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1. Phase-field model

The simulations in the present work are based on the
quantitative phase-field model for alloy solidification that
is described in [1]. In the case of vanishing interface ki-
netics and interface anisotropy, the phase field equations
read as follows

[1− (1− k)θ] ∂tΦ =

∇2Φ + Φ− Φ3 − λ
(
1− Φ2

)2
(U − θ) (A.1)

[1 + k − (1− k)Φ] ∂tU = ∇ ·
[
a2λ(1− Φ)∇U +~jat

]
+ [1 + (1− k)U ] ∂tΦ, (A.2)

where k, Φ, λ and ~jat are the partition coefficient, phase-
field variable, coupling coefficient, and corrective anti-
trapping current, and a1 = 0.8839, a2 = 0.6267 are con-
stants. The scaled supersaturation and temperature are
given, respectively, by

U =
1

1− k

[
2c/c0l

1− Φ + k(1 + Φ)
− 1

]
(A.3)

and

θ =
T0 − T

|m|c0l (1− k)
, (A.4)

where T , c, m are temperature, solute concentration and
liquidus slope, and c0l is the equilibrium liquid concentra-
tion at the initial temperature T = T0. Length and time
are non-dimensionalized by the diffuse interface width
W0 = d0λ/a1 and kinetic coefficient τ0 = a2d

2
0λ

3/a21D,
respectively, where D and d0 are solute diffusivity in the
melt and chemical capillary length.

According to the thin interface asymptotic analysis of
Ref. [1], convergence of the phase-field model towards the
sharp interface model given by Eqs. (1-3) in the article
is achieved by choosing a diffuse interface width that is
small enough that the solution becomes independent of

∗ hieram.neumann-heyme@tu-dresden.de

the interface width. This interface width must be scaled
by the characteristic length scale of the problem, which in
the present study is given by the initial sidearm radius, R.
A converged solution is thus achieved for a certain small
but finite value of the ratio W0/R. As described in the
article, the present model is simplified by assuming that
d0/R → 0. In view of the definition of W0 given above,
this limit would imply that for a finite ratio W0/R, the
coupling constant λ would tend to infinity. A λ that
tends to infinity would, however, render the numerical
solution of Eqs. (A.1,A.2) ill-conditioned. In order to
avoid this problem, Eqs. (A.1,A.2) are rewritten in terms
of Ū = (U − θ)/ε where ε = 1/a2λ, which yields

[1− (1− k)θ] ∂tΦ = ∇2Φ+Φ−Φ3− Ū

a2

(
1− Φ2

)2
(A.5)

[1 + k − (1− k)Φ]
(
ε∂tŪ + θ̇

)
= ∇·

[
(1− Φ)∇Ū +~jat

]
+
[
1 + (1− k)

(
εŪ + θ

)]
∂tΦ, (A.6)

where θ̇ is the scaled cooling rate in terms of the dimen-
sionless time used in the phase-field model. In the limit
ε→ 0, Eq. (A.6) then reduces to

[1 + k − (1− k)Φ] θ̇ = ∇ ·
[
(1− Φ)∇Ū

]
+ [1 + (1− k)θ] ∂tΦ. (A.7)

Since d0/R→ 0 corresponds to the limit of low interface

velocities, the anti-trapping current ~jat in Eq. (A.6) is
omitted in Eq. (A.7). According to our axisymmetric
model all equations are solved in cylindrical coordinates.

FIG. 1. Projected geometry of the isothermal, long sidearm
case (Λ2/R = 12, Λ1/R = 60); thick line: initial state at
t = 0; solid grey: pinch-off at t = 0.53R3/Dd0.
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(b)

0 10 20 30 40
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Λ2/R

t p
D
d
0
/R

3

(c)

FIG. 2. Results for the isothermal long sidearm case. (a) Dimensionless pinch-off time vs. interface width. (b) Dimensionless
pinch-off time vs. capillary length. (c) Dimensionless pinch-off time vs. spacing Λ2.

The computational domain is discretised by triangular
elements. The local element size is controlled by the mag-
nitude of the solute concentration gradient. Further, it is
required, that in the maximum refined region at the in-
terface the longest edge of an element is less than 0.7W0.
Since the mesh refinement works by repeated bisection-
ing of a coarse macro-mesh, the element size can only
have discrete values of Λ2/2

n/2, where n ∈ N. In cases,
where Λ2/R and W0/R are varied continuously, the dis-
crete nature of the minimum element size can cause small
scatter of the results, e.g. Fig. 2a and 2c.

Time steps are adjusted according to the normal in-
terface velocity Vn as ∆t = 0.15/max(Vn). This method
prescribes the maximum distance the interface can ad-
vance in a given time step. When considering the long
sidearm limit, the domain length Λ1 is chosen as Λ1 =
5Λ2, which was verified to be large enough for the solu-
tion to be independent of Λ1.

In the following, a few general aspects regarding va-
lidity and convergence of the model are discussed. The
calculations are for the long sidearm case under isother-
mal conditions, with Λ2/R = 12 and Λ1/R = 60, as
shown in Fig. 1.

2. Convergence

Convergence of the presented model with respect to the
interface width of the phase-field is analyzed in Fig. 2a
by plotting the scaled pinch-off time tpDd0/R

3 as a func-
tion of W0/R. Note that this physically motivated scal-
ing, used throughout the article, is different from that
for the phase-field model, Eqs. (A.1-A.7). An accept-
able accuracy of the results is archived for W0/R = 0.1.

This value is used in most calculations of the present
study. This rather fast convergence is due to the fact
that, even though close to pinch-off the essential length
κ−1
ϕ becomes arbitrary small, the duration of this final

collapse is small compared to the time of the entire pro-
cess. For the study of the critical finger length for the
transition between retraction and pinch-off, lr-p, a some-
how lower value of W0/R = 0.04 was necessary, since
the collapsing tip radius of the arm, seen in the inset of
Fig. 4a of the article, has to be resolved, too. The scat-
ter of tp at larger W0/R is an indication of the increasing
mesh size dependence as discussed earlier.

3. Validity of the quasistationary aproximation of
the diffusion field

To study the effect of d0/R, the pinch-off time was
calculated based on Eqs. (A.5,A.6). Figure 2b demon-
strates, that the pinch-off time becomes independent of
d0/R for d0/R . 10−4. This is the essential prerequisite
for the validity of Eqs. (5-7) in the article and Eq. (A.7).

4. Lower limit of the pinch-off duration

Another value stated in the article is the large spacing
limit of tp for the isothermal, long arm case. Figure 2c
provides the full dependence on the spacing Λ2. Apart
from a moderate increase of tpDd0/R

3 towards small Λ2

due to geometrical restrictions, an asymptotic value of
0.52 is approached soon. This value provides the approx-
imate lower limit for the pinch-off time of a sidebranch
subject to solidification.
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