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Abstract

An improved version of a previously developed mesoscopic model is used to simulate transients and thermal

interactions during growth of equiaxed dendrites of a pure substance. The model is validated through comparisons with

exact, analytical solutions and direct, fully resolved phase-field simulations. The issue of constancy in the selection

parameter, sn; during transients is addressed in some detail. The model is first applied to realistically simulate

previously performed microgravity experiments involving the growth of succinonitrile dendrites from a stinger inside a

growth chamber. It is shown how the thermal interactions between the seed and the dendrite and between the growth

chamber wall and the dendrite cause temporal variations in the dendrite tip velocities. Excellent agreement with

microgravity measurements is obtained. A scaling relation is derived that provides the duration of the seed size effect

during the initial transient. The model is also used to investigate the transients arising during the growth of two

equiaxed dendrites towards each other. A scaling relation for the duration of the transient decay of the tip velocities is

derived. Additional study is needed to fully understand cases where equiaxed grains interact early before a fully

dendritic structure is established.
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1. Introduction

Free growth of an isolated dendrite of a pure
substance into a uniformly supercooled melt has
been investigated extensively both as an example
of a complex pattern formation process and due to
applications in solidification of metals [1]. The
issue of greatest fundamental interest is the
d.
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relation between the steady-state dendrite tip
velocity v, the radius of curvature of the tip R,
and the far-field supercooling DT ¼ Tm � T1;
where Tm is the melting temperature and T1 is
the melt temperature at infinity. This problem is
characterized by the presence of widely disparate
length scales: the thermal diffusion length given by
lt ¼ a=v; the tip radius R, and the capillary length
d0 ¼ gTmcp

�
L2; where a is the thermal diffusivity,

cp is the specific heat, g is the surface tension, and
L is the latent heat. In present theories of free
dendritic growth, the long-range heat diffusion on
the scale of lt; is usually modeled using the
Ivantsov solution [2], which treats the dendrite
tip as an isothermal paraboloid of revolution in a
semi-infinite melt. This solution, O ¼ IvðPeÞ; pro-
vides a relation between the tip Péclet number,
Pe ¼ vR=ð2aÞ; and the dimensionless supercooling
O ¼ DT=ðL=cpÞ: The problem of the stability or
operating state of the dendrite tip on the scale of R

is treated by considering the temperature variation
of the solid/liquid interface caused by curvature
and anisotropic surface tension [3]. A stability
constant or selection parameter is introduced that
provides a relation between the tip radius and
velocity as sn ¼ 2d0a=ðvR2Þ: The selection para-
meter is generally thought to be independent of the
supercooling.

The microgravity diffusion controlled dendrite
growth data of Glicksman and co-workers [4,5]
have been used to experimentally validate the
above theory of free dendritic growth. However, it
was soon realized that it is difficult to grow a
dendrite in a truly isolated manner as required by
the theory. The most obvious problem is that the
melt cannot be infinite in extent as required by the
Ivantsov solution. The thermal interactions be-
tween a dendrite and finite-sized growth chamber
walls, which are especially important at low tip
velocities when lt is large, have been analyzed by
Pines et al. [6] and Sekerka et al. [7]. Other effects
that have been identified to cause deviations from
the theory are thermal interactions between the
dendrite and its initial seed [8], trailing side
branches [9], and neighboring dendrites [10].
However, the analytical theories that have been
developed to model these effects [6–10] still assume
a constant dendrite tip velocity.
Thermal interactions between a dendrite and its
surroundings can generally be expected to result in
transient growth with a non-constant tip velocity,
as shown experimentally by LaCombe et al. [11].
Transient dendritic growth has received little
attention in the literature, even though it is an
issue of great practical importance. In metal
castings, many equiaxed dendrites nucleate and
grow simultaneously in a supercooled melt. The
thermal (or solutal in the case of alloys) interac-
tions between the grains will almost always cause
transient growth. The thermal fields from neigh-
boring dendrites will overlap as the dendrites grow
towards each other, and the tip velocities will
decrease with time until the supercooling is
completely dissipated and any tip growth stops.
Further solidification then occurs through thick-
ening of the dendrite arms. The dynamics of such
equiaxed solidification are strongly dependent on
the distance between the grains or, in other words,
the local nuclei density. For large distances, the
thermal fields do not significantly overlap until late
in the solidification process and the dendrites can
grow relatively undisturbed for at least some time.
Then, large dendritic structures can be observed in
a casting. For smaller distances, as in grain refined
castings, the thermal interactions can be so strong
from the beginning that the grains retain a
globulitic shape and dendritic growth does not
take place. An attempt has been made to model
the interactions between dendrites in an average
sense, by basing the supercooling that drives
dendritic growth on the time-varying average
temperature (or solute concentration) in the
‘‘extradendritic’’ liquid between the grains [12].
This and similar approaches in modeling of the
interactions between dendrites have resulted in
many interesting predictions of the grain structure
in castings [12–14]. However, averaged models are
not well validated and many open questions
remain regarding transient growth of multiple
dendrites, including the nature of the thermal field
between the dendrites and the tip operating state
selection for a non-constant tip velocity.

In this study, transient dendritic growth is
investigated by addressing the effects of both, the
initial seed size and the thermal interactions
between two neighboring dendrites, as well as a
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combination of the two. The study relies on a
previously developed three-dimensional ‘‘meso-
scopic’’ simulation model [15]. The use of this
model is motivated by the fact that direct
numerical simulations of dendritic growth, using
for example the phase-field method [16], in three
dimensions and for the low supercoolings and
large domain sizes present in experiments will not
be possible in the near future. The mesoscopic
model combines a numerical calculation of the
transient (macro-) temperature field around the
dendrites with an analytical (micro-) model for the
dendrite tip velocities [17]. The micro- and macro-
temperature fields are matched at a so-called grain
envelope, which is a smooth surface connecting the
tips of all growing dendrite branches of an
equiaxed grain. The mesoscopic model relies on
the above mentioned separation of length scales by
assuming that the dendrite tip operating state
selection is unaffected by variations in the thermal
far field; in fact, the selection parameter sn is
assumed known and constant. The latter assump-
tion is carefully examined in the present study
using direct, three-dimensional phase-field simula-
tions of dendritic growth transients. Furthermore,
some limited validation is provided by comparing
results for transient dendritic growth with avail-
able data from the microgravity experiments
(IDGE) of Glicksman and co-workers [4,5].

The mesoscopic simulation model is explained
in greater detail in Section 2, together with several
improvements that have been made since its first
implementation [15]. Numerical issues and valida-
tion are addressed in Section 3. Transient dendritic
growth from a finite-sized seed is investigated in
Section 4. Section 5 is devoted to transients arising
during the simultaneous growth of two dendrites
towards each other. The conclusions are summar-
ized in Section 6.
Fig. 1. Schematic illustration of the envelopes around an

equiaxed dendrite as used in the mesoscopic model.
2. The mesoscopic simulation model

The mesoscopic simulation model is described in
Steinbach et al. [15] and the reader is referred to
that publication for all details. Here, only the basic
ideas and some improvements to the original
model are outlined. Fig. 1 illustrates an equiaxed
dendrite growing into a supercooled melt. The
mesoscopic model relies on the separation of the
length scales associated with the tip radius, R, and
the thermal diffusion length, lt ¼ a=v: This separa-
tion is especially pronounced at low supercoolings
(about 3 orders of magnitude), which is the regime
of interest here.

As shown in Fig. 1, a grain envelope (e) is
defined as a smooth surface connecting the tips of
the ‘active’ or growing branches of a dendrite. The
envelope motion and the temperature field around
the grain envelope(s) are calculated by the model.
The micro-temperature field on the scale of the tip
radius and the macro-temperature field outside of
the envelope are matched over a so-called stagnant
film. This stagnant film is bounded by a confocal
envelope (ce) located at a distance df ahead of the
dendrite envelope. The stagnant film thickness is
of the order of 10R, but the mesoscopic model
results are ultimately independent of the exact
value of df :

An analytical expression is used to describe the
micro-scale processes at each dendrite tip and to
determine the envelope growth velocity. It is based
on the stagnant-film modified Ivantsov solution
given by [17]

DT f ¼ Tm � T ce ¼ L=cp Pe expðPeÞ fE1ðPeÞ

� E1½Peð1þ 2df=RÞ	g; ð1Þ

where Pe ¼ vR=ð2aÞ as before, E1 is the exponen-
tial integral function, DT f is the supercooling
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Fig. 2. Schematic illustration of the stagnant film on a

numerical grid.
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across the stagnant film, and Tce is the tempera-
ture at a point on the confocal envelope. It can be
seen that for df=R ! 1; T ce ! T1 and Eq. (1)
approaches the Ivantsov solution O ¼ IvðPeÞ: The
above equation is coupled with the selection
equation for R

R ¼
2d0a
snv

� �1=2

: (2)

Hence, the selection parameter sn is an input to
the present model. Eqs. (1) and (2) are inverted
numerically to obtain the dendrite tip velocity (or
speed) v as a function of the confocal envelope
temperature and the film thickness, i.e.,

v ¼ f ðTce; df Þ: (3)

The tip speed is converted to a normal envelope
velocity vn by

vn ¼ n v cos y; (4)

where n is the exterior normal vector to the
envelope and y is the angle between the normal
and the growth axis of the nearest dendrite arm.
This conversion is needed because the branches of
a cubic dendrite do not always grow in a direction
normal to the envelope (Fig. 1) [15]. It is important
to realize that the envelope velocity varies from
point to point on the envelope because the
confocal envelope temperature, T ce; is not con-
stant (for a fixed film thickness df ). The confocal
envelope temperature is obtained from the solu-
tion of the heat equation on a macroscopic scale,
as explained next.

The temperature field in the melt around the
grain envelope is obtained from a numerical
solution of the following three-dimensional tran-
sient heat equation:

qT

qt
¼ ar2T ; (5)

where t denotes times. At the boundary of the
domain, as well as initially, the melt temperature is
set to the value T1 ¼ Tm � DT corresponding to
the imposed supercooling. At each point on the
grain envelope internal to the domain, the
temperature is fixed to the effective envelope
temperature Te: The envelope temperature is
initialized as Tm:
Critical to the coupling between the analytical
micro-model and the macro-heat equation is the
choice of the temperatures T e and T ce: Fig. 2
illustrates a small section of the stagnant film on
the numerical grid used to solve the heat equation.
The confocal envelope temperature, Tce; is ob-
tained from the numerical solution of the heat
equation at the location of the confocal envelope.
This can formally be written as

Tce ¼ Tðxce ¼ xe þ ndf Þ; (6)

where xe and xce are the position vectors of the
grain envelope and the confocal envelope, respec-
tively (Fig. 2). In the original model [15], the
envelope temperature, Te; was assumed to be
equal to the melting temperature Tm; since the
grain envelope touches the dendrite tips. Further
numerical experimentation revealed that using
Te ¼ Tm leads to a somewhat inaccurate calcula-
tion of the temperature gradients in the stagnant
film, because the microscopic temperature fields
around each dendrite tip are not resolved in the
numerical solution of the heat equation.

In order to obtain an improved estimate of the
temperature T e in the computational cells that
contain the envelope, the following very approx-
imate ‘‘sub-grid’’ model is employed. The envelope
temperature T e can be different from the melting
temperature Tm because of steep microscopic
temperature gradients around the dendrite tip on
the scale of the numerical grid spacing Dx: In other
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words, if the tip radius is small compared to the
grid spacing, i.e. R5Dx; the temperature of the
cell that contains the tip, T e; should be lower than
Tm: Only if the tip radius approaches or is larger
than the grid spacing, i.e. RXDx; can T e be taken
equal to Tm: A sub-grid stagnant film thickness,
dsg; is introduced to measure the distance over
which the temperature drop, Tm � T e; occurs. For
R5Dx; dsg is approximated as the half-diagonal of
a cubic numerical cell, i.e., dsg !

ffiffiffi
3

p
=2Dx �

0:9Dx: This half-diagonal can be interpreted as
the distance corresponding to the maximum
uncertainty in the position of the dendrite tip
within a numerical cell. On the other hand for
RXDx; dsg should vanish. A relation that provides
a smooth transition between these two limits can
be written as

dsgðR;DxÞ ¼ 0:9Dx 1� tanh
R

0:9Dx

� �� �
: (7)

The stagnant film model is now used to approx-
imate the temperature drop, Tm � Te; that occurs
over the distance dsg; according to

T e ¼ Tm � f �1
ðv; dsgÞ; (8)

where f �1 is the inverse of the function given by
Eq. (3). With Eq. (8), the temperature drop, Tm �

T e; increases with decreasing dendrite tip radius
relative to Dx and increasing tip velocity. For
RXDx; Eq. (8) gives Te ! Tm regardless of the tip
velocity and the original model of Ref. [15] is
recovered. The above sub-grid model for calculat-
ing Te is not intended to be physically rigorous. It
should simply be viewed as a numerically justified
method for approximating the microscopic tem-
perature gradients around a dendrite tip within a
numerical cell and, ultimately, for obtaining an
improved estimate of the envelope temperature for
the solution of the macro-heat equation.

From the above description of the present
model it can be seen that there are two adjustable
parameters: df and Dx: They need to be chosen
such that the solution of the model equations is
independent of the stagnant film thickness df and
the grid size Dx; which is demonstrated in
Section 3.
3. Numerical procedures and verification

The numerical solution procedure consists of a
phase-field like propagation algorithm for the
grain envelope and a control volume method for
the heat equation, both of which are described in
detail in Steinbach et al. [15]. The only modifica-
tion implemented in this study is related to the
phase-field like algorithm used to propagate the
envelope on the numerical grid, which is briefly
described next. A field variable f is introduced
that varies from 1 in the grain to 0 in the melt over
a transition region of a thickness that, in the
present study, is taken to be equal to the stagnant
film thickness df : This indicator function serves to
track the propagation of the grain envelope and
the confocal envelope, which are assigned values
of f ¼ 0:95 and 0.05, respectively. The equation
that propagates f with the normal envelope
velocity vn is given by

qf
qt

¼
6

df
fð1� fÞjvnj þ stabðfÞ: (9)

All grid points in the normal direction across the
transition region (Fig. 2) are assigned the same
jvnj: The stabilization operator stabðfÞ acts as an
anti-diffusion flux that keeps the f profile com-
pact. The new expression developed for the
stabilization operator in this study is given by

stabðfÞ ¼ C
d2f
72

r2f� fð1� fÞð0:5� fÞ
�

�
d2f
72

r2f� fð1� fÞð0:5� fÞ
� �

n

�
;

ð10Þ

where C � 0:1=Dt is a stabilization constant, Dt is
the time increment, and h in denotes an average
over the film thickness df in the normal direction.
Note that hstabðfÞin ¼ 0; implying that the stabi-
lization does not introduce a net driving force for
the envelope motion. The new stabilization op-
erator given by Eq. (10) proved to be easier to
implement and provided more reliable results than
the original version in Ref. [15].

Example model predictions for dendritic growth
of a single equiaxed grain into a uniformly
supercooled melt are shown in Fig. 3. Properties



ARTICLE IN PRESS

Fig. 3. Example model predictions of the evolution of the

confocal envelope for a single equiaxed dendrite; the gray

shades indicate the confocal envelope temperature and,

indirectly, the growth velocity on each point of the envelope.

Fig. 4. Percent error of the dendrite tip velocity predicted by

the mesoscopic model relative to the analytical solution for a

free dendrite; the error is shown as a function of the stagnant

film thickness, the grid spacing, and the orientation of the

dendrite with respect to the numerical grid.
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used are those of succinonitrile (SCN) and sn ¼

0:02 [5,18]. The surface in Fig. 3 represents the
confocal envelope, with the gray shades indicating
the temperature on the envelope, Tce: A few
isotherms in the surrounding melt are also shown.
It can be seen that a realistic envelope shape,
typical of a cubic dendrite, is predicted. The
variations in the confocal envelope temperature
reflect the different envelope growth velocities
according to Eq. (3).

3.1. Steady-state growth

The model was first validated for a single
equiaxed grain growing into an infinite melt by
comparing predictions for the steady-state den-
drite tip velocity to the analytical value from the
Ivantsov solution coupled with the selection
equation for R. For this purpose, the domain size
was chosen large enough that the thermal field
does not interfere with the boundary. Fig. 4 shows
the percent difference between the tip velocity
predicted by the present model and the one from
the Ivantsov solution, denoted by viv; as a function
of the film thickness df and various grid spacings
Dx: The results are for a representative super-
cooling of 0.65K and SCN properties. It was
found that in all cases a ratio of df=Dx � 5� 7
works best, as already anticipated. It can be seen
that for relatively fine grids of Dxp200 mm; the
error is less than about 2%, which is better than
for the original model [15]. For Dx ¼ 400 mm; the
error increases to about 5%, which can be
attributed to df approaching the thermal diffusion
length lt: The two results in Fig. 4 for Dx ¼ 200mm
indicate that the error is relatively independent of
df : Finally, the two results in Fig. 4 (with
Dx ¼ 200mm) for the dendrite growing aligned
with the grid (01) and diagonal to the grid (451)
indicate that there is a small grid anisotropy effect
of about 72% that can be tolerated. It should be
noted that additional aspects of steady-state model
predictions were verified against microgravity
experimental data [19] in Ref. [15]. Good agree-
ment was obtained for the envelope shape and the
average internal solid fraction variation.

3.2. Transient growth

Validation of the present mesoscopic simulation
model in the transient regime is difficult, because
no analytical solution or well-defined experimental
results for transient dendritic growth exist. There-
fore, transient predictions of the present model are
compared to corresponding results from direct,
fully resolved simulations of dendritic growth
using the three-dimensional phase-field model of
Karma et al. [20]. The conditions for such a
comparison need to be chosen such that both
models yield accurate results in a reasonable
computational time. For that reason, the
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Fig. 5. Comparison of the variation of the dendrite tip

velocities predicted by the mesoscopic model and the phase-

field model for a single dendrite growing from a seed into an

infinite supercooled melt (parameters provided in text); meso-

scopic model results are shown for two different seed sizes; the

seed size in the phase-field simulation is one order of magnitude

smaller than in the mesoscopic model simulations.
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phase-field calculations are performed using an
artificially large surface tension anisotropy of
2.5%, rather than the 0.5% that is typical of
SCN. All other properties are chosen to be those
of SCN. For a supercooling of 0.578K and the
2.5% surface tension anisotropy, the phase-field
model gives a steady-state value of the selection
parameter of sn ¼ 0:065: The selection parameter
is obtained by measuring the steady-state dendrite
tip radius and velocity from the simulation results
and substituting them into Eq. (2) after solving it
for sn: The 0.065 value is then used in all
mesoscopic model simulations in this section.
The difference between sn ¼ 0:065 and the value
of 0.02 typically used for SCN at low super-
coolings [5,18] can be explained by the well-known
dependence of sn on the surface tension aniso-
tropy [20]. Again, the artificial increase of the
surface tension anisotropy by about a factor of five
over the value for SCN is done in the phase-field
simulations of this subsection only to facilitate a
direct comparison between the phase-field and
mesoscopic simulations. The mesoscopic simula-
tions in the following sections use again a value for
sn that corresponds to the actual surface tension
anisotropy of SCN.

First, the predictions of the mesoscopic model
are compared to the phase-field results for growth
from a spherical seed into an essentially infinite
supercooled melt. As in Section 3.1, the domain
size for the simulations was chosen large enough
that the thermal field does not interfere with the
boundary. The initial temperature of the melt in
both the mesoscopic and the phase-field simula-
tions is set uniformly to T1 ¼ Tm � 0:587K: The
initial temperature of the seed in the phase-field
simulations is also taken to be T1; whereas the
initial envelope temperature in the mesoscopic
simulations is Tm; as before. Fig. 5 shows
calculated dendrite tip velocities as a function of
time up to 1.5 s, which is close to reaching a steady
growth state. The horizontal dashed line indicates
the steady tip velocity obtained analytically using
the Ivantsov solution together with the selection
equation, Eq. (2). The two mesoscopic model
results included in Fig. 5 are for two different
initial seed sizes and also correspond to two
different grid spacings (10 and 20 mm). It can be
seen that the tip velocities from the two meso-
scopic simulations converge to the same values
after a short initial transient that is caused by the
different seed sizes. Both mesoscopic model results
approach the phase-field predictions after an
initial transient of about 0.6 s. The differences
before that time are primarily due to the fact that a
much smaller (about a factor of ten in diameter)
seed was used in the phase-field simulation (which
uses a grid spacing of 0.366 mm). The small seed in
the phase-field simulation causes much higher
initial growth velocities. Some differences are also
due to the fact that the mesoscopic model assumes
a constant sn during the very first growth stages
from a spherical seed, which is known from the
phase-field simulation to be not the case. None-
theless, the good agreement during the later stages
of growth establishes some confidence in being
able to compare mesoscopic and phase-field
simulations during slow transients, using a sn

from steady-state phase-field results in the meso-
scopic model. This is remarkable because the grid
spacing in the mesoscopic simulations is up to 50
times larger than in the phase-field simulations.

In order to investigate in more detail the
performance of the mesoscopic model for rapid
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Fig. 6. Comparison of the variation of the dendrite tip

velocities predicted by the mesoscopic and the phase-field

model for a single dendrite growing from a seed into an infinite

supercooled melt with a step change in the melting temperature

(parameters provided in text); results are shown for two cases: a

decrease in the melting temperature at 0.45 s leading to a

decreased tip velocity, and an increase in the melting

temperature at 1.0 s leading to an increased tip velocity.

Fig. 7. Variation of the selection parameter, sn; predicted by

the phase-field model for the same two simulation cases as in

Fig. 6; the dashed lines are fits of the decays in sn given by Eq.

(12) and different decay times.
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growth transients, it is compared to phase-field
predictions using the following numerical test.
Growth transients are artificially introduced in the
simulations by suddenly changing the melting
temperature, Tm; to a different value, while leaving
the far-field temperature, T1; at the same value.
Such a jump in the melting temperature could be
achieved in practice by exploiting the pressure
dependence of the melting point (Clausius–Cla-
peyron effect). Two different test cases are
considered: (Case 1) the simulations are started
with a Tm that is 0.23K higher than the actual
value for SCN and continued until the dendrite tip
velocities predicted by the mesoscopic and phase-
field models agree, and then (at approximately
0.45 s) Tm is instantaneously decreased to the
actual value for SCN; (Case 2) the simulations are
started with a Tm that is 0.23K lower, and then (at
approximately 1.0 s) Tm is increased to the actual
value for SCN. Other conditions are the same as
for the phase-field simulation of Fig. 5.

The results in Fig. 6 indicate that in both cases,
the dendrite tip velocity changes almost instanta-
neously in response to the change in the melting
temperature. The direct simulation with the phase-
field model predicts in Case 1 (2) a sudden decrease
(increase) in the tip velocity to a value much below
(above) the final steady-state tip velocity, a rapid
increase to a value slightly above (below) the final
steady-state tip velocity, followed by a more
gradual transient during which the tip velocity
approaches the final steady-state value. The tip
velocities predicted by the mesoscopic model
generally agree with the phase-field results. How-
ever, the initial ‘‘overshoot’’ in the tip velocity is
not as pronounced in the mesoscopic model results
and, consequently, some deviations between the
results of the two models exist in the ensuing
gradual approach to the steady state. It can be
expected that these differences are due to the
assumption of a constant sn in the mesoscopic
model. No such assumption is needed in the phase-
field model.

Fig. 7 shows the variation of the selection
parameter, sn; predicted by the phase-field model
for both cases. It can be seen that sn is
approximately constant except for a pronounced
spike immediately following the change in the
melting temperature. It is important to note that
sn is constant during the slow approach to steady
state, before the change in the melting tempera-
ture, even though the tip velocities are still
changing considerably (see Fig. 6). This indicates
that the assumption of a constant sn in the
mesoscopic model is reasonable for relatively slow
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growth transients. Focusing now on the spike
following the change in Tm; it can be seen that in
Case 1 (2), sn first increases (decreases) abruptly to
a value that is more than twice (less than half) the
steady-state value, and then decays (increases)
more gradually back to the steady-state value of
sn ¼ 0:065: The duration of the spike in sn in Case
1 (2) is about 0.02 s (0.05 s). The spike in sn can be
expected because the tip velocity changes abruptly
in response to the change in Tm (see Fig. 6),
whereas the dendrite tip radius needs some time to
adjust because growth (or melting) is needed for
the dendrite to change its shape. After the spike,
the selection parameter sn returns to the same
value as before the change in Tm; confirming that
sn is indeed independent of the supercooling.

In order to obtain a better understanding of the
conditions under which the mesoscopic model
becomes inaccurate, it is useful to provide an
approximate analytical expression for the char-
acteristic decay time, td; during which sn cannot
expected to be constant. It is assumed that in order
for the dendrite tip to adjust its shape after a
sudden change in the supercooling (until sn

becomes constant again), it needs to grow by a
distance equal to half its tip radius. Hence, an
order of magnitude estimate of the characteristic
decay time, td; is given by

td ¼
R

2v
: (11)

The estimate given by Eq. (11) is tested by
comparing it to the phase-field predictions in Fig.
7 for both simulation cases. The predicted decay in
sn is assumed to be described by the following
exponential

sn ¼ Ds exp
t � t0

td

� �
; (12)

where t0 is the time when the change in Tm occurs.
The amplitude Ds of the change in sn at t ¼ t0 can
be estimated by assuming that the tip velocity
changes instantaneously, while the tip radius keeps
its value from before the change in Tm: Using Eq.
(2), the amplitude Ds is then given by

Ds ¼
2 d0 a

ðR1Þ
2

1

v1
�

1

v2

� �
; (13)
where the subscripts 1 and 2 indicate the states
before and after the spike in sn; respectively. The
tip radii and velocities at states 1 and 2 are readily
obtained from the phase-field simulation results.
The decay time, td; in Eq. (12) is calculated from
the estimate given by Eq. (11). Curves for the sn

variation given by Eq. (12) are included in Fig. 7
for the following values of the decay time td: Case
1: R1=ð2v1Þ ¼ 0:017 s and R2=ð2v2Þ ¼ 0:05 s; Case
2: R1=ð2v1Þ ¼ 0:26 s and R2=ð2v2Þ ¼ 0:05 s: It can
be seen that in each case, the shorter decay time
(R1=ð2v1Þ in Case 1 and R2=ð2v2Þ in Case 2) results
in an excellent fit with the sn variation predicted
by the phase-field model. While it is not immedi-
ately clear why the shorter decay times result in a
better fit with the phase-field predictions in both
cases, it is apparent that the simple estimate of the
decay time given by Eq. (11) provides the correct
order of magnitude of the time during which sn is
not constant after a sudden change in the melting
temperature.

In conclusion, the above comparisons with the
phase-field model show that the mesoscopic model
generally provides good results during transient
dendritic growth. As expected, inaccuracies arise
during rapid transients when the selection para-
meter sn is not constant. Variations in sn are
limited to relatively small time scales of the order
of td ¼ R=ð2vÞ:
4. Transient growth of a single dendrite from a

finite-sized seed inside a growth chamber

The mesoscopic model is now used to simulate
the microgravity experiments (IDGE) of Glicks-
man and co-workers [4,5] involving the growth of
SCN dendrites from a stinger inside a uniformly
supercooled melt volume that is contained by a
growth chamber. As discussed in the Introduction,
the main issues to be investigated are the effects of
the thermal interactions between the dendrite and
its initial seed and also between the dendrite and
the chamber walls. These interactions can result in
a non-constant dendrite tip velocity.

Three representative experiments with imposed
supercoolings of 0.37, 0.78, and 1.01K are
simulated using the mesoscopic model, and the
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Fig. 8. Variation of the dendrite tip velocities predicted by the

mesoscopic model for a SCN dendrite growing from two

different size seeds (‘‘minimum’’ and 900mm radius) inside a

growth chamber and comparison to IDGE data for three

different supercoolings: (a) 0.37K, (b) 0.78K, and (c) 1.01K;

the vertical line indicates the characteristic time given by Eq.

(14) for the 900mm seed radius.
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predicted dendrite tip velocities are compared to
experimental data. The tip velocities were mea-
sured by analyzing microgravity experiment
images that were supplied to the authors directly
by NASA. Some of the measurement procedures,
including the corrections made to account for the
orientation of the dendrite with respect to the
cameras, are explained in Refs. [18,19]. The
measured tip velocities are plotted as symbols in
Figs. 8a–c for each of the three supercoolings.
Error bars that represent the estimated uncertainty
in the velocity measurements are included in the
figures. The time scale does not start at the
initiation of growth ðt ¼ 0Þ because no measure-
ments were possible at early times. In Fig. 8c, data
are included from two arms of the same dendrite,
and it can be seen that they coincide with each
other to within the experimental uncertainty. For
the lowest supercooling (0.37K, Fig. 8a) the
measured tip velocities are approximately constant
in time. A significant rise in the tip velocities is
observed in the experiments with the 0.78 and
1.01K supercoolings (Figs. 8b and c). These
observations are explained in detail below when
the measurements are compared to the predictions.

In the mesoscopic model simulations the growth
chamber is approximated as a sphere with a radius
of 16mm. The walls of the growth chamber, as
well as initially the melt, are taken to be isothermal
at a temperature corresponding to the imposed
supercooling. A finite-sized seed is placed at the
center of the domain. In the microgravity experi-
ments, growth is initiated from a capillary tube (or
stinger) with an inner radius of 1.2mm. However,
during initiation, the solid SCN propagates mostly
in a thin layer along the inside of the tube rather
than filling the entire tube. Furthermore, the solid
forms an uneven ‘‘ring’’ around the end of the tube
before a single dendrite emerges from the small
instabilities on the ring. Therefore, it is difficult to
establish an accurate effective seed size for use in
the simulations and each experiment is simulated
twice using two different seed sizes. A large seed of
approximately 900 mm radius is used in one set of
simulations. This seed size is intended to be
representative of the actual experimental condi-
tions and results in good agreement of the
predicted tip velocities with the experimental data
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for all three supercoolings (see below). The second
set of simulations is performed with a ‘‘minimal’’
seed that corresponds to the size, Dx; of one
(cubic) computational cell. The edge lengths of the
computational cells are taken as Dx ¼ 200mm for
the 0.37K supercooling and Dx ¼ 100 mm for the
0.78 and 1.01K supercoolings. A selection para-
meter equal to sn ¼ 0:018 is used in all simula-
tions; this value provides slightly better agreement
with the microgravity experimental data at steady
state than the 0.02 value used earlier.

Figs. 8a–c show the calculated time evolutions
of the tip velocity for each of the three super-
coolings. The horizontal solid line in each plot
indicates the steady-state value of the tip velocity,
viv; obtained analytically from the Ivantsov solu-
tion together with sn ¼ 0:018: It is obvious that
the initial seed size has a dramatic effect on the tip
velocity before a steady state is reached. For the
‘‘minimal’’ seed, the tip velocities decrease mono-
tonically until they reach a constant value that is
close to viv: On the other hand, for the 900 mm seed
the tip velocities first reach a minimum that is
much below the steady-state value (except for the
lowest supercooling) and then increase to ap-
proach the steady-state value. This increase in the
tip velocities is in good agreement with the
experimental data for the two higher supercoolings
(Figs. 8b and c). Although the measured tip
velocities for the lowest supercooling are approxi-
mately constant (Fig. 8a), the predictions for the
900 mm seed are clearly in much better agreement
with the experimental data than the ones for the
‘‘minimal’’ seed.

The observed thermal interactions between the
dendrite and its seed can be explained by the
presence of a spherical heat diffusion field that
emanates from the seed. During early times the
dendrite grows inside this spherical diffusion field.
This results in lower tip velocities because the
temperatures are locally higher. At later times, the
dendrite tips escape the spherical diffusion field,
the temperatures around the tips approach those
given by the Ivantsov solution, and the tip
velocities increase toward the steady-state value.
From the solution of the steady heat equation for
diffusion from a sphere, the thickness of the
thermal boundary layer around the initial sphe-
rical seed can be estimated to be equal to 6Rs,
where Rs is the seed radius. Hence, the time, tn; for
a dendrite tip (growing at a velocity viv) to traverse
the spherical diffusion field from the seed is given
by

tn ¼
6Rs

viv
: (14)

This characteristic time, with Rs ¼ 900mm; is
indicated as a vertical line in Figs. 8a–c. For the
‘‘minimal’’ seed, tn is so small that the effect of the
initial seed size can be neglected. It can be seen
that the predicted tip velocities for the minimal
seed and the 900 mm seed merge into a single curve
at the characteristic time t� (Rs ¼ 900 mm) for all
three supercoolings. This indicates that Eq. (14)
indeed provides an excellent estimate of the time
during which the initial seed has a significant effect
on the tip velocities.

For the lowest supercooling (0.37K, Fig. 8a) the
mesoscopic model predictions as well as the
measured tip velocities do not show a minimum.
In fact, the tip velocities remain slightly above the
steady-state value given by the Ivantsov solution
together with sn ¼ 0:018: Furthermore, the meso-
scopic model predicts a slight increase in the tip
velocity towards the end of the simulation
(between 600 and 700 s). These observations can
be explained by the thermal interactions between
the dendrite and the growth chamber wall. Such
interactions tend to increase the tip velocity
because the thermal gradients become steeper as
the dendrite tip approaches the isothermally held
wall. For the 0.37K supercooling the thermal
diffusion length ahead of the dendrite tip, lt ¼

a=niv; is approximately equal to 8.5mm, which is
not small relative to the radius of the growth
chamber (16mm). Hence, the dendrite can be
expected to begin to ‘‘feel’’ the effect of the
chamber wall almost from the beginning of growth
ðtX200 sÞ: The combination of the effects of the
initial seed, which reduce the tip velocity for
totn ¼ 400 s; and of the chamber wall, which tend
to increase the tip velocity, then result in an almost
constant tip velocity, slightly above the Ivantsov
value, between 200 and 400 s for the 0.37K
supercooling. The increase in the tip velocity
beyond 600 s is solely due to the effect of the
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proximity of the chamber wall. For the 0.78 and
1.01K supercoolings, the thermal diffusion lengths
ahead of the dendrite tips are only about 1.3 and
0.7mm, respectively. These lengths are small
enough relative to the size of the growth chamber
that the thermal interactions between the dendrite
and the chamber wall are negligible during the
growth period analyzed and the dendrite can reach
a steady growth state. It should be mentioned that
in Fig. 8c the small deviations (less than 3%) of the
predicted steady-state tip velocities from the
Ivantsov value are within the accuracy of the
mesoscopic model calculations (see Section 3.1).
5. Analysis of the transient growth of impinging

dendrites

Additional mesoscopic model simulations are
performed to investigate the transients arising
during the simultaneous growth of two dendrite
arms directly towards each other. Fig. 9 shows the
results of an example calculation for an imposed
supercooling of 0.58K and a seed distance, Dseed;
of 1 cm. It can be seen that the temperature profiles
ahead of the dendrite tips are starting to overlap at
approximately 10 s. After that time, the tempera-
ture at the center between the two tips starts to
increase and the tip velocities decrease. At 90 s, the
supercooling between the dendrites is almost
Fig. 9. Predicted variation of the temperature profile between

two equiaxed dendrites growing towards each other (para-

meters provided in text).
completely dissipated and the tip velocities ap-
proach zero. Using the results from Section 3.2, it
can be shown that the transients in the present
simulations of the growth of impinging dendrites
are generally slow enough that sn can indeed be
assumed constant.

Fig. 10 shows predicted variations in the tip
velocities for simulations with a relatively large
seed distance, Dseed; of 10 cm (and a seed size of
300 mm) and five different supercoolings ranging
from 0.2 to 0.65K. The results for all super-
coolings are presented in a single plot, using linear
(instead of logarithmic) scales, in order to more
clearly demonstrate the large range of tip velocities
predicted and the fact that the times when the tip
velocities approach zero range from tens of
seconds to several hours. It can be seen that after
a short initial transient, the tip velocities generally
reach a plateau, which is indicative of a steady
state. Then, they decay to zero in a transient that is
due to thermal interactions between the dendrites.

The decays of the tip velocities in Fig. 10 for the
different supercoolings can be scaled by non-
dimensionalizing the tip velocities with viv; and
time with a characteristic transient time, tt. This
characteristic decay time is given by the ratio of
the thermal diffusion length, lt ¼ a=viv; to viv as

tt ¼
lt

viv
¼

a
v2iv

: (15)
Fig. 10. Predicted variation of the dendrite tip velocity for two

equiaxed dendrites growing towards each other for five different

supercoolings (parameters provided in text).
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The decay of the tip velocities due to thermal
interactions between the dendrites occurs at
different times during a simulation depending on
the initial seed distance. Hence, in scaling the
decays, the time in each simulation needs to be
shifted by an amount equal to the so-called
interaction time, ti: The interaction time is defined
here as the time when the tip velocity has
decreased to 0:5 viv: Then, the final definition of
the scaled time is given by

t ¼
t � ti

tt
: (16)

Fig. 11 shows the scaled tip velocities, v=viv; as a
function of the scaled time, t: In addition to the
results from Fig. 10, predictions from simulations
for supercoolings of 0.8 and 1.0K are also
included. It can be seen that the scaled tip
velocities show approximately the same decay for
all supercoolings. This indicates that the above
scaling of the transients due to thermal interac-
tions between the dendrites is essentially correct.

In order to quantitatively measure the actual
duration of the decay in the tip velocities, the
following hyperbolic tangent profile can be fit to
the results in Fig. 11

v

viv
¼ 0:5 1� tanh

t
tt

� �
; (17)
Fig. 11. Scaled decays in the dendrite tip velocity for two

equiaxed dendrites growing towards each other for seven

different supercoolings (same cases as in Fig. 10 plus two

additional supercoolings); fits given by Eq. (17) are included for

two different dimensionless decay times (0.5 and 1).
where tt is a measure of the duration of the decay.
Profiles for tt ¼ 1 and 0.5 are included in Fig. 11.
It can be seen that that the profile with tt ¼ 0:5
provides a relatively good fit of the decays in the
tip velocities predicted by the mesoscopic model
for all supercoolings. The profile with tt ¼ 1 gives
a somewhat better fit during the initial part of the
decay for the two highest supercoolings (0.8 and
1.0K). Note that tt ¼ 0:5 implies that the duration
of the decay in the tip velocities is equal to
0:5lt=viv: These results show that, as expected,
significant thermal interactions between two den-
drites start to take place when the tips are within
about one (for tt ¼ 0:5) to two (for tt ¼ 1) thermal
diffusion lengths, lt; of each other.

The simulations in Figs. 10 and 11 are for a seed
distance, Dseed; large enough (10 cm) that, for all
supercoolings, the dendrites can reach a steady
growth stage before interacting with one another.
The effect of the initial seed distance is investigated
next by performing simulations for a supercooling
of 0.65K and seed distances of 14, 20, and 26mm.
The results in Fig. 12 show that for the two smaller
seed distances the dendrite tip velocity does not
attain the steady-state value ð� 58 mm=sÞ before
the onset of the decay due to thermal interactions
between the dendrites. In fact, for the 14mm seed
distance, the initial transient due to growth from a
seed and the decay due to thermal interactions
Fig. 12. Predicted variations of the dendrite tip velocity for two

equiaxed dendrites growing towards each other for three

different seed distances (parameters provided in text); fits given

by Eq. (17) are included for each seed distance.
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overlap so strongly that the tip velocity decreases
steeply throughout the simulation. Furthermore,
from the fit of the decays in Fig. 12 by the
hyperbolic tangent profile, Eq. (17), it can be seen
that the characteristic decay time tt decreases from
0.76 to 0.55 for the seed distance decreasing from
26 to 14mm. This indicates that, as expected, the
decay time is reduced if the dendrites start to
thermally interact early before they reach a steady
growth state. A detailed analysis of the transient
evolution of the tip velocities for even smaller seed
distances is beyond the scope of the present study.
For such small seed distances, there is insufficient
time for a regular dendrite morphology to develop
(i.e., the grains will retain a globulitic shape) and
the present mesoscopic model cannot be expected
to be applicable.
6. Conclusions

An improved version of a previously developed
mesoscopic dendrite simulation model is used to
investigate transients and thermal interactions
arising during equiaxed growth. The model is
validated (i) for steady-state growth against the
standard analytical model for free dendritic
growth and (ii) for transient growth against direct,
fully resolved phase field simulations. It is found
that in the presence of transients inaccuracies in
the mesoscopic model predictions are limited to a
short response time during which the selection
parameter, sn; is not constant. The transient
response time due to a sudden change in the
melting temperature is of the order of R=2v:

The model is first applied to realistically
simulate the IDGE of Glicksman and coworkers
[4,5]. Both the seeding procedure and the growth
chamber walls are modeled in the simulations.
Excellent agreement with the measured variations
in the dendrite tip velocities is obtained for a range
of imposed supercoolings. It is shown that the size
of the initial seed size has a profound influence on
the initial transient during which the tip velocity
approaches the steady state. The thermal field
from a relatively large seed tends to reduce the tip
velocity (below the steady-state value) during the
initial transient, which is supported by the experi-
mental data. A scaling relation is derived for the
duration of the initial seed size effect. It is also
found that for a relatively low supercooling, the
thermal interactions with the growth chamber
walls, which tend to increase the tip velocity, are
important almost from the beginning of growth.
The combination of the seed and wall effects
results in an almost constant tip velocity during
much of the duration of the experiment with a low
supercooling.

The mesoscopic model is then used to investi-
gate the transients arising due to thermal interac-
tions during the growth of two equiaxed dendrites
towards each other. The results show how the
supercooling between the dendrites is dissipated
and the tip velocities decrease. A scaling relation
for the transient decay of the tip velocities is
derived. Some results are also presented for the
case where the initial transient due to growth from
a seed and the decay due to thermal interactions
between dendrites overlap. However, additional
study is needed to quantify the evolution of the
growth velocities in such cases.
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