
Cp shape factor function 
d diameter, m 
K pem~eability, m 2 
M d solid/liquid interfacial drag per unit volume, 

N/m 3 
n index in Eq. [10] 
S interfacial area concentration, A/Vo, m -t 
V0 volume of the control element, m 3 

(vt) t volume-averaged intrinsic velocity of phase 
k, m/s  

Greek Symbols 

/3 dimensionless diameter, Eq. [ 11 ] 
et volume fraction of phase k 
e,i internal solid fraction, 8,/(#, + ed) 

Kv 

P 
/z 

flow partition coefficient for the 
interdendritic region, Eq. [13l 
density, kg /m 3 
viscosity, N. s /m 2 
shape factor or sphericity of the dendrite 
envelope 

Subscripts 
d interdendritic liquid 
e dendrite envelope 
k aphase, k = s , d ,  or l  
! extradendritic liquid 
e dendrite envelope 
f total liquid (d + / )  
s solid 

Superscripts 

m multiple particles 
s single particle 
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